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Abstract: Subdivision schemes are extensively used in scientific and practical applications to produce
continuous shapes in an iterative way. This paper introduces a framework to compute subdivision depths
of ternary schemes. We first use subdivision algorithm in terms of convolution to compute the error
bounds between two successive polygons produced by refinement procedure of subdivision schemes.
Then, a formula for computing bound between the polygon at k-th stage and the limiting polygon is
derived. After that, we predict numerically the number of subdivision steps (depths) required for smooth
limiting shape based on the demand of user specified error (distance) tolerance. In addition, extensive
numerical experiments were carried out to check the numerical outcomes of this new framework.
The proposed methods are more efficient than the method proposed by Song et al.

Keywords: subdivision schemes; convolution; error bounds; subdivision depth; subdivision level

AMS Subject Classifications: 65D17; 65D05; 65U07

1. Introduction

A broad and eminent area in Computer Aided Geometric Design (CAGD) deals with curves, surfaces,
and their computational aspects. Subdivision is the most remarkable field for the purpose of modeling of
curves and surfaces in CAGD. Subdivision methods have achieved much popularity in the past few years
because of their implementation along with their mathematical formulation. The convolution technique [1]
is one of the techniques used to merge different schemes. It has an important role in error analysis
of the schemes. Actually, subdivision schemes take the polygons as input and successively produced
smooth polygons or shapes as an output. Initially, the schemes with two rules were introduced. Later on,
the interest was developed to recommend the schemes with three rules. This means at each subdivision
level, every edge of the polygon is divided into three sub-edges. In the literature, these schemes are known
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as ternary schemes. Here, first we present brief review of these schemes then we will address the problem
of error analysis.

Here we present an overview of the ternary subdivision schemes. Mustafa et al. [2-5] presented a
(2n — 1)-point ternary approximating and interpolating scheme, a 6-point ternary interpolating scheme,
a family of even points ternary schemes, the odd point ternary approximating scheme respectively.
Hassan et al. [6] and Siddiqi and Rehan [7] threw the light on 4-point ternary interpolating subdivision
schemes. Kwan et al. [8] explored the phenomenon of 4-points ternary approximating scheme and
Mustafa et al. [9,10] examined 5-point and 6-point ternary interpolating schemes and their differentiability.
Siddiqi et al. [11,12] explained 4-point ternary interpolating scheme for curve sketching and constructed
different ternary approximating subdivision schemes. Peng et al. [13,14] discovered non-linear circle
preserving interpolating scheme and fractal behavior of ternary rational interpolating scheme. Further
discussing on ternary subdivision scheme, Aslam [15] and Beccari et al. [16] showed their talent to
highlight a family of 5-point non-linear ternary interpolating scheme and an interpolating 4-point ternary
non-stationary scheme with tension control respectively. Certainly, there are a few methods for estimating
the error bounds of these schemes.

Some of the authors [17-19] computed the error and order of the convergence of some binary schemes.
Mustafa et al. [20-23] computed error bounds for binary, ternary, tensor product binary volumetric model
and binary non-stationary schemes. Error bounds for a class of subdivision schemes based on the two-scale
refinement equation were computed by Moncayo and Amat [24]. A formula for estimating the deviation of
a binary interpolating subdivision curve from its data polygon was presented by Deng et al. [25]. However,
the generalization of this formula to deal with the cases of n-ary interpolating and approximating schemes
is still an open question. The following open question also arises in our mind: “How many subdivision
steps (depths) are required to satisfy a user specified error (distance) tolerance?” Some of the researchers
can be nominated as the embarking volunteers for the explanation of above questions such as: Mustafa
and Hashmi [26] estimated subdivision depth computation for n-ary schemes by using first forward
difference technique. Mustafa [27] presented subdivision depth computation technique for tensor product
ternary volumetric model. Mustafa et al. also computed subdivision depth for triangular surfaces [28].
The above methods do not work for all type of subdivision schemes. Counter examples are also presented
in this paper.

A novel numerical algorithm to estimate the subdivision depth was offered only for binary subdivision
schemes in [29]. Still there is a gap/space to work for the subdivision depth of higher arity (i.e., ternary,
quaternarys and so on) schemes. In this paper, an optimal approach is proposed to estimate subdivision
depths for ternary (i.e., for each subdivision level, every edge of polygon is divided into three sub-edges)
subdivision schemes.

The remaining part of the paper is arranged as follows. In Section 2, basic results, subdivision depths
and numerical experiments of the method for univariate cases of the schemes are presented while in
Section 3, these results for bivariate cases of the schemes are offered. Conclusions are drawn in Section 4.

2. Preliminary Results for Univariate Case

Let {p5;i € Z} be a sequence of 2D points in R? which are obtained by the following
refinement procedure

N-1
P = X asmblow  5=0,12, (1)
m=0

with
Z as,m = ]-/ s = 0/ ]-/2/ (2)
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where k > 0 indicates the refinement level. The points at Oth level p! are known as initial control points.
The refinement procedure described in (1) along with its necessary condition of converge (2) is known as
univariate ternary subdivision scheme. The following formulation of unknown coefficients as ;, is given
by [21].

m

bom = X (a0 — a1,1),
ZEO

bim = Y (a1 —az)),

bZ,m = ao,m — (bO,m + bl,m)r

with
N-1 N-1 N-1
Z ‘b(),m| <1, Z |b1,m| <1, Z ‘bZ,m| <L
m=0 m=0 m=0

The following symbolization will also be used in coming section of this paper.

d3m = bO,m/
d3m+1 = bl,mr (3)
d3m+2 = bom-

Now we follow the techniques and notations presented in [24]. To be precise, let the vector u; = uf»‘

represent the approximation coefficients associated with a certain k™ level of resolution. If u) = uf;o
represents the k' resolution level then the reconstruction algorithm used to define the approximation
coefficients at stage k + 1 in terms of the coefficient at stage k are obtained by the use of subdivision

algorithms in terms of convolutions i.e.,

W = N dp gk = (K0 < d),, @
neN

where x denotes the convolution product of two vectors u*° and d = (d)en-

Generally, the convolution product of two vectors u = (i ),>0 and v = (v, ), >0 of finite lengths I,
and [, respectively for ternary subdivision scheme is defined as

min{j,l,—1}
(uxv); = ) UnVj—gn, j =0,1,... 1y + 1y — 2. (5)
n=max{j—(l,—1),0}

In the following subsection, we present the generalized version of the results presented in the
Appendices Al and A2 of [24].

2.1. Reformulation of Successive Convolutions

In this subsection, we obtain some generalized inequalities used in order to find the subdivision
depth of ternary subdivision schemes for the generation of curves. Their further generalizations are
presented in Section 3 for the computation of depth of ternary subdivision schemes for tensor product
surfaces. This section contains typical rigorous and tedious mathematical expressions. Readers are refers
to Example 1 of this section for better understanding.
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Lemma 1. Let u = uy, be the vector of finite length and d = {dn}fgal with d,, = 0 for n > 3N, then the following
one dimensional kg convolutions is bounded by

1 (O 5 )Y d) O k) O ) oo < uuuwsx;p{ Py |B'f,?,j|},

where Bﬁf, j is defined recursively by

)
Bm,]' - d]*?)ﬂ’l/
G
k ko—1
By = 23 BupB)i , ko>2,
p=3m

and
j € Z(ko,N) = {Q(ko,N) — 3% +1,0(ko,N) — 350 +2,...,Q(ko, N)},

Q(ko, N) = (3% —2)(BN —1).

Proof. To prove this result, we start with the case of kg = 1 and k¢ = 2 convolutions and then a general
case will be derived.
Case kg = 1: From (5), we obtain a relation given in the following

Lj/3]

Z undj—Bn

n=0

| % d);| = , 6)

where |.| denotes the integer part. Using infinity norm (Hu||oo = max{|uol, ..., [u|j/3] |}), we get
j/3

Lj/3]
(@D xd);| < ullo Y |dj-aul.
n=0

Now

Lj/3]
sup |[(u® xd);| < sup (IIuloo ) |dj3n|>'
n=0

This infers

© Lj/3] .
sup [(u® xd);| < ullosup | Y B}l
n=0
where
dj_3, =B, . @)
Thus,

. 1j/3] )
1 ) o < oo Sup ( )y IBn,jI>-
n=0
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Case ko = 2: From (6), we acquire

/3 /3] / lm/3]
(WO %)V xd); = Y @Oxd)pdign=Y | ¥ tndn-su |di—zm-

m=0 m=0 n=0

This infers

((u(o)*d)(o)*d)j = updod; + uod1d;_3 + uodad;_¢ + uodad;_g + urdod; g + uodsd; 12
+omdidja o duod) dotnd) ) gdo et g yd) gy g do-
This implies that
lj/3%] Lj/3]
((u(o)*d)(o)*d)j = 2 le< 2 dp— 3m j— 3n>
m=0 n=3m
This infers
) , /3] 1j/3) izl
((u( )*d)( )*d)] = Z ( Z an n]) = Z leBm,]'/
m=0 n=3m m=0
where
1j/3]
Z an n;j ®
n=3m
So
. . li/32 , Li/3*
(@O d)O )| = | Y wnB| < il 3 B2,
m=0 m=0
This implies

0 0 sl 2
(@ 5 d) O 5 d)jleo < 1]l oo sup < )» |Bm,j> :
] m=0
General case: By using the same technique, we acquire the reformulations for ky-th convolutions, which is
in the following

(0 0) 0) (0) i k
(- (@O %)) 5 d) O w5 d) O xd); = mZ:;O umB,.
Which implies

./3k0J
1 (@O %)) )0 sk ) O ) oo < ||u||oosup{ ) |B’:,$,j|}. ©)

