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1. Introduction

Boundary value problems in domains with concentrated masses attracted the attention of scientists at
the turn of XIX-th and XX-th centuries. The first mathematical paper [1] devoted to studying this problem
was published in 1913. There Krylov considers the problem of vibrations of a string with concentrated
masses. A study of the eigenfrequencies of vibrations of a string with a concentrated mass at one point is
also given in Appendix to Ch. 2 in [2], including the limit behaviour of solutions as the mass goes to zero
or infinity. The paper [3] was the first to consider the problem where the concentrated mass belongs to
an ε-neighbourhood of an interior point, å being a small parameter that describes the concentration and
size of the mass. Another approach was used in [4–6]. Oleinik introduced a new basic parameter of a
body with concentrated masses, the ratio between the adjoined additional mass and the mass of the whole
system. She described local oscillations in the vicinity of the concentrated mass. In [4–6], this was done for
all dimensions and arbitrary masses. The one-dimensional case with one concentrated mass was studied
in [7]. The case of finitely many concentrated masses was considered in [8]. The analogous problem for
the elasticity system of equations was studied in [9,10] (see also [11–13]). In the papers [14,15] the authors
constructed the asymptotic expansions of eigenvalues and eigenfunctions to the problem. The case of a
three-dimensional linear stationary elasticity system is considered in [16] (see also [17]). A problem on
oscillations of a membrane is analyzed in [18].

Papers [19–24] deal with to the asymptotic analysis of vibrations of a body with many small dense
inclusions situated periodically along the boundary. Analogous problems are considered in [25–27].
The paper [28] is devoted to asymptotic analysis of the problem for a linear stationary elasticity system
with non-periodic rapidly alternating boundary conditions and with many concentrated masses near
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the boundary. A problem on the linear stationary elasticity system in domains with stiff concentrated
masses is studied in [29]. Paper [30] (see also [31]) is devoted to a detailed study of the behaviour of
the eigenelements of the Laplace operator in a domain with non-periodic “light” concentrated masses.
A multi-dimensional problem in a domain with periodic “light” masses is considered in [32] (see also [33]).
The authors presented estimates for the rate of convergence of the eigenvalues and eigenfunctions of the
given problem to the corresponding eigenvalues and eigenfunctions of the homogenized problem. In the
paper [34] one can find non-periodic problem with rapidly changing type of boundary conditions.

In [35,36], the authors studied close problems for complex medium and nonlinear situation modeled
transport in porous materials including regions with both high and low diffusivities.

In papers [37,38] the authors constructed complete asymptotic expansions for eigenpairs of
two-dimensional spectral problems in domains with periodically situated “light” masses. Some of these
results were mentioned in [39,40].

In papers [41–45], the authors studied spectral problems in thick cascade junctions with concentrated
masses. There is a complete classification of homogenized spectral problems in such domains, as well as
local vibrations of the masses.

In this paper, we consider randomly situated “light” concentrated masses on the boundary and prove
the convergence results for the spectrum. It appears that the limit (homogenized) problem is deterministic
(non random). Some results were shown in [46].

2. Compactness Theorem

Suppose that D is a bounded domain in Rn, n ≥ 2 with a sufficiently smooth boundary. We consider
a family of boundary value problems depending on the small parameter ε > 0.

−∆uε = ρε f in D,
uε = 0 on Γε ∪ γ ⊂ ∂D,
ε ∂uε

∂ν = g on ∂D\(Γε ∪ γ),
(1)

where Γε is a piece of the boundary ∂D of the domain D, having a fine-grained structure with ε-scale,
and γ is a fixed part of the boundary ∂D. On this part of the boundary, we set the homogeneous Dirichlet
boundary condition. On the remaining part of the boundary we set a Neumann boundary condition with
the right-hand side g(x) independent of the small parameter, and ν is the outward normal vector to the
boundary ∂D. Here,

ρε(x) =

{
ε−m in Bε,
1 in D \ Bε

, 0 < m < 2, (2)

where f is sufficiently smooth function and Bε is a small domain with sufficiently smooth boundary,
Bε ∩ ∂D = Γε. We assume that the thickness of Bε is of order O(ε), i.e., dist(x, ∂D) ≤ κ ε, if x ∈ Bε, where
κ = const (see Figure 1).

Within the paper we use the definition from [47].

Definition 1. A family of closed sets Γε ⊂ ∂D we call SELFSIMILAR, if there exist constants C1 > 0 and
s, 1 < s ≤ 2 independent of ε, such that for any ε, 0 < ε ≤ ε0 and for any smooth functionϕ ∈ C∞(D) with support
not intersecting with Γε, the following inequality

( ∫
∂D

|ϕ|sdσx

) 1
s

≤ C1

(
ε
∫
D

|∇ϕ|2dx
) 1

2

(3)
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holds true.

We also use the Poincaré and the Friedrichs inequalities in the following form. There exists a constant
C2 which only depends on the domain D such that for any function ϕ which is continuously differentiable
on D the inequality

∫
D

ϕ2dx ≤ C2

(( ∫
∂D

|ϕ|dσx

)2

+
∫
D

|∇ϕ|2dx

)
, (4)

holds true, and the inequality ∫
D

ϕ2dx ≤ C2

∫
D

|∇ϕ|2dx (5)

holds true whenever ϕ also vanishes on γ.
Our requirements for the smoothness of the boundary ∂D and of the regularity of the set Γε ⊂ ∂D are

necessary only to the extent that the inequalities (3) and (4) are satisfied.
The following asymptotic properties take place.

Figure 1. Domain with non-trivial micro structure near the boundary.

Theorem 1. Assume that the family {Γε} is selfsimilar, g ∈ Ls′(∂D), where s′ is the mutual number to the number
s from Definition 1, i.e., 1

s +
1
s′ = 1. Then

(i) the sequence uε, the solutions to problem (1) is bounded in the space Ls(∂D) as ε→ 0;
(ii) there exists a measurable function C : ∂D → [0,+∞) and a subsequence εk → 0 independent of g ∈ Ls′(∂D),

such that uεk weakly converges to C(x)g(x) in Ls(∂D) as εk → 0;
(iii) the sequence uε is compact in Lp(D), where p < ns

n−1 , and the subsequence uεk strongly converges in Lp(D)

to the function u0 which satisfies the problem

{
−∆u0 = f in D,
u0 = C g on ∂D.

(6)

Proof. To prove (iii) we use the following Lemma from [47].
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Lemma 1. Let D be a domain with a smooth boundary. If the sequence of solutions vε of the Poisson equation with
sufficiently smooth right-hand side in D, is weakly compact in Ls(∂D), s > 1. Then it is strongly compact in
Lp(D), p < ns

n−1 .

Remark 1. In [47], this statement is proved for a sequence of harmonic functions but the proof can be easily modified
for the sequence of solutions to the Poisson equation in D.

Now the statement (iii) follows form this Lemma and both (i), (ii).
To show (i) we write down the integral identity of the problem (1). We have

ε
∫
D

∇uε∇v dx = ε
∫
D

ρε f v dx +
∫

∂D

gv dσx (7)

for any smooth v with compact support in D\Γε. Denote by H1
0(D, Γε ∪ γ) the closure by the Sobolev norm

of W1
2 (D) the set of smooth functions with compact support in D\(Γε ∪ γ). By means of the Lax–Milgram

Lemma (see, for instance [48]) applied to the functionals in left- and right-hand sides of (7) on H1
0(D, Γε ∪γ),

using (3) and (4), we conclude that there exists a unique solution uε ∈ H1
0(D, Γε ∪ γ).

Remark 2. It should be noted, that due to the continuity, the inequalities (3), (4) and (7) are valid for functions
from H1

0(D, Γε ∪ γ). Moreover, there is a continuous trace operator from H1
0(D, Γε ∪ γ) to Ls(∂D).

Substituting v = uε in (7), we get

ε
∫
D

|∇uε|2dx ≤
( ∫

∂D

|g|s′dσx

) 1
s′
( ∫

∂D

|uε|sdσx

) 1
s

+

+

√
ε
∫
D

f 2 dx
√

ε
∫
D

u2
ε dx + ε1−m

√√√√∫
Bε

f 2 dx

√√√√∫
Bε

u2
ε dx.

(8)

Note that
∫
Bε

f 2 dx = O(ε). Using (3), the Friedrichs type inequalities (5) and

∫
Bε

u2
ε dx ≤ Kε2

∫
D

|∇uε|2 dx,

we deduce the following estimates:

ε
∫
D

|∇uε|2dx ≤ C3,
∫

∂D

|uε|sdσx ≤ C3. (9)

here, the constant C3 does not depend on ε. Thus, we proved the statement (i).
Let us consider an auxiliary problem (same as problem (1) with g = 1)

−∆wε = ρε f in D,
wε = 0 on Γε,
ε ∂wε

∂ν = 1 on ∂D\Γε,
(10)

The integral identity of this problem in H1
0(D, Γε ∪ γ) has the form
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ε
∫
D

∇wε∇vdx = ε
∫
D

ρε f v dx +
∫

∂D

vdσx. (11)

The solution wε ∈ H1
0(D, Γε ∪ γ) satisfies the bounds analogous to (9), i.e.,

ε
∫
D

|∇wε|2dx ≤ C4,
∫

∂D

|wε|sdσx ≤ C4 (12)

with the constant C4 independent of ε. From (12) we conclude that it is possible to choose a sequence
{εk}k∈N which converges to 0, such that the restrictions of wεk to ∂D weakly converge in Ls(∂D). Denote by
C(x) the limit function on ∂D. It is easy to show, that C ∈ Ls(∂D). The nonnegativity of this function
follows from the maximum principle for solutions of elliptic equations.

Let us substitute in the identities (7) and (11) v = θwε and v = θuε respectively, where θ ∈ C∞(D) is
an arbitrary function. Subtracting these identities from each other, we obtain

ε
∫
D

(wε∇uε − uε∇wε)∇θdx = ε
∫
D

ρε f θ (wε − uε) dx +
∫

∂D

(g wε − uε) θdσx. (13)

It can be shown that the left-hand side and the first term in the right-hand side of (13) converge to
zero as ε → 0. In fact the boundedness of

√
εuε and

√
εwε in W1

2 (D) follow from (9) and (12) and the
Poincaré inequality; hence, sequences of these functions of the form

√
εkuεk and

√
εkwεk are strongly

compact in L2(D), and converge to zero in the Lp(D)-norm, p < ns
n−1 . Therefore, the sequence converge

to zero in L2(D). Thus, in the products under the integrals of the left-hand side of (13) one multiplier
is bounded in L2(D) as ε → 0, and another tends to zero, and the first term in the right-hand side also
converges to zero, since m < 2 and the sequences

√
εkuεk and

√
εkwεk converge to zero.

In the second term of the right-hand side of (13) we pass to the limit as εk → 0. The function wεk

weakly converges to C(x) in Ls(∂D). The functions uεk are bounded in Ls(∂D). Taking a subsequence from
the subsequence εk such that uεk weakly converges in Ls(∂D) to some limit function u0 on ∂D, and pass to
the limit on this subsubsequence. We get∫

∂D

(
g(x) C(x)− u0(x)

)
θ(x) dσx = 0.

Since θ ∈ C(D) is an arbitrary function on ∂D, the function u0 = g C, i.e., u0 is independent of the
choice of the subsubsequence. Therefore, the whole subsequence uεk has a unique limit. This proves
Theorem 1.

3. Random Structure

In this section, we describe the structure of micro inhomogeneous sets near the boundary. To describe
the family {Γε} in detail we use an approach from [48,49].

3.1. Notation

Let (Ω, B, µ) be a probability space with a semigroup of mappings Tξ : Ω → Ω, measurable
in ω ∈ Ω, ξ ∈ Rn−1 and preserving the measure µ on Ω. We assume the following group property to
be satisfied: for any ξ, η ∈ Rn−1 and any ω ∈ Ω

Tξ ◦ Tη ω = Tξ+η ω, T0 ω = ω.
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Definition 2. A measurable function ϕ : Ω×Rn−1 → R is called a RANDOM STATISTICALLY HOMOGENEOUS,
if it has the form ϕ(ω, ξ) = φ(Tξ ω), (ω, ξ) ∈ Ω×Rn−1), where φ is a Borel measurable function on Rn−1.

Definition 3. A random subset of Rn−1 is called HOMOGENEOUS, if its indicator function is
statistically homogeneous.

The family T = {Tξ : ξ ∈ Rn−1} on Ω forms an (n − 1)-dimensional dynamical system. In the
further analysis we assume T to be ERGODIC, i.e., any µ-measurable function on Ω, invariant with respect
to this semigroup T, is almost everywhere a constant. Under this assumption, the following Birkhoff
theorem holds true (see, for instance, [48,49]).

Theorem 2 (The Birkhoff theorem). For any function φ ∈ Lα(Ω) (α ≥ 1) and any bounded domain D ⊂ Rn−1

we have
lim
ε→0

1
|D|

∫
D

φ
(
Tx

ε
ω
)

dx =
∫
Ω

φ(ω) µ(dω) ≡ 〈φ〉

almost surely.

Here, we used the notation 〈·〉 for the mathematical expectation and | · | for the volume of a domain.
From the Birkhoff theorem, one can conclude that the family of functions

{
φ
(
Tx

ε
ω
)

: ε > 0
}

weakly

converges almost surely to 〈φ〉 in Lloc
α (Rn−1) as ε → 0, i.e., for any function ψ ∈ Lβ(Rn−1),

( 1
α + 1

β = 1
)

and any bounded domain D ⊂ Rn−1 we have

lim
ε→0

∫
D

φ
(
Tx

ε
ω
)
ψ(x) dx = 〈φ〉

∫
D

ψ(x) dx

for almost all ω ∈ Ω.

3.2. Some Examples

3.2.1. Periodic Case

Let Ω be the unit cube {ω ∈ Rn−1, 0 ≤ ωj ≤ 1, j = 1, . . . , n− 1}. On Ω we have a dynamical system
Tξ ω = ω + ξ (mod 1). The Lebesque measure is invariant and ergodic due to this dynamical system.
The realization of the function f (ω) ∈ Lα(Ω) has the form f (ξ + ω).

3.2.2. Quasi-Periodic Case

Let Ω be a unit cube in Rn−1, µ be a Lebesque measure on it. For ξ ∈ Rm we set Tξ ω = ω +λξ (mod 1),
where λ = {λij}n−1

i,j=1 is a matrix m× (n− 1). Obviously, the mapping Tξ preserve the measure µ on Ω.
The dynamical system is ergodic if and only if λijk j 6= 0 for any integer vector k 6= 0.

Thus, Lα(Ω) is the space of periodic functions of d variables, and the realizations have the
form f (ω + λξ). These realizations are called QUASI-PERIODIC FUNCTIONS, if f (ω) is continuous on Ω.

3.3. Structure of Γε

In this subsection, we use the results from [47]. We use statistically homogeneous functions
to construct families {Γε} of micro inhomogeneous sets with cellular structure. if V(ω) ∈ Rn−1 is
statistically homogeneous, then its homothetic contractions in 1

ε times {εV(ω)} form such a family on
(n− 1)-dimensional manifold ∂D. Onwards we use the notation εV(ω) for statistically homogeneous sets
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in Rn−1 as well as for sets in Rn, defined by {(x, z) ∈ ∂D, x ∈ εV(ω), z = 0}, where x is a local coordinate
on ∂D, and z is a coordinate along the normal to ∂D.

To avoid some simple technical difficulties, we consider D = {(x, z), 0 < xi < 1, 0 < z < 1},
and consider the case, when rapidly changing boundary conditions in (1) are set only on one (lower)
face of the cube, on other faces we assume homogeneous Dirichlet boundary condition to be satisfied.
Thus Γε = Q∩ εV(ω), where Q = {(x, z), 0 < xi < 1, z = 0} is the lower face of the cube. Also we denote
by γ the other faces of the cube ∂D\Q.

For having the family {Γε} to be selfsimilar in the sense of Definition 1, we demand the statistically
homogeneous set V(ω) to satisfy an additional property, which we call nondegeneracy.

Definition 4. A random statistically homogeneous closed subset V(ω) ⊂ Rn−1 is called NONDEGENERATE,
if there exists a positive statistically homogeneous function h = h(ω), such that for almost all ω and for any function
ϕ ∈ C∞

0
(
Rn\V(ω)

)
with support of ϕ disjoint from V(ω), the following inequality:

∫
Rn−1

h
(
Txω

)
ϕ2(x, 0)dx ≤

∞∫
0

∫
Rn−1

|∇ϕ(x, z)|2dxdz (14)

holds true, wherein

〈h−1−δ〉 < +∞, (15)

with some δ, 0 < δ ≤ +.

The non-degeneracy condition of V(ω) we use below for studying the auxiliary problem (24).
The estimates (14) and (15) guarantee its solvability. In [50] the author used analogous conditions for
porous medium.

Assume that V(ω) is a union in Rn−1 of balls with radii ρi > 0 centered in isolated points yi.
And respectively B(ω) is a union in Rn of semiballs (z > 0) with radii ρi > 0 centered in the same isolated
points yi. The balls are allowed to intersect (see Figure 2). Denote by r = rω(y) the distance from y ∈ Rn−1

to the nearest center yi, ρ = ρω(y) is the radius of the ball centered in yi, nearest to y. If V(ω) is statistically
homogeneous domain, then the random functions r and ρ are also statistically homogeneous.

Let us construct h from (14) using the functions r and ρ.

Figure 2. Cube with concentrated masses near the boundary.
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Lemma 2. The inequality (14) holds true, if

h =
1
ρ

H
( r

ρ

)
, H(t) =


1

2t3 , n = 2,
1

8t3 log(t+1) , n = 3,
n−3

4t2n−3 , n > 3.
(16)

Proof. We split Rn−1 into measurable subsets Vi, consisting of points for which yi is the nearest center
(see Figure 3). According to our assumption, the set {yi} has no accumulation points, hence Vi are
polyhedra. In each of them we set the polar system of coordinates (r, θ), where r = |y− yi| and θ are polar
angles. Obviously, the polyhedra are starshaped with respect to the center, hence their boundaries are
defined in polar coordinates by unique functions r = R(θ). Inside the polyhedra the function ρω(y) are
equal to the respective constants ρ > 0.

Figure 3. The Voronoy diagram.

For any point M ∈ Vi with coordinates (r, θ), r > ρ, we set a = ρ2

r and construct a point M ∈ Vi
with coordinates (a, θ), 0 < a < ρ. Connect the points M and M by the curve l in the cylinder Vi × [0, ∞),
which is defined in the cylindrical coordinates (r, θ, z) by the equation

z =
(r− r)(r− a)

r− a
, θ = const, a ≤ r ≤ r. (17)

Consider an arbitrary function ϕ ∈ C∞
0

(
Rn\V(ω)

)
with compact support, for which we verify the

inequality (14). In each cylinder Vi × [0, ∞) we have ϕ(r, θ, 0) ≡ 0 if r < ρ. We represent the value of ϕ in
the point (r, θ, 0), r > ρ, in the form of the integral over the curve l, i.e.,

ϕ(r, θ, 0) =
r∫

a

dϕ

dr
dr, (18)

where dϕ
dr = ∂ϕ

∂r + ∂ϕ
∂z

dz
dr is the derivative along the curve l. Obviously,

∣∣∣ dϕ
dr

∣∣∣ ≤ |∇ϕ|
√

1 +
(

dz
dr

)2
. Using the

Cauchy–Schwartz–Bunjakovskii inequality, we deduce

ϕ2(r, θ, 0) ≤
r∫

a

|∇ϕ|2
[
1 +

(dz
dr

)2]
rn−2dr

r∫
a

dt
tn−2 . (19)
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Denote

I = I(θ) =

R(θ)∫
ρ

ϕ2(r, θ, 0)
1
ρ

H
( r

ρ

)
rn−2dr.

Integrating I(θ) with respect to the polar angles and taking the summation over all polyhedra Vi,
we get the left hand side of the inequality (14). Due to (19) we derive the estimate

I ≤
R(θ)∫
ρ

( r∫
a

(
|∇ϕ|2

[
1 +

(dz
dr

)2]
rn−2 1

ρ
H
( r

ρ

)
rn−2

( r∫
a

dt
tn−2

))
dr

)
dr.

In this estimate we replace the variables (r, r) by the variables (z, r). The Jacobian has the form

dz
dr

=
r(r− a)2 + a(r− r)2

r(r− a)2 > 0.

It is easy to prove the following inequalities:

1 +
(dz

dr

)2
∣∣∣∣
a≤r≤r

≤ 2,
dz
dr

∣∣∣∣
a≤r≤r

≥ a
r + a

.

Thus,

I ≤ 2
R∫

ρ

( r∫
a

(
|∇ϕ|2rn−2 dz

dr
max

r, ρ≤r≤R

[ 1
ρ

H
( r

ρ

)
rn−2

( a
r + a

)−1
r∫

a

dt
tn−2

])
dr
)

dr.

The choice of H(t) leads to

2 max
r, ρ≤r≤R

[ 1
ρ

H
( r

ρ

)
rn−2

( a
r + a

)−1
r∫

a

dt
tn−2

]
≤ 1 (20)

for any ρ and R. Keeping in mind (20), replacing the variables (r, r) by (z, r) and increasing the domain
of integration, we derive

I ≤
R(θ)∫
ρ

( r∫
a

(
|∇ϕ|2rn−2 dz

dr
)
dr
)

dr ≤
∞∫

0

( R(θ)∫
0

|∇ϕ|2rn−2dr
)

dz.

Finally, integrating over the polar angles and taking the summation on i, we obtain (14).
Lemma is proved.

4. Deterministic Homogenized Problem

4.1. Statement of the Main Theorem

In this section we give more precise asymptotics of solutions to the problem (1) in the case Γε ⊂ ∂D is
taken as the non-degenerate statistically homogeneous set V(ω). In addition, the set Bε is taken as the
non-degenerate statistically homogeneous set B(ω).

Recall that we consider D, the unit cube with Γε = Q ∩ εV(ω), where Q is the lower face of the cube
and γ = ∂D\Q.

The following statement describe the solution of the homogenized problem.
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Theorem 3. Suppose that in Definition 4 V(ω) ⊂ Rn−1 is a non-degenerate closed subset with δ > 0. Then the
family {Γε} is selfsimilar with s = 1 + δ

(2+δ)
and the solutions uε to the problem in (1) satisfy the conditions of

Theorem 1. In addition the limit function u0 is unique and deterministic (nonrandom). The boundary function C(x)
does not depend on the choice of the limiting subsequence {uεk}k∈N, it is equal to zero on ∂D\Q, and on Q it is
equal to a positive constant.

4.2. Auxiliary Results

Let (ξ1, . . . , ξn−1, ζ) be the Descartes coordinate in Rn
+ (ζ > 0). Denote by S the linear space of those

functions W : Ω× [0,+∞)→ R, with realizations W(Txω, ζ) which are smooth functions in Rn, and which
together with their derivatives are uniformly bounded in ω ∈ Ω. Moreover, these functions have their
support in Rn

+\V(ω), and are bounded in the ζ-direction.
For non-degenerate domains V(ω) the functions from S have the following properties.

Lemma 3. For any functions W ∈ S the following estimates

〈W2(ω, 0)h(ω)〉 ≤
∞∫

0

〈|∇W(Txω, ζ)|2〉dζ, (21)

(
〈|W(ω, 0)|t〉

) 1
t ≤ C(t)

(
〈W2(ω, 0)h(ω)〉

) 1
2 (22)

hold true. Here h(ω) is a weight–function as in Definition 4, t is a number 1 ≤ t ≤ s = 1 + δ
2+δ , and C(t) is a

positive constant, C(1) = 〈h−1〉 1
2 .

Proof. Denote by B and B1 balls in Rn−1 centered in the same point with radii R and R(1 + r), r > 0,
respectively. Construct smooth cut–off function ψ ∈ C∞

0 (Rn−1) with the support in B1, such that ψ ≡ 1
on B, |ψ| ≤ 1, |∇ψ| ≤ 2

rR . Substituting ϕ(x, ζ) = ψ(x)W(Txω, ζ), W ∈ S, in the inequality (14), we get

∫
B1

h(Txω)ψ2(x)W2(Txω, 0)dx ≤
∞∫

0

∫
B1

∣∣∇(ψ(x)W(Txω, ζ)
)∣∣2dxdζ,

which leads to the following estimate:

∫
B

h(Txω)W2(Txω, 0)dx ≤
∞∫

0

∫
B1

[
(1 + m)

∣∣∇W(Txω, ζ)
∣∣2 + ( 2

rR

)2(
1 +

1
m
)
W2(Txω, ζ)

]
dxdζ. (23)

here we used the inequality (a + b)2 ≤ (1 + m)a2 +
(

1 + 1
m

)
b2 for an arbitrary m > 0 and the properties

of the cut–off function ψ. Dividing both sides of (23) by the volume of the ball B and passing to the limit as
R→ ∞, we deduce

〈h(·)W2(·, 0)〉 ≤ (1 + m)(1 + r)n−1
∞∫

0

〈|∇W(Tx·, ζ)〉dζ.

According to the ergodic theorem both limits do exist. Then, passing to the limit as m and r go to zero,
we obtain (21). The estimate (22) is obtained by means of the Hölder inequality

〈|W(·, 0)|t〉 = 〈|W(·, 0)|th
t
2 (·)h−

t
2 (·)〉 ≤ 〈W2(·, 0)h(·)〉

t
2 〈h−

t
2−t (·)〉

2−t
2 .
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Keeping in mind that t
2−t ≤ 1 + δ, we conclude that the second multiplier in the right–hand side is

bounded due to (15). Lemma 3 is proved now.

Let us consider an auxiliary problem in Rn
+ = Rn−1 × [0,+∞):

n−1
∑

i=1

∂2W
∂ξ2

i
+ ∂2W

∂ζ2 = ε2ρ f in Rn
+,

W = 0 on V(ω),
∂W
∂ζ = −1 on Rn−1\V(ω),

(24)

where

ρ(ξ) =

{
ε−m in B,
1 in Rn

+ \ B
, 0 < m < 2 (25)

The equations and boundary conditions in (24) correspond to the auxiliary problem (10) and formally
can be obtained by the change of variables (x, z)→ (ξ, ζ) ≡

( x
ε , z

ε

)
. The solution is defined in the closure

of S with respect to an appropriate norm.
Note that due to the invariance of the measure µ with respect to Tξ the right–hand side of (21) does

not depend on ξ. We take this expression as the square of the new norm. Denote by S the completion of S
with respect to this new norm. The inequality (22) shows us, that for functions W ∈ S one can define the
trace W(ω, 0), and the trace operator continuously maps S to Ls(∂Ω).

The realization W(Tξ ω, ζ) of the function W ∈ S, we call a solution of the auxiliary problem (24), if it
satisfies the integral identity

∞∫
0

〈∇W(Tξ ω, ζ)∇W̃(Tξ ω, ζ)〉dζ = ε2
∞∫

0

ρ(ξ, ζ) f (εξ, εζ)〈W̃(Tξ ω, ζ)〉dζ + 〈W̃(Tξ ω, 0)〉 (26)

for any function W̃ ∈ S.
Due to Lemma 3 the bilinear form and the linear functional in (26) satisfy the conditions of the

Lax–Milgram lemma (see, for instance [48]). Thus, the unique solution W ∈ S to the problem (24)
does exist. Besides, substituting W̃ = W in (26), applying the Cauchy–Swartz–Bunjakovski inequality,
the Friedrichs inequality and (21), we derive the estimate

〈W(ω, 0)〉 ≤ 〈h−1〉. (27)

The realization W(Tξω, ζ) of the solution to problem (24) does not only satisfy the equation in (26),
but also as a function from W1,2

loc (R
n
+).

Lemma 4. For almost all ω ∈ Ω the realization W(Txω, z) of the solution to the problem (24) belongs to W1,2
loc (R

n
+)

and satisfies the integral identity∫
Rn
+

∇W(Tξ ω, ζ)∇ψ(ξ, ζ) dξdζ = ε2
∫
Rn
+

ρ(ξ, ζ) f (εξ, εζ)ψ(ξ, ζ) dξdζ +
∫

Rn−1

ψ(ξ, 0) dξ (28)

for sufficiently small ε and any smooth function ψ(x, z) with compact support in Rn
+\V(ω).

The proof can be found in [49] (see also [47]).
We use the identity (28) in modified form



Mathematics 2020, 8, 788 12 of 18

ε
∫
Rn
+

∇W
(
Tx

ε
ω,

z
ε

)
∇v(x, z)dxdz = ε

∫
Rn
+

ρε(x, z) f (x, z)v(x, z) dxdz +
∫

Rn−1

v(x, 0)dx. (29)

here v(x, z) is a smooth function with compact support in Rn
+\εV(ω). The identity (29) is obtained from

(28) by scaling of the coordinates.

4.3. Proof of Theorem 3

Proof. Let us prove the selfsimilarity of the family {Γε}. Consider a smooth function ϕ in D with its support

in D\(Γε ∪ γ). Assume that s = 1 + δ
(2+δ)

, α = 2
s , β = 2

2−s

(
1
α + 1

β = 1
)

. Using the Hölder inequality,
we get

∫
Q

|ϕ|sdx ≤
( ∫

Q

h
(
Tx

ε
ω
)
|ϕ|2dx

) 1
α
( ∫

Q

h−
β
α
(
Tx

ε
ω
)
dx
) 1

β , (30)

where Q is the lower face of the cube D, and h(ω) is the weight–function from the definition (19).
Changing variables (x, z) → ( x

ε , z
ε ) in the inequality (14), we estimate the first multiplier in the

right–hand side of (30) by the integral over the cube D. We have∫
Q

h
(
Tx

ε
ω
)

ϕ2(x, 0)dx ≤ ε
∫
D

|∇ϕ|2dxdz.

Due to the Birkhoff theorem the second multiplier has almost surely the finite limit 〈h−(1+δ)〉
1
β ,

since β
α = 1 + δ. Thus (30) leads to the inequality (3). Hence, the family {Γε} is almost surely selfsimilar,

and for the solutions uε satisfies the conditions of the Theorem 1.
The boundary function C(x) is the limit for the solutions wε of the auxiliary problem (10). Under the

conditions of the Theorem 3 wε = 0 on γ, hence C(x) ≡ 0 on the faces of D, except Q, independent of the
choice of the subsequence εk → 0. Let us show, that on Q the boundary function C(x) is defined uniquely
and is equal to a positive nonrandom constant.

Suppose θ ∈ C∞(D) is a smooth function in the cube D with its support contained in D ∪ Q, i.e.,
θ ≡ 0 on all faces of the cube, except Q.

Substituting v = θ(x, z)wε(x, z) in the identity (29), where wε is a solution of the problem (10),
and v = θ(x, z)W

(
Tx

ε
ω, z

ε

)
in the identity (11), subtracting them from each other, we deduce

ε
∫
D

[
wε(x, z)∇W

(
Tx

ε
ω,

z
ε

)
−W

(
Tx

ε
ω,

z
ε

)
∇wε(x, z)

]
θ(x, z)dxdz =

= ε
∫
D

ρε(x, z) f (x, z)θ(x, z)
(

wε(x, z)−W
(
Tx

ε
ω,

z
ε

))
dxdz +

∫
Q

(
wε(x, 0)−W

(
Tx

ε
ω,

z
ε

))
θ(x, 0)dx.

Passing to the limit as ε→ 0, we conclude that the left-hand side and the first term in the right–hand
side converge to zero as we have got in (13) (see the proof of Theorem 1). Now let us study the behavior of
the second term in the right-hand side. The function W

(
Tx

ε
ω, 0) weakly converges to 〈W(ω, 0)〉 in Ls(Q)

due to the ergodicity, and the function wε(x, 0) converges to C(x) on some subsequence εk → 0 due to
Theorem 1. The function θ(x, z) has been chosen arbitrarily on Q, hence C(x) ≡ 〈W(·, 0)〉 independently
of the choice of the subsequence. Consequently, the whole sequence wε(x, 0) on Q converges to this
nonrandom limit. Finally, substituting W̃ = W in the identity (26), we get 〈W(·, 0)〉 ≥ 0. Moreover,
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〈W(·, 0)〉 = 0 in the case, when V(ω) almost surely coincides with Rn−1. The function C(x) satisfies the
estimate (27).

Theorem 3 is proved.

5. Convergence of the Spectrum

In this section, we use the approach from [51] to the spectral problem associated with the
boundary–value problem (1) with g ≡ 0. We consider the following spectral problems:

∆(uk
ε ) + λk

ε ρε uk
ε = 0 in D,

uk
ε = 0 on Γε ∪ γ,

∂uk
ε

∂ν
= 0 on ∂D\(Γε ∪ γ), k = 1, 2...

(31)

and {
∆(uk) + λk

0 uk = 0 in D,
uk = 0 on ∂D, k = 1, 2...

(32)

here, uk
ε ∈ H1

0(D, Γε ∪ γ), uk ∈ H1
0(D), k = 1, 2, ... are orthogonal bases in L2(D). The sets {λk

ε}, {λk
0}, k =

1, 2, ... are the corresponding eigenvalues such that

0 < λ1
ε ≤ λ2

ε ≤ ... ≤ λk
ε ≤ ..., 0 ≤ λ1

0 ≤ λ2
0 ≤ ... ≤ λk

0 ≤ ...

and they repeat with respect to their multiplicities.
For the sake of completeness, we state here the results on spectral convergence for positive, selfadjoint

and compact operators on Hilbert spaces (see [51], Section 3.1, for the proof).

Theorem 4. Let Hε and H0 be two separable Hilbert spaces with the scalar products (·, ·)ε and (·, ·)0, respectively.
Let Aε ∈ L(Hε) and A0 ∈ L(H0). Let V be a linear subspace of H0 such that {v : v = A0u, u ∈ H0} ⊂ V .
We assume that the following properties are satisfied:

• C1 There exists Rε ∈ L(H0, Hε) such that (RεF, RεF)Hε

ε→0−−−−−→κ0(F, F)H0 , for all F ∈ V and certain
positive constant κ0.

• C2 The operators Aε and A0 are positive, compact and selfadjoint. Moreover, ‖Aε‖L(Hε) are bounded by
a constant, independent of ε.

• C3 ‖AