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Abstract: The relaxed inertial Tseng-type method for solving the inclusion problem involving a
maximally monotone mapping and a monotone mapping is proposed in this article. The study
modifies the Tseng forward-backward forward splitting method by using both the relaxation
parameter, as well as the inertial extrapolation step. The proposed method follows from time
explicit discretization of a dynamical system. A weak convergence of the iterates generated by the
method involving monotone operators is given. Moreover, the iterative scheme uses a variable step
size, which does not depend on the Lipschitz constant of the underlying operator given by a simple
updating rule. Furthermore, the proposed algorithm is modified and used to derive a scheme for
solving a split feasibility problem. The proposed schemes are used in solving the image deblurring
problem to illustrate the applicability of the proposed methods in comparison with the existing
state-of-the-art methods.

Keywords: variational inclusion problem; Lipschitz-type conditions; forward-backward method;
zero point; image restoration; maximal monotone operator

MSC: 47H05; 47J20; 47J25; 65K15

1. Introduction

This paper considers the problem of finding a point ŭ ∈ H such that:

0 ∈ (A + B)ŭ, (1)

where A : H −→ H and B : H −→ 2H are respectively single-valued and multi-valued operators
on a real Hilbert space H. The variational inclusion (VI) problem (1) is a fundamental problem in
optimization theory, which is applied in many areas of study such as image processing, machine
learning, transportation problems, equilibrium, economics, and engineering [1–17].
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There are several approaches to the VI problem, the popular one being the forward-backward
splitting method introduced in [18,19]. Several studies have been carried out, and a number of
algorithms have been considered and proposed to solve (1) [5,7,20–29].

To study the formulation of the monotone inclusion problem (1), the relaxation techniques are
important tools as they give iterative schemes more versatility [30,31]. In order to accelerate the
convergence of numerical methods, inertial effects were introduced. This technique traces back to
the pioneering work of Polyak [32] who introduced the heavy ball method to speed up the gradient
algorithm’s convergence behavior and allow the identification of various critical points. The inertial
idea was later used and developed by Nesterov [33] and Alvarez and Attouch (see [34,35]) in the
sense of solving smooth convex minimization problems and monotone inclusions/non-smooth convex
minimization problems, respectively. A considerable amount of literature has contributed to inertial
algorithms over the last decade [36–40].

Due to the advantages of the inertial effects and relaxation techniques, Attouch and Cabot
extensively studied the inertial algorithm for monotone inclusion and convex optimization problems.
To be precise, they focused on the relaxed inertial proximal method (RIPA) in [41,42] and the relaxed
inertial forward-backward method (RIFB) in [43]. In [44], and a relaxed inertial Douglas–Rachford
algorithm for monotone inclusions was proposed. Similarly, in [45], Iutzeler and Hendrickx studied
the influence of inertial effects and relaxation techniques on the numerical performance of algorithms.
The similarity between relaxation and inertial parameters for relative-error inexact under-relaxed
algorithms was addressed in [46,47].

In this study, we associate (1) with the following dynamical system [48]:

du(x)
dx

= ρ
[
− u(x) + (I + λB)−1

(
u(x)− λAu(x)

)
+ λAu(x)

− λA(I + λB)−1
(

u(x)− λAu(x)
)]

,
(2)

where ρ > 0 and λ > 0.

un+1 − un

hn
= ρ

[
− un + (I + λB)−1(un − λAun) + λAun

− λA(I + λB)−1(un − λAun)
]
.

(3)

The last equality follows from an explicit discretization of (2) in time x, with a step size hn > 0.
Taking hn = 1, we obtain:

un+1 = (1− ρ)un + ρ(I + λB)−1(un − λAun) + ρλAun

− ρλA(I + λB)−1(un − λAun).
(4)

Setting sn = (I + λB)−1(I − λA)un in (4), we get:

un+1 = (1− ρ)un + ρsn + ρλ(Aun − Asn), n ≥ 1. (5)

It can be observed that in the case ρ = 1, Equation (5) reduces to Tseng’s
forward-backward-forward method [20]. The convergence of the scheme in [20] requires that
0 < λ < 1

L , where L is the Lipschitz constant of A, or λ can be computed using a line search
procedure with a finite stopping criterion. It has been known that line search procedures involve extra
functions’ evaluations, thereby reducing the computational performance of a given scheme. In this
article, we propose a simple variable step size, which does not involve any line search.
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The main iterative scheme in this study is given by:
tn = un + $(un − un−1),

sn = (I + λnB)−1(I − λn A)tn,

un+1 = (1− ρ)tn + ρsn + ρλn(Atn − Asn), n ≥ 1.

(6)

where ρ is the relaxation parameter and $ is the extrapolation parameter. It is well known that
the extrapolation step speeds up the convergence of a scheme. The step size λn is defined to be
self-adaptively updated according to a new simple step size rule.

Furthermore, (6) without the additional last step is exactly the scheme proposed in [49], which
converges weakly to the solution of (1) with a restrictive assumption on A. Moreover, (6) can be
considered as a relaxed version of the scheme proposed by Tseng [20].

Recently, Gibali et al. [7] proposed a modified Tseng algorithm by incorporating the Mann method
with a variable step size for solving (1). The question now is: Can we have a fast iterative scheme
involving a more general class of operators with a variable step size? We provide a positive answer to
this question in this study.

Inspired and motivated by [7,20,49], we propose a relaxed inertial scheme with variable step
sizes by incorporating the inertial extrapolation step and the relaxed parameter with the forward
and backward scheme. The aim of this modification is to obtain a self-adaptive scheme with
fast convergence properties involving a more general class of operators. Furthermore, we present
a modified version of the proposed scheme for solving the split feasibility problem. Moreover, to
illustrate the performance and to show the applicability of the proposed methods when compared to
the existing algorithms in the literature, we apply the proposed algorithms to solve the problem of
image recovery.

The outline of this work is as follows: We give some definitions and lemmas that we will use in
our convergence analysis in the next section. We present the convergence analysis of our proposed
scheme in Section 3, and lastly, in Section 4, we illustrate the inertial effect and the computational
performance of our algorithms by giving some experiments by using the proposed algorithms to solve
the problem of image recovery.

2. Preliminaries

This section recalls some known facts and necessary tools that we need for the convergence
analysis of our method. Throughout this article, H is a real Hilbert space with the inner product and
norm denoted respectively as 〈·, ·〉 and ‖·‖, and E is a nonempty closed and convex subset of H. The
notation uj ⇀ u (resp uj −→ u) is used to indicate that, respectively, the sequence {uj} converges
weakly (strongly) to u. The following is known to hold in a Hilbert space:

‖t± s‖2 = ‖t‖2 + ‖s‖2 ± 2 〈t, s〉 (7)

and for every t, s ∈ H [30]. The following definitions can be found for example in [7,30].

Definition 1. Let A : H −→ H be a mapping defined on a real Hilbert space H. For all u, v ∈ E, A is said to
be:

(1) Monotone if:
〈Au− Av, v− u〉 ≥ 0;

(2) Firmly nonexpansive if:
‖Au− Av‖2 ≤ 〈Au− Av, u− v〉 ,

or equivalently,
‖Au− Av‖2 ≤ ‖u− v‖2 − ‖(I − A)u− (I − A)v‖2;
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(3) L-Lipschitz continuous on H if there exists a constant L > 0 such that:

‖Au− Av‖ ≤ L ‖u− v‖ .

If L = 1, then A is called nonexpansive.

Definition 2 ([30]). A multi-valued mapping B : H −→ 2H is said to be monotone, if for every u, v ∈ H, x ∈
Bu and y ∈ Bv ⇒ 〈x− y, u− v〉 ≥ 0. Furthermore, B is said to be maximal monotone if it is monotone and
if for every (u, x) ∈ H, 〈x− y, u− v〉 ≥ 0 for every (v, y) ∈ Graph (B) ⇒ x ∈ Bu.

Definition 3. Let B : H −→ 2H be a multi-valued maximal monotone mapping. Then, the resolvent JB
λ :

H −→ H mapping associated with B is defined by:

JB
λ (u) = (I + λB)−1(u),

for some λ > 0, where I stands for the identity operator on H.

It is worth mentioning that it is well known that if B : H −→ 2H is a set-valued maximal monotone
mapping and λ > 0, then Dom(JB

λ ) = H, and JB
λ is a single-valued and firmly nonexpansive mapping

(see [50] for more properties of maximal monotone mapping).

Lemma 1 ([51]). Let A : H −→ H be a Lipschitz continuous and monotone mapping and B : H −→ 2H be
a maximal monotone mapping, then the mapping A + B is a maximal monotone mapping.

Lemma 2 ([52]). Suppose {γn}, {φn} and {$n} are sequences in [0, ∞) such that, for all n ≥ 1,

γn+1 ≤ γn + $n(γn − γn−1) + φn, ∑ φn < ∞

and there exists $ ∈ R with 0 ≤ $n ≤ $ ≤ 1 for all n ≥ 1. Then, the following are satisfied:

(i) ∑[γn − γn−1]+ < ∞, where [a]+ = max{a, 0};
(ii) there exists γ∗ ∈ [0, ∞) with lim γn = γ∗.

Lemma 3 ([53]). Let E ⊂ H be a nonempty set and a sequence {uj} in H such that the following are satisfied:

(a) for every u ∈ E, limj→∞ ‖uj − u‖ exists;
(b) every sequentially weak cluster point of {uj} is in E.

Then, {uj} converges weakly in E.

Lemma 4. Let {$n} be a non-negative real number sequence, {γn} be a sequence of real numbers in (0, 1) with
∑∞

n=1 γn = ∞, and {δn} be a sequence of real numbers satisfying:

$n+1 ≤ (1− γn)$n + γnδn for all n ≥ 1.

If lim supi→∞ δnj ≤ 0 for every subsequence {$nj} of {$n} satisfying ($nj+1− $nj) ≥ 0, then limn→∞ $n = 0.

3. Relaxed Inertial Tseng-Type Algorithm for the Variational Inclusion Problem

In this section, we give a detailed description of our proposed algorithm, and we present the
weak convergence analysis of the iterates generated by the algorithm to the solution of the inclusion
problem (1) involving the sum of a maximally monotone and monotone operator. We suppose the
following assumptions for the analysis of our method.
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Assumption 1.
A1 The feasible set of (1) is a nonempty closed and convex subset of H.
A2 The solution set Γ of (1) is nonempty.
A3 A : H −→ H is monotone, L-Lipschitz continuous on H, and B : H −→ 2H maximally monotone.

Lemma 5. The generated sequence {λn} by (11) is monotonically decreasing and bounded from below by
min{ µ

L , λ0}.

Proof. It can be observed that the sequence {λn} is monotonically decreasing. Since A is a Lipschitz
function with Lipschitz’s constant L, for Atn 6= Asn, we have:

µ‖tn − sn‖
‖Atn − Asn‖

≥ µ

L
(8)

It is obvious for Atn = Asn that the inequality (8) is satisfied. Hence, it follows that λn ≥
min{ µ

L , λ0}.

Remark 1. By Lemma 5, the update (11) is well defined and:

λn+1‖Atn − Asn‖ ≤ µ‖tn − sn‖. (9)

Next, the following lemma and its proof are crucial for the convergence analysis of the sequence
generated by Algorithm 1.

Algorithm 1 Relaxed inertial Tseng-type algorithm for the VI problem.

Initialization: Choose u−1, u0 ∈ H, µ ∈ (0, 1), $ ≥ 0, λ0 > 0, and ρ > 0.
Iterative steps: Given the current iterates un−1 and un ∈ H.

Step 1. Set tn as:
tn := un + $(un − un−1), (10)

Step 2. Compute:
sn = (1 + λnB)−1(1− λn A)tn

If tn = sn, stop. tn is the solution of (1). Else, go to Step 3.
Step 3. Compute:

un+1 = (1− ρ)tn + ρsn + ρλn(Atn − Asn).

where the stepsize sequence λn+1 is updated as follows:

λn+1 :=

{
min

{
λn, µ‖tn−sn‖

‖Atn−Asn‖
}

, if Atn 6= Asn

λn, otherwise .
(11)

Set n := n + 1, and go back to Step 1.

Lemma 6. Let A be an operator satisfying the assumption (A3). Then, for all ŭ ∈ Γ 6= ∅, we have:

‖un+1 − ŭ‖2 ≤ ‖tn − ŭ‖2 − ηρ‖tn − sn‖2,

where η =

[
2− ρ− 2µ(1− ρ) λn

λn+1
− ρµ2 λ2

n
λ2

n+1

]
.
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Proof. From the fact that the resolvent JB
λn

is firmly nonexpansive and sn = (I + λnB)−1(I− λn A)tn =

JB
λn
(1− λn A)tn, we have:

〈sn − ŭ, tn − sn − λn Atn〉

=
〈

JB
λn
(I − λn A)tn − JB

λn
(I − λn A)ŭ, (I − λn A)tn − (I − λn A)ŭ + (I − λn A)ŭ− sn

〉
,

≥ ‖sn − ŭ‖2 + 〈sn − ŭ, ŭ− sn〉 − 〈sn − ŭ, λn Aŭ〉 ,

= − 〈sn − ŭ, λn Aŭ〉 .

(12)

Hence, we get: 〈
sn − ŭ, tn − sn − λn(Atn − Asn)

〉
≥ 0,

which is the same as:
2 〈tn − sn, sn − ŭ〉 − 2λn 〈Atn − Asn, sn − ŭ〉 ≥ 0. (13)

However,
2 〈tn − sn, sn − ŭ〉 = ‖tn − ŭ‖2 − ‖tn − sn‖2 − ‖sn − ŭ‖2. (14)

Substituting Equation (14) in Equation (13), we get:

‖sn − ŭ‖2 ≤ ‖tn − ŭ‖2 − ‖tn − sn‖2 − 2λn 〈Atn − Asn, sn − ŭ〉 . (15)

On the other hand, from the definition of un+1, we have:

‖un+1 − ŭ‖2 = ‖(1− ρ)tn + ρsn + ρλn(Atn − Asn)− ŭ‖2,

= ‖(1− ρ)(tn − ŭ) + ρ(sn − ŭ) + ρλn(Atn − Asn)‖2,

= (1− ρ)2‖tn − ŭ‖2 + ρ2‖sn − ŭ‖2 + ρ2λ2
n‖Atn − Asn‖2

+ 2ρ(1− ρ) 〈tn − ŭ, sn − ŭ〉+ 2λnρ(1− ρ) 〈tn − ŭ, Atn − Asn〉
+ 2λnρ2 〈sn − ŭ, Atn − Asn〉 .

(16)

Using Equation (7), we have:

2 〈tn − ŭ, sn − ŭ〉 = ‖tn − ŭ‖2 + ‖sn − ŭ‖2 − ‖tn − sn‖2. (17)

Substituting Equation (17) in Equation (16), we get:

‖un+1 − ŭ‖2 = (1− ρ)‖tn − ŭ‖2 + ρ2‖sn − ŭ‖2 + ρ2λ2
n‖Atn − Asn‖2

+ ρ(1− ρ)
[
‖tn − ŭ‖2 + ‖sn − ŭ‖2 − ‖tn − sn‖2

]
+ 2λnρ(1− ρ) 〈tn − ŭ, Atn − Asn〉+ 2λnρ2 〈sn − ŭ, Atn − Asn〉 ,

= (1− ρ)‖tn − ŭ‖2 + ρ‖sn − ŭ‖2 − ρ(1− ρ)‖tn − sn‖2

+ λ2
nρ2‖Atn − Asn‖2 + 2λnρ(1− ρ) 〈tn − ŭ, Atn − Asn〉

+ 2λnρ2 〈sn − ŭ, Atn − Asn〉 .

(18)
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Putting Inequality (15) in Equation (18), we have,

‖un+1 − ŭ‖2

≤ (1− ρ)‖tn − ŭ‖2 + ρ
[
‖tn − ŭ‖2 − ‖tn − sn‖2 − 2λn 〈Atn − Asn, sn − ŭ〉

]
− ρ(1− ρ)‖tn − sn‖2 + λ2

nρ2‖Atn − Asn‖2 + 2λnρ(1− ρ) 〈tn − ŭ, Atn − Asn〉
+ 2λnρ2 〈sn − ŭ, Atn − Asn〉 ,

= ‖tn − ŭ‖2 − ρ(2− ρ)‖tn − sn‖2 + λ2
nρ2‖Atn − Asn‖2

+ 2λnρ(1− ρ) 〈tn − sn, Atn − Asn〉 ,

≤ ‖tn − ŭ‖2 − ρ(2− ρ)‖tn − sn‖2 + λ2
nρ2 µ2

λ2
n+1
‖tn − sn‖2

+ 2λnρ(1− ρ)
µ

λn+1
‖tn − sn‖2,

≤ ‖tn − ŭ‖2 − ρ

[
2− ρ− 2µ(1− ρ)

λn

λn+1
− ρµ2 λ2

n

λ2
n+1

]
‖tn − sn‖2;

(19)

hence the proof.

Lemma 7. Let {tn} be a sequence generated by Algorithm 1 and Assumption (A1 − A3) be satisfied. If there
exists a subsequence {tni} weakly convergent to q ∈ H with limn→∞ ‖tn − sn‖ = 0, then q ∈ Γ.

Proof. Suppose (y, x) ∈ Graph(A + B), that is x− Ay ∈ By, and since sni = (I + λni B)
1(I − λni A)tni ,

we get:
(I − λni A)tni ∈ (I + λni B)sni .

This implies that:
1

λni

(tni − sni − λni Atni ) ∈ Bsni .

By the maximal monotonicity of B, we have:〈
y− sni , x− Ay− 1

λni

(tni − sni − λni Atni )

〉
≥ 0.

Hence,

〈y− sni , x〉 ≥
〈

y− sni , Ay +
1

λni

(tni − sni − λni Atni )

〉
= 〈y− sni , Ay− Atni 〉+

〈
y− sni ,

1
λni

(tni − sni )

〉
= 〈y− sni , Ay− Asni 〉+ 〈y− sni , Asni − Atni 〉

+

〈
y− sni ,

1
λni

(tni − sni )

〉
≥ 〈y− sni , Asni − Atni 〉+

〈
y− sni ,

1
λni

(tni − sni )

〉
.

From the fact that A is Lipschitz continuous and limn→∞ ‖tn − sn‖ = 0, it follows that
limn→∞ ‖Atn − Asn‖ = 0; since limn→∞ λn exists, we get:

〈y− q, x〉 = lim
i→∞
〈y− sni , x〉 ≥ 0.
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The above inequality together with the maximal monotonicity of A + B implies that 0 ∈ (A + B)q,
that is q ∈ Γ; hence the proof.

Theorem 1. Let A be an operator satisfying the assumptions (A3) and:

0 < ρ <

√
1 + 8κ − 1− 2κ

2(1− κ)
, (20)

with κ ∈
(

0, (1− µ) (2− ρ + ρµ) [2− ρ (1− µ)]−2
)

. Then, for all ŭ ∈ Γ 6= ∅, the sequence {un} generated
by Algorithm 1, converges weakly to ŭ.

Proof. From the definition of un+1 and (9), we have:

‖un+1 − sn‖ = ‖(1− ρ)tn + ρsn + ρλn(Atn − Asn)− sn‖,
= ‖(1− ρ)(tn − sn) + ρλn(Atn − Asn)‖,
≤ (1− ρ)‖tn − sn‖+ ρλn‖Atn − Asn‖,

≤ (1− ρ)‖tn − sn‖+ ρµ
λn

λn+1
‖tn − sn‖,

=

[
1− ρ

(
1− µ

λn

λn+1

)]
‖tn − sn‖.

(21)

Furthermore,
‖un+1 − tn‖ ≤ ‖un+1 − sn‖+ ‖sn − tn‖, (22)

Substituting Equation (22) in Equation (21), we get:

‖un+1 − tn‖ ≤
[

1− ρ

(
1− µ

λn

λn+1

)]
‖tn − sn‖+ ‖sn − tn‖,

=

[
2− ρ

(
1− µ

λn

λn+1

)]
‖tn − sn‖.

(23)

Hence,

‖tn − sn‖ ≥
1

2− ρ
(

1− µ λn
λn+1

)‖un+1 − tn‖. (24)

Putting Equation (24) and Lemma 6 together, we have:

‖un+1 − sn‖2 ≤ ‖tn − ŭ‖2 − ηρ

2− ρ
(

1− µ λn
λn+1

)‖un+1 − tn‖. (25)

Set:

ζn = ρ

[
2− ρ− 2µ(1− ρ)

λn

λn+1
− ρµ2 λ2

n

λ2
n+1

] [
2− ρ

(
1− µ

λn

λn+1

)]−2
.

Observe that, λn −→ λ as n −→ ∞; we get:

lim
n→∞

ζn = ρ
[
2− ρ− 2µ(1− ρ)− ρµ2

]
[2− ρ (1− µ)]−2 ,

= (1− µ) (2− ρ + ρµ) [2− ρ (1− µ)]−2 ,

> 0.

(26)
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It follows from (20) that there exists a κ such that:[
2− ρ− 2µ(1− ρ)

λn

λn+1
− ρµ2 λ2

n

λ2
n+1

] [
2− ρ

(
1− µ

λn

λn+1

)]−2
> κ for all n ≥ ℵ.

This together with Equation (22) imply that:

‖un+1 − sn‖2 ≤ ‖tn − ŭ‖2 − κ‖un+1 − tn‖. (27)

On the other hand, from the Definition (10), we have:

‖tn − ŭ‖2 = ‖un + $(un − un−1)− ŭ‖2,

= ‖(1 + $)(un − ŭ)− $(un−1 − ŭ)‖2,

= (1 + $)‖un − ŭ‖2 − $‖un−1 − ŭ‖2 + $(1 + $)‖un − un−1‖2.

(28)

Furthermore, from Definition (10) and the Cauchy–Schwartz inequality, we get:

‖un+1 − tn‖2

= ‖un+1 − un − $(un − un−1)‖2,

= ‖un+1 − un‖2 + $2‖un − un−1‖2 − 2$ 〈un+1 − un, un − un−1〉 ,

≥ ‖un+1 − un‖2 + $2‖un − un−1‖2 − 2$‖un+1 − un‖‖un − un−1‖,
≥ ‖un+1 − un‖2 + $2‖un − un−1‖2 − $‖un+1 − un‖2 − $‖un − un−1‖2,

≥ (1− $)‖un+1 − un‖2 + ($2 − $)‖un − un−1‖2.

(29)

Putting Equations (27)–(29) together, we obtain:

‖un+1 − ŭ‖2

≤ (1 + $)‖un − ŭ‖2 − $‖un−1 − ŭ‖2 + $(1 + $)‖un − un−1‖2

− κ
[
(1− $)‖un+1 − un‖2 + ($2 − $)‖un − un−1‖2

]
,

≤ (1 + $)‖un − ŭ‖2 − $‖un−1 − ŭ‖2 − κ(1− $)‖un+1 − un‖2,

+
[
$(1 + $)− κ($2 − $)

]
‖un − un−1‖2,

≤ (1 + $)‖un − p‖2 − $‖un−1 − p‖2 − βn‖un+1 − un‖2 + γn‖un − un−1‖2.

where βn = κn(1− $), and γn =
[
$(1 + $)− κ($2 − $)

]
.

Set:
φn = ‖un − ŭ‖2 − $‖un−1 − ŭ‖2 + βn‖un − un−1‖2.

Thus,

φn+1 − φn = ‖un+1 − ŭ‖2 − $‖un − ŭ‖2 + βn+1‖un+1 − un‖2

− ‖un − ŭ‖2 + $‖un−1 − ŭ‖2 − βn‖un − un−1‖2,

= ‖un+1 − p‖2 − (1 + $)‖un − ŭ‖2 + $‖un−1 − ŭ‖2

+ βn+1‖un+1 − un‖2 − βn‖un − un−1‖2,

≤ ‖un+1 − ŭ‖2 − (1 + $)‖un − ŭ‖2 + $‖un−1 − ŭ‖2

+ βn+1‖un+1 − un‖2 − βn‖un − un−1‖2,

≤ −(γn − βn+1)‖un+1 − un‖2.



Mathematics 2020, 8, 818 10 of 19

Notice that,

γn − βn+1 = κn(1− $)−
[
$(1 + $)− κ($2 − $)

]
= −(1− κ)$2 − (1 + 2κ)$ + κ

Therefore,
φn+1 − φn ≤ −τ‖un+1 − un‖2, (30)

with τ = (1− κ)$2 − (1 + 2κ)$ + κ, it follows from (20) that τ > 0. Therefore, the sequence {φn} is
nonincreasing. Further, from the definition of φn+1, we have

φn+1 = ‖un+1 − ŭ‖2 − $‖un − ŭ‖2 + βn+1‖un+1 − un‖2,

≥ −$‖un − ŭ‖2.
(31)

In addition, we have:

φn = ‖un − ŭ‖2 − $‖un−1 − ŭ‖2 + Rn‖un − un−1‖2,

≥ ‖un − ŭ‖2 − $‖un−1 − ŭ‖2.
(32)

The last inequality implies that:

‖un − ŭ‖2 ≤ φn + $‖un−1 − ŭ‖2,

≤ φ1 + $‖un−1 − ŭ‖2,

≤ · · · ≤ φ1($
n−1 + · · ·+ 1) + $n‖u0 − ŭ‖2,

≤ φ

1− $
+ $n‖u0 − ŭ‖2.

(33)

Combining Equations (31) and (33), we obtain:

−φn+1 ≤ $‖un − ŭ‖2,

≤ $
φ1

1− $
+ $n+1‖u0 − ŭ‖2.

(34)

It follows from Expressions (30) and (34) that:

τ
i

∑
n=1
‖un+1 − un‖ ≤ φ1 − φi+1,

≤ φ1 + $
φ1

1− $
+ $i+1‖u0 − ŭ‖2,

≤ φ1

1− $
+ ‖u0 − ŭ‖2.

(35)

Letting i→ ∞ in the above expression implies that,

∞

∑
n=1
‖un+1 − un‖ < +∞ =⇒ lim

n→∞
‖un+1 − un‖ = 0. (36)

Moreover, from:

‖un+1 − tn‖ = ‖un+1 − un‖2 + $2‖un − un−1‖2 − 2$ 〈un+1 − un, un − un−1〉 , (37)
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we can obtain:
‖un+1 − tn‖ → 0 as n→ ∞. (38)

By Relation (30) together with Lemma 2, we obtain:

lim
n→∞

‖un − ŭ‖2 = l, for some finite l > 0. (39)

By Equation (28), we also obtain:

lim
n→∞

‖tn − ŭ‖2 = l. (40)

Moreover,
0 ≤ ‖un − tn‖ ≤ ‖un − un+1‖+ ‖un+1 − tn‖ −→ 0. (41)

It follows from Equation (25) that:

‖sn − tn‖ −→ 0.

Since limn→∞ ‖un − ŭ‖2 exists, therefore the sequence {un} is bounded. Let {uni} be a
subsequence of {un} such that uni ⇀ u∗, then from (41), we have tni ⇀ u∗. Now, since
limn→∞ ‖tn − sn‖ = 0, by Lemma 7, we get u∗ ∈ Γ. Consequently, by Lemma 3, the sequence
{un} converges weakly to the solution of (1).

4. Application to the Split Feasibility Problem

In this section, we derive a scheme for solving the split feasibility problem from Algorithm 1.
The split feasibility problem (SFP) is a problem of finding a point ǔ ∈ C such that Aǔ ∈ Q, where C, Q
are nonempty closed and convex subsets of H1 and H2, respectively, and A : H1 −→ H2 is a bounded
linear operator. Censor and Elfving in [54] introduced the problem (SFP) in finite-dimensional Hilbert
spaces by using a multi-distance method to obtain an iterative method for solving SFP. A number of
problems that arise from phase retrievals and in medical image reconstruction can be formulated as
split variational feasibility problems [3,55]. The problem (SFP) can also be used in various disciplines
such as image restoration, dynamic emission tomographic image reconstruction, and radiation therapy
treatment planning [2,7,56]. Suppose f : H −→ (∞, ∞) is proper lower semi-continuous convex. Then,
for all u ∈ H, the subdifferential ∂ f of f is defined as follows:

∂ f (u) = {ω ∈ H : f (u) ≤ 〈ω, u− v〉+ f (v) ∀v ∈ H}.

For a nonempty closed and convex subset C of H, the indicator function iC of C is given by:

iC(u) =

{
0 if u ∈ C

∞ if u /∈ C.
(42)

Furthermore, the normal cone of C at u NCu is given as:

NCu = {ω ∈ H : 〈ω, u− v〉 ≤ 0 ∀v ∈ H}.

It is known that the indicator function iC is a proper, lower semi-continuous and convex function
on H. Thus, the subdifferential ∂iC of iC is a maximal monotone operator and:

∂iCu = {ω ∈ H : iCu ≤ 〈ω, u− v〉+ iCv ∀v ∈ H},
= {ω ∈ H : 〈ω, u− v〉 ≤ 0 ∀v ∈ H},
= NCu.
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Therefore, for all u ∈ H, we can define the resolvent of ∂iC as J∂iC
λ = (I + λ∂iC)−1 for each λ > 0.

Hence, we can see that for λ > 0:

v = J∂iC
λ u⇔ u ∈ (v + λ∂iCv),

⇔ u− v ∈ λ∂iCv,

⇔ v = PCu.

Now, based on the above derivation, Algorithm 1 can be reduced to the following scheme.
Let C and Q be nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively,

A : H1 −→ H2 be a bounded linear operator with adjoint A∗, and ΓSFP be the solution set of the
problem (SFP). Let u−1, u0 ∈ H1 be arbitrary, λ0 > 0, $ > 0, and ρ > 0. Let {un} be a sequence
generated by the following scheme:

tn := un + $(un − un−1),

sn := PC
[
tn − λn A∗(I − PQ)Atn

]
,

un+1 := (1− ρ)tn + ρsn + ρλn
[
A∗(I − PQ)Atn − A∗(I − PQ)Asn

]
.

(43)

where the step size λn is updated using Equation 11. If ΓSFP 6= ∅, then the sequence {un} converges
weakly to an element of ΓSFP 6= ∅.

Application to the Image Restoration Problem

The VI problem as mentioned in Section 1 can be applied for solving many problems. Of particular
interest, in this subsection, we use Algorithm 1 and Scheme (43) (Algorithm 2) to solve the problem
of image deblurring. Furthermore, to illustrate the effectiveness of the proposed scheme, we give
a comparative analysis of Algorithm 1 and the algorithms proposed in [49,57]. Furthermore, we
compare Scheme 43 with Byrne’s algorithm proposed in [3] for solving the split feasibility problem.

Recall that the image deblurring problem in image processing can be expressed as:

c = Mu + δ, (44)

where u ∈ Rn represents the original image, M is the deblurring matrix, c is the observed image, and
δ ∈ Rm is the Gaussian noise. It has been known that solving (44) is equivalent to solving the convex
unconstrained optimization problem:

min
u∈Rn

{
1
2
‖Mu− c‖2

2 + ρ‖u‖2
1

}
, (45)

with ρ > 0 as the regularization parameter. To solve (45), we suppose A = ∇S(u) and B = ∂T where
S(u) = 1

2‖Mu− c‖2
2 and T(u) = ‖u‖2

1, then we have that ∇S(u) = Mt(Mu− c) is 1
‖M‖2 -cocoercive.

Therefore, for any 0 < τ < 2
‖M‖2 , (I − τ∇S) is nonexpansive [58]. The subgradient ∂T is maximal

monotone [21]. It is well known that:

u is a solution of (45)⇔ 0 ∈ ∇S(u) + ∂T(u)⇔ u = proxρT(I − τ∇S)(x)

where proxρT(u) = arg minx∈Rn

{
T(u) + 1

2ρ‖u− x‖2
}

; for more details, see [1].



Mathematics 2020, 8, 818 13 of 19

For the split feasibility problem (SFP), we reformulate Problem 45 as a convex constrained
optimization problem:

min
u∈Rn

1
2
‖Mu− c‖2

2

subject to‖u‖1 ≤ t, (46)

where t > 0 is a given constant, and to solve (46), we take Au = ∇S(u). We consider C := {u ∈ Rn :
‖u‖1 ≤ t} and Q := {c}.

To measure the quality of the recovered image, we adopted the improved signal-to-noise ratio
(ISNR) [26] and structural similarity index measure (SSIM) [59]. We considered motion blur from
MATLAB as the blurring function using (“fspecial(‘motion’, 9, 40)”). For the comparison, we considered
the standard test images of Butterfly (654 × 654), Lena (512 × 512), and Pepper (512 × 512) (see
Figure 1). For the control parameters, we took $ = 0.9, λ0 = 1, µ = 0.3, and ρ = 0.1, for Algorithm 1
and Algorithm 2 (Scheme 43). αn = 0.9 and λn = 0.5− 150n

1000n+150 for Algorithm 3.1 in [49], Algorithm

1.3 in [57], and Algorithm 1.1 in [3]. For all the algorithms, we took ‖un+1−un‖2
‖un+1‖2

< 10−4 as the stopping
criterion. For reference, all codes were written using MATLAB2018b on a personnel computer.

(a) Butterfly (b) Lena (c) Pepper

Figure 1. Original test images. (a) Butterfly, (b) Lena, and (c) Pepper.

(a) degraded (b) Algorithm 2.0 (c) Algorithm 1.1 (d) Algorithm 1.3

(e) degraded (f) Algorithm 1.0 (g) Algorithm 3.1 (h) Algorithm 1.3

Figure 2. Degraded and restored (a–d) Butterfly images and (e–h) enlarged Butterfly images by the
various algorithms.
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It can be seen from Figures 2–6 and Table 1 that the recovered images by the proposed Algorithm 1
had higher ISNR and SSIM values, which meant that the quality of the images recovered by Algorithm 1
was better than the compared algorithms.

Table 1. The ISNR and SSIM values of the compared algorithms.

Algorithm 1 Moudafi and Oliney Lorenz and Pock

Images ISNR SSIM ISNR SSIM ISNR SSIM

Butterfly 7.774553 0.9692 7.546909 0.9686 7.587748 0.9688
Lena 7.110084 0.9819 7.126583 0.9813 7.147807 0.9814

Pepper 8.489581 0.9789 8.373034 0.9780 8.354713 0.9779

(a) degraded (b) Algorithm 1.0 (c) Algorithm 3.1 (d) Algorithm 1.3

(e) degraded (f) Algorithm 1.0 (g) Algorithm 3.1 (h) Algorithm 1.3

Figure 3. Degraded and restored (a–d) Lena images and (e–h) enlarged Lena images by the
various algorithms.

(a) degraded (b) Algorithm 1.0 (c) Algorithm 3.1 (d) Algorithm 1.3

(e) degraded (f) Algorithm 1.0 (g) Algorithm 3.1 (h) Algorithm 1.3

Figure 4. Degraded and restored (a–d) Pepper images and (e–h) enlarged Pepper images by the
various algorithms
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It can be observed from Figures 5–7 that the restoration quality of the images restored by the
modified algorithm was better than the quality of the images restored by the compared algorithm, and
this is verified by the higher ISNR and SSIM values of Algorithm 2 in Table 2.

Table 2. The ISNR and SSIM values of the compared algorithms.

Equation (43) Byrne

Images ISNR SSIM ISNR SSIM

Butterfly 7.7741909 0.9999 5.078051 0.9998
Lena 7.112128 0.9999 5.396904 0.9996

Pepper 8.488140 0.9999 6.127068 0.9997

(a) degraded (b) Algorithm 1.0 (c) Algorithm 3.1

(d) degraded (e) Algorithm 2.0 (f) Algorithm 1.1

Figure 5. Degraded and restored (a–c) Butterfly images and (d–f) enlarged Butterfly images by the
various algorithms.

(a) degraded (b) Algorithm 2.0 (c) Algorithm 1.1

(d) degraded (e) Algorithm 2.0 (f) Algorithm 1.1

Figure 6. Degraded and restored (a–c) Lena images and (d–f) enlarged Lena images by the
various algorithms.
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(a) degraded (b) Algorithm 2.0 (c) Algorithm 1.1

(d) degraded (e) Algorithm 2.0 (f) Algorithm 1.1

Figure 7. Degraded and restored (a–c) Pepper images (d–f) enlarged Pepper images by the
various algorithms.

5. Conclusions

A relaxed inertial self-adaptive Tseng-type method for solving the variational inclusion problem
was proposed in this work, and the scheme was derived from the explicit time discretization of
the dynamical system. The main advantage of this scheme was that it involved both the use of an
extrapolation step, as well as a relaxation parameter, and the iterates generated by the proposed
scheme converged weakly to the solution of the zeros of the sum of a maximally monotone operator
and a monotone operator. Furthermore, the proposed method did not require prior knowledge of
the Lipschitz constant of the cost operator, and the iterates generated converged fast to the solution
of the problem due to the inertial extrapolation step. A modified scheme derived from the proposed
method was given for solving the split feasibility problem. The application of the proposed methods
in image recovery and comparison with some of the existing state-of-the-art methods illustrated that
the proposed methods are robust and efficient.
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