] m=0

O
Lemma 2. The term Bln?, jin the inequality (9) has the following expression

ko = gk = gho . (10)

m—1,j—3k0 ,j m+1,j+350
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Proof. Now we start for an induction process, which is over kg. Then
Case kg = 1:
1
B, =
Similarly

_ nl
Bys1, = dj-3(m+1) = Buja-

From (8), we have
/3]

Z an n;j

n=>3m

Using (11), we have
Lj/3
B2 Z anBn+l]+3

n=3m

Now replace n by n — 3 in (13), we obtain

[j/3+3]

2 1 1
Bm,j - Z Bm,n73Bn72,j+3‘
n=3(m—1)

Now using (12), we acquire
lj/3+3]

2
Bm,j = Z Bm+1 an]+32
n=3(m—1)

SO
2
Bm Bm+1 Jj+32.
We suppose that it is true for an integer kg = M, that is

M -
B Bm+1 Jj+3M.
Case kg = M + 1: Consider
Li/3M]
BM+1 Z Bm , n,]‘
n=3m
Using (14), we have
Li/3M]
M+1 _
Bm,j Z B n+1 j+3M:
n=3m
Now, replace n by n — 3 in (15), we have
Mot [j/3M+3] )
+1 _
Bm,j - Z Byin— 3Bn 2,j+3M"
n=3(m+1)

Using (12) and (14), we acquire

M+1 _ pM+1
Buj ™ = Buia JjA3MHL

d] 3m = d]+3 3(m+1) — Bm+1 J+3

6 of 22

(11

(12)

(13)

(14)

(15)
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Similarly we can prove

BM+1 _ pM+1
m,j m—1,j—3M+1,
Hence
ko _ pko _ pko
m—1,j—3k0 n,j m+1,j+3%0 "

O

Now, applying Lemmas 1 and 2, we arrive at the following useful result:

Corollary 1. The associated constant of a ko-th convolution with vector d = {do,d1,...,dsn_1} is

i) gl
Dy, = sqp{ ) |an]|} = sup { ) |an]|} (16)
] m=0 j€X(ko,N) m=0

Proof. Assume thatd = {dg,d;,...,dsn_1}, with N € N and Q(ko, N) = (3% —2)(3N — 1). Then for
j > Q(ko, N) and by using Lemma 1, we acquire

k
By, = 0. 17)

Similarly for j > Q(ko, N) + m3% and using Lemma 2, we have
k
B, i = 0. (18)
Finally, using (17) and (18), we get (16). O

2.2. Subdivision Depth for Ternary Subdivision Curves

In this section, we first generalize the inequalities (2.18) and then (2.5) which were presented in [21].
After that, we present a numerical inequality to compute the subdivision depth of ternary subdivision
schemes for curve modeling.

Theorem 1. Consider the initial polygon p?,i € Z and p¥,k > 0, recursively interpreted by (1) together with (2).
Suppose P represents the polygon at the points {pf} Then after two successive refinements/iterations k and k + 1,
the error bounds between these two iterations is

1P — PMlleo < &17(Dy),

where Dy, ko > 1 defined in (16), = max |0,y — P and

N-2 N-2 N-2 N-1
¢ = max(zao,m|,2|ﬁ1,m,2|az,m|>, fsm = ), 05i,0<5<2,
m=0 m=0 m=0 i=m+1

N-1 1 N-1 2
dpy = ), 41— 3 frp =Y pi— 3
i=1 i=1

Proof. Seein [21]. O
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Theorem 2. Let a limit curve P be linked with the subdivision iterative process, then under the same conditions
used in Theorem 1 the following inequality hold

[ < en ({280,

where kg > 1 is a natural number, such that Dy, < 1.

Proof. Seein [21]. O

Theorem 3. Let k be subdivision depth and let V* be the error bound between ternary subdivision curve P and its
k-level control polygon PX. For arbitrary € > 0, if

e(l—DkO))’

k= logn,, ( &n

(19)
then VK < e.

Proof. Let V¥ be the distance between limit curve P* and control polygon P* at k-th level defined in

Theorem 2, such that
ok _ pr B PkH <y (D)
oo 1-— DkO ’

To obtain given error tolerance € > 0, consider

&/ (1([_)%);) <e,

which implies

Now taking logarithm, we have

_on _on
ko> log<€“‘Dk0)) _log<€“‘Dko)> — —log ( g >_10g < ")
= = = ~losp, \ci—py)) =80 \ci=D, ) -

log Dk_ol —log Dy,

which implies

then V¥ < e. This completes the proof. [J

2.3. Application for Univariate Case

Here, we present a few numerical experiments to compute subdivision depths of ternary subdivision
schemes for curves. The associated constants Dy, ko > 1 defined in (16) of some ternary subdivision
curves are shown in Table 1.
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Table 1. Associated constants of ternary subdivision curves.

Scheme/ Dko D1 =0 Dz D3 D4 D5

2-point scheme [12]  0.333333  0.111111 0.037037 0.012346  0.004115
3-point scheme [30]  0.555467 0.253017  0.11107  0.047856  0.020353
4-point scheme [8]  0.441358 0.176393 0.067478 0.027136  0.010728
4-point scheme [6]  0.444444 0.171682 0.070918 0.029278 0.012089

Remark 1. In this technique Dy, for ko = 1 is equal to 6 defined in [21]. Please note that in [21],if 5 > 1 then
error bounds cannot be computed. However, in the proposed technique, if we increase the value of ko until Dy,
becomes less than one, so using this arqument we can compute error bounds in each situation even though the value
of 0 becomes greater or equal to one.

Example 1. Given initial polygon p? = p;,i € Z with values pf, k > 1 be interpreted recursively by the 2-point
ternary approximating subdivision scheme [12] (i.e., agg = %, ap = %, a1p = %, ap = %, a0 = é, a1 = 5)
For this ternary two point scheme (N = 2), we have from (16)

j /3%
Dy, = sup){ LA |}

jGZ(ko,Z m=0
Forkg =1, we get

li/3] li/3]

o~ wp () o (o)

jeL(1,2) je{34,5}

Using (3) and Lemma 1, we have d = {d,,}>_, with d, = 0 for n > 6. Hence
111 1
{d()/ dl/dZI dB/ d4/ d5} - {3/ g/ 8/ O/ O/ 6} .
Now consider
13/3] [4/3] [5/3]
D, = sup{ Z |d3—3m, Z |ds—3ml, Z |d5— 3m|}
This implies

D

Sup{|d3| - \dol, lda| + |da, ds] + |dz|}

1 1n_t
16 6/ 3

1
sup{|0+‘ ’

For ko = 2, we get

Li/3?] Lj/9]
D, = sup { Y |Brzn,j|}: sup {Z m,j}

jez22) U m=0 je{27,28,..,35) \ m=0
Li/o] Li/3]
= sup { 2 Z an n,j }
je{27,28,..35} U m=0 | n=3m
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This implies

|27/3]

Z B n27

n=3m

128/9]

)3

m=0
[31/3]

Z an n,31|”

n=3m
[34/3]

Z B n34

n=3m

|28/3]

Z B n28

n=3m

129/9]

)

m=0
[32/3]

E B n32

n=3m
[35/3]

Z B n35

n=3m

129/3]

Z B n29

n=3m

127/9]
D, = sup{ Z

m=0
[30/3]
Y BuxBisol

n=3m

133/3]

Z B n33

n=3m

130/9)]

)

m=0

133/9]

)3

m=0

131/9)

)

m=0

134/9]

)

m=0

132/9)

X

m=0

135/9]

)3

m=0

}

This further implies

DZ = sup {Xl/ X2, X3, X4 X5, X6: X7, X8s X9}r
where
dodyy + didyy + dodoy + dzdyg + dadys + dsdyp + dedo + d7de + dgdz + dody

X1 = + |dod1s

+ddis + dadyp + dadg + dade + dsdz + dedo| + |dody + d1de + dadz + dado| + |dodo |,

X2 = |dodag + didos + dodoy + dadyg + dadig + dsdrz + dedq1g + dydy + dgdy + dodq | + |dodig

+dyd1g + dodqz + dzdig + dady + dsdy + dgdq | + |dodrg + didy + dody + dsdy | + |dodq|,

dodog + d1dog + dpdas + dzdag + dgdy7 + dsdyg + dedq1 + dydg + dgds + doda | + |dodog

+dydyy + dodyy + dzdq1 + dadg + dsds + dedo | + |dodyy + didg + dads + dzds | + |doda |,

Xa = |dodsg+ didoy + dodog + dzdoy + dydig + dsdis + dedin + dydg + dgdg + dods + d1odp

+|dody1 + didig + dodys + dadin + dadg + dsde + deds + d7do| + |dod1n + didg + dade

+d3ds + dydy

+ |dods + dqdy|,
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X5 = |dodz1 +didog + dodos + dady + dadig + dsdie + dedi3 + d7dig + dgdy + dody + dyody

+|dody + didig + dodie + d3diz + dadig + dsdy + dedy + d7dy | + |dodrz + didig + dody

7

dodzp + didag + dadoe + dadys + dadog + dsdyy + dedia + d7d1y + dgdg + dods + dyoda

+ |dod14 + d1d11 + dodg

+|dodas + dida + dadiy + d3dig + dady + dsdg + deds + d7d>

+dsds + dydy | + |dods + didn

4

X7 = |dodss +didsg + dadoy + dados + dadyy + dsdig + dedis + d7di + dgdg + dode + d1od3

+ |dodog + d1da + dodqg + dszdys + dgdip + dsdo + dgdeg + d7ds + dgdy| + |dod1s

+dq1do

+ |dode + d1d3 + dadp|,

+d1d1p + dodg + dzde + dyds + dsdy

dodzs + didzq + dodog + dados + dadon + dsdyg + dedie + d7di3 + dgdig + dody + dioda

+dy1dy | + |dodos + didoy + dadqg + dzdie + dydiz + dsdyg + ded7 + d7dy + dgdy| + |dodie

+dqdqz + dodqg + dady + dady + dsdq | + |dody 4+ didy + dody |,

Xo = |dodss +dids + dodog + dadog + dadrs + dsdog + dedr7 + d7di4 + dgdry + dodg + diods

+ |dod17

+

dodas + d1do3 + dadag + dadiy + dadiyg + dsdiy + dedg + d7ds + dgd,

b

+dq1ds

+ |dodg + d1ds + dod>

+d1dy4 + dpdyq + dadg + dyds + dsdy
Sinced; =0, forall i > 5, so

D, = sup {0+ |dsd3| + |dads + dzdo| + |dodo|, 0 + |dsdy| + |dady + dady| + |dody |, 0 + |dsds|

+|d2d5 + d3d2| + |d0d2‘,0+0 + |d3d3 + d4d0| + |d0d3 +d1d0|,0—|—0 + |d3d4 +d4d1‘
+|dody + didq|,0 + 0 + |d3ds + dyda| + |dods + d1dz|,0 + 0 + |dyds + dsdo| + |dqds + dady),

0+ 0+ |dydy + dsdy| + |d1dg + dody],0 4+ 0 + |dyds + dsdp| + |drds + d2d2|}.
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This further implies
S

Similarly, we can compute the values of Dy, ko > 3. For convenience, we have computed the values up to
ko = 5, which are shown in Table 1. Its subdivision depth k (level of iterations) is computed by using Theorem 3 at
different values of Dy, ko > 1 which are given in Table 2.

Table 2. Subdivision depth of 2-point approximating ternary subdivision curves.

Dy,/e 688x1075 283x1077 116x107° 479x10712 197x10"* 812x10~Y7 334x10°Y

Dy =94 5 10 15 20 25 30 35
Dy 3 5 8 10 13 15 18
D3 2 3 5 7 8 10 12
Dy 1 2 4 5 6 7 9
Ds 1 2 3 4 5 6 7

From this table, we observed that as k( increases subdivision depth decreases. This shows that the less
subdivision depth can be obtained by using proposed technique. In other words, we need fewer iteration
to get optimal subdivision depth as compared to the technique given in [21] (which is denoted by ).
For example, by [21], it needs thirty five iterations to obtain error tolerance € = 3.34 x 10~ but using our
technique, it needs only seven iterations corresponding to Ds. The comparison of first and fifth convolution
results is shown in Figure 1a.

Example 2. Consider the 3-point interpolating subdivision scheme [30] with b = 0.2778,a = b — % Its subdivision
depths k for Dy, ko > 1 (see, Table 1) are computed by using Theorem 3, which are shown in Table 3 and in graphical
sense shown in Figure 1b.

Table 3. Subdivision depth of 3-point interpolating ternary subdivision curves.

Dy,/e 138x1073 281x107° 573x1077 116x107% 237x1071 483x10712 984 x 10"

D=6 8 15 21 28 34 41 48
D, 3 6 9 12 14 17 20
D, 2 4 5 7 9 11 12
D, 1 3 4 5 6 8 9
Ds 1 2 3 4 5 6 7

Example 3. Given initial control polygon p? = p;, i € Z with values pi.‘,k > 1 be illustrated recursively by the
ternary 4-point approximating scheme [8].
Its subdivision depth k for Dy, ko > 1 are given in Table 4. It is also demonstrated with the help of Figure Ic.

Table 4. Subdivision depth of 4-point approximating ternary subdivision curves.

Dy,/e 126x1073 135Xx107° 145X 1077 156 x 1077 167 x10"" 179 x10™8 1.92x 1071

D=4 6 12 17 23 28 34 40
D, 3 5 8 11 13 16 18
D; 2 3 5 7 8 10 12
D4 1 3 4 5 6 8 9
Ds 1 2 3 4 5 6 7
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Example 4. Given p? = p;,i € Z be the initial polygon and for all positive integers we have the values Pk be
specified recursively by ternary 4-point interpolating subdivision scheme [6] with parameter w = %

Its subdivision depths for Dy, ko > 1 (see, Table 1) are given in Table 5 and its performance is shown in
Figure 1d.

Table 5. Subdivision depth of 4-point interpolating ternary subdivision curves.

Dy,/e 122Xx107% 147 x107° 178x1077 216x10~° 261x10~11 315x 1071 3.81x 10~

Dy =6 6 12 17 22 28 33 39
D, 3 5 8 10 13 15 18
Ds 2 3 5 7 8 10 12
Dy 1 2 4 5 6 7 9
Ds 1 2 3 4 5 6 7

— -~ First convolution result - Fifth convolution result

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006

Error bound
(a)

- First convolution result - Fifth convolution result

k
N
N
2 e T T
0 0.001 0.002 0,003 0.004 0005 0006 0007
Error bound
—-— First Convolution result - Fifth convolution result|
0
30
k 20
\
o TS T e
0 00002 0.0004 00006 0.0008 00010 00012
Error bound
(0)
— = First convolution result - Fifth convolution result|
3s
30
2
k 20

0 00002 0.0004 00006 00008 00010 0.0012
Error bound

(d)

Figure 1. Comparison between first and fifth convolutions. This shows that the error decreases with
the increase of convolution. Of course, it decreases with the increase of subdivision depth. (a) 2-point
scheme [12]; (b) 3-point scheme [30]; (c) 4-point scheme [8]; (d) 4-point scheme [6].
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3. Preliminary Results for Bivariate Case

In this section, we generalize our representation of the 2-dimensional case to the 3-dimensional case.
That is, we first focus our attention on generalizing the inequalities presented in Section 2.1 then we
generalize the inequalities of Section 2.2 to compute subdivision depth of tensor product surfaces. For this,
let {pf‘ i i,j € Z} be the sequence of 3D points RN, N > 3 which are produced by the following tensor
product of ternary scheme (1)

N-1N-1

k+1 } : } k
p3;;a,3j+/3 = . . alxlaﬁlspi—l—r,m—i—s' o, ﬁ = 0, 1,2, (20)
r= s=

where a, , satisfies (2).

Now we assign the coefficients f = {f,},eny and § = {gn}nen, by using the same procedure of
symbolization given in [21] i.e,,

far =aoN—r-1,

fare1 = a1,N—r-1,

f3r+2 = (12,1\],,,,1 r = 0, N ,N —1.
83s = bo,N—s-1

83s+1 = b1,N—s-1

g3s+2 = bZ,N—s—l S = O,...,N—l.

To achieve the goal, all that is needed is to make the set up given before Section 2.1 for the 3D case.
Here we skip the unnecessary detail and directly go to the following results.

Lemma 3. Let u = uy,, be the vector of finite length for bivariate case and f = {f, i]i 0 Lo={gn “:’lﬁ 0 L with

fu = gn = 0for n > 3N, then the following two dimensional ko convolutions are bounded by

ko) < 0
I’I},&}X ‘ul,] ‘ = Fkg Gko I}}Z,e}qx |um,n |/

where
L#/3%) ko.f
FkO:max{ Y B, }
l m=0
and

Li/3%] .
Gr, —max{ 2 |Bn?](g }

n=0

Proof. To prove the result, we start with the case of ky = 1 and kyp = 2 convolutions and later on we
analyze the general case.

Case ko = 1: Consider an arbitrary sequence of vectors u; ;. Then we have

o e VN
ul-g. = (1/[ 0_1,0 *fg)l,] = Z Z ung,n fi73mgj—3n,

m=0 n=0
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15 0f 22
where we are taking B;{ = fi-smand gj_3, = Brllf for arbitrary sequence f and g. Thus,
k i3 3] k—1pLf pl
— 1,0 g
,] ( o *fgl]_ Z Z "2” szn,]
m=0 n=
This implies
i/3] j/3]
k ko—1p1f pl,
max[uff| = max| Y ) uiy'B,LB,
2 Mo m=0 n=0
[i/3] 1j/3] -
< max Yy Y [B) | |- 1)
Y m=0 n=0 "
Consider

m=0
and
Lj/3] 1
G = max{ \Bn'}g },
n=0 ’

then from (21), we obtain

max uf] < FyGy max [uf?,"]
1,] .. m,n

Case ko = 2: Now, after applying two time convolution, we obtain

i = (W07 fg ) = (w070 fg) % f2)s
This implies
ko—1 LAl LA ko—1,0
wp; = Z Z wO e f@)iifi-3m8j-3n-
This leads to

li/3] 1j/3] (Lm/3J [n/3]

d = DL (LT s ) oo

m=0 n= p=0 s=0

This again implies that

RN U7 1 17T R U] i3]
ui,(} = Z Z u Z fV 3mf1 3r Z 8q—-3n8j—3q-
m=0 r=3m q=3n

Further implies

li/32] /%] i/

3
i 2 2 g 2 BlfBlf Y. By3B%.

r=3m q=3n
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Furthermore g
li/3%]) [j/32]
— 2p2f g28
- Z Z u szn,]
m=0 n=0
Now
L 1i/3%] lj /32J 252/ g2
H}?XWZ‘,(]]’ = max Z Z man:]
Ll/32J [J/3ZJ 2 L
< max Z Z Bm{ Bn max u,,?n (22)
Ll m=0 n=0 d
Consider
[i/37] 2/
k= rnlax{ Z e }
and
i/3%) )
Gy = max{ Z Bn’g },
] n=0 &
then we obtain from (22)
max|u | <F2G2max|umn |
L
By the same strategy, we get the following reformulations for ko-th convolution
k ko—ko; ko—1;
G = (WO e = (L (W7 % fg) % fg) % % f) % f8)i:
This implies
li/3% ] |j/3%0 | li/3%0] |j/3%0 |
ko _ 00 kfk,g_ 0 pko.fpkog
wi; = Z Z Wi, Byy, BO = Z Z nBrr(t),iBn(,)j’
where
kof g Lf pko—Lf
Bl =Y BB
p=3m
and
k L]/gko 1 ko—1,8 pko—1
8 _ & &
Bn?j = Z Bys BO
r=3n
Thus,
k U/BkOJ U/3kOJ k f nk
Ir}e];x|ul.,0.| = max Z Z O nf’lB(,’]’g,
L1/3k°J U/3k0J Kof || ok
0. 0.8 0
< mf]ax mZ:;o ng%) B, Bn,j A |ty g - (23)
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Now consider

i/3% ] i/3% | ko f
F, —miax{ Y. B }—' max { Y. B |} (24)

m=0 lEZ(ko,N) m=0

and

1j/3"] 5 Lj/3% ] "
iy =max{ X 8551} = max {1 1lf1], 5)

J n=0 j€x(ko,N n=0
then, from (23), we obtain

max \u | < Fi,Gg, max U,
ij

where

li/3k0 | |j /3% li/3%0] [j/3%0]
max{ Z Z |Bk°f||Bk°g}— max { Z Z |Bk°f||Bk°g}.

i,jeX(ko,N) e

O

3.1. Subdivision Depth for Ternary Subdivision Surfaces

In this section, we first compute error bounds for subdivision surfaces. Secondly, we use these error
bounds to compute subdivision depths by using the methodology given in [21].

Theorem 4. Consider the initial control polygon P?,]v i,j € Z and the values pi»‘, ]-,k > 0, recursively defined by (20)

together with (2). Also P be the representation of polygon at the points { p* j}' Then after two consecutive iterations
k and k + 1 the error bounds is given as follows

I[PFH = Pl < (0B + T2 + 1Bo) (Fiy G, )

where Fy, Gy, ko > 1 defined in (24) and (25), B+ = max; | A9 £=1,2,3,

il
Ai'(,j,l = Pi‘cﬂ,j - Pf,j/ A5‘(,]',2 = Pi'(,jﬂ - Pi‘c,]v Ai‘(,j,B = Pi‘(+1,j+1 - Pi'(,jﬂ/

where A, T and y are defined in [21].

Proof. Seein [21]. O

Theorem 5. Let a limit surface P® be linked with the subdivision iterative process, then under the same conditions
used in Theorem 4 the following inequality hold

F. G, )k
1P = Pl < (ABy + T2 + 1s) (”"))
1— Fy Gy

where ko > 1 is a natural number, such that F, G, < 1.
Proof. Seein [21]. O

Remark 2. Here Fi Gy is also equal to 6 which is defined in [21].
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Theorem 6. Let k be subdivision depth and let V* be the error bound between ternary subdivision surface P* and
its k-level control polygon PX. For arbitrary € > 0, if

6(1 — Fko Gko) ) (26)

k> log(FkOGkO) (/\ﬁl +T52 +}1,B3

then VK < e.

Proof. Let V¥ be the distance between limit surface P and control polygon P¥ at k-th level defined in
Theorem 5, such that

Fi, Gx, )
Vk = [|P® = PK||ay < (ABy +7Ba +yﬁ3)(1(_"°F"°G)>.
%o Gko

To obtain given tolerance € > 0, consider

(FkOGko)k> <e,

(AB1+ B2+ 1PBs3) (1 e

which implies

(AR s

Now taking logarithm, we have

log <A6131+Tﬁz+ﬂ/53 ) log (Aﬁ1+r/zz+uﬂ3
(1=Fiy Gy ) €(1=Fy Gy ) (/\,51 +1B2 + ]1,33>
= = —lo ’
log(FkO Gko)fl — IOg(FkO Gkg) g(F"OG"O) 6(1 — Fkg Gko)

which implies

AB1+ B2+ pps)
>
k> 108(Fkock0) ( €(1 — F,Gy,) '

which further implies

k> lo €(1 = By Gy
= 8k Gio) \ Ay + tha+ s )’
then V¥ < e. This completes the proof. [J

3.2. Application for Bivariate Case

Here, we present some numerical examples to compute subdivision depth for subdivision surfaces.
The associated constants Fi,Gy,, ko > 1 for some ternary subdivision surfaces by using (24) and (25) are
shown in Table 6. We see that the values of F Gy, decrease with the increase of k. This is the main
advantage of our proposed approach.
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Table 6. Associated constants of ternary subdivision surfaces.

S(:].’l(EIII(E/Fk0 Gko Fl G1 Fz G2 F3 G3 F4 G4 F5 G5

2-point scheme [12]  0.333333  0.111111 0.037037 0.012346  0.004115
3-point scheme [30]  0.61716  0.304535 0.145678 0.068303  0.031622
4-point scheme [8]  0.505401 0.233098 0.096089 0.040774 0.016958
4-point scheme [6] 0.54321  0.228729  0.10226  0.047435 0.021475

Example 5. Given the initial polygon p?,j = pij,i,j € Z with values pi-‘, ]-,k > 1 be frequent explanation in [12],
then the subdivision depths for F Gy, ko > 1 by using Theorem 6 are shown in Table 7. The first and fifth

convolution comparison results are shown in Figure 2a.

Table 7. Subdivision depth of 2-point ternary subdivision surfaces.

F, Gy, /€ 2.06x107% 85x1077 349x107° 143x10~1 592x1071 243x107® 1,003 x 10~18

FG 5 10 15 20 25 30 35
EG, 3 5 8 10 13 15 18
F5Gs 1 3 5 6 8 10 11
F,Gy 1 2 4 5 6 7 9
F5Gs 1 2 3 4 5 6 7

Example 6. Given control polygon p? j = Pijs i,j € Z with the values pi-‘ j for all positive integers be illustrated
by the tensor product of the scheme demonstrated in [30], then the subdivision depths for Fi,Gy,, ko > 1 by using
Theorem 6 are shown in Table 8 and in the sense of graphical structure these results are shown in Figure 2b.

Table 8. Subdivision depth of 3-point ternary subdivision surfaces.

F,Gk,/e 725x1073 229x107% 725x107% 229x1077 725x1077 229x10°10 7.25x 10712

G 9 16 23 31 38 45 52
FG, 3 6 9 12 15 18 21
F5Gs 2 4 5 7 9 11 13
F,Gy 1 3 4 5 6 8 9
F5Gs 1 2 3 4 5 6 7

Example 7. Given an initial control polygon p?]. = Ppij, i, ] € Z with the values pﬁ‘ j,k > 1 be frequent explanation
by the tensor product of the scheme presented in [8], then the subdivision depths for F Gy, ko > 1 by using
Theorem 6 are shown in Table 9 and graphical results are presented in Figure 2c.

Table 9. Subdivision depth of 4-point ternary subdivision surfaces.

F, G, /e 659x107% 111x107% 118X 107% 321x107% 545x1071% 9.24x 101> 1.56 x 10713

G 7 13 19 25 31 37 43
FG, 3 6 9 11 14 17 20
FGs 2 4 5 7 9 10 12
F,Gy 1 3 4 5 6 8 9
F5Gs 1 2 3 4 5 6 7

Example 8. Given p! i = Pijs i,j € Z be the initial polygon with values p* j,k > 1 be illustrated by the tensor
product of the scheme presented in [6] with w = 1/12, then the subdivision depths for F,Gy,, ko > 1 are shown in
Table 10. Also demonstration of graphical view are given in Figure 2d.
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Table 10. Subdivision depth of 4-point ternary subdivision surfaces.
F,Gy,/e 731x107% 157x107% 337x107¢ 724x1078 155x107° 334x10°1 717x107 1
£ G 8 14 20 26 33 39 45
FG, 3 5 8 11 13 16 18
F5G; 2 3 5 7 8 10 12
F4Gy 1 3 4 5 6 8 9
F5Gs 1 2 3 4 5 6 7

‘* — First convolution result - Fifth convolution result‘

k
15
W‘——»;___»»____
4‘7 0. 00‘005 0. 0\';[)] 0 0. OO‘OI 5 0. 0[;(120
Error bound
(a)
—~ First convolution result - Fifth convolution result
50
40
30
k
201",
o
10 e e T,
T T - T — L T T
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Error bound
— = First convolution result  Fifth convolution result|
40
301
k 204
.
\_ —
2 R P
0 0. f;m 0. f‘)ﬂZ 0. (;0“) 0. [;(14 0. 11)05 0. (;06
Error bound
()
—— First convolution result - Fifth convolution result
40
30
k
20 \
\
w4 T T T T T e e e
0 0. r;m 0. (;02 0. n‘m 0. (AOA 0. r‘ms 0. (;06 0. (‘707
Error bound

Figure 2. Comparison between first and fifth convolutions. This shows error decreases with the increase
of convolution. Of course, it decreases with the increase of subdivision depth. (a) 2-point tensor product
scheme [12]; (b) 3-point tensor product scheme [30]; (c) 4-point tensor product scheme [8]; (d) 4-point tensor

product scheme [6].
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4. Conclusions

We described a formula to find the sharp error bounds between the polygon at any stage and the
limiting polygon of the subdivision scheme. In addition, we have achieved a computational formula of
subdivision depth for ternary subdivision schemes by using the error bounds. Existing methods only work
under the strong condition given in ([21], Equation (2.3)). In this paper, we relaxed the strict condition by
convolving the mask of the schemes. Using our framework, we can get sharp bounds and subdivision
depths by increasing the convolution steps. Ultimately, the suggested numerical method work when the
other methods fail. In addition, extensive numerical experiments predict that if we have a prescribed error
tolerance then a finer shape can be obtained by using fewer subdivision steps (i.e., depths). In the future,
we will generalize our framework for higher arity (i.e., quaternary, quinary, and so on) schemes.
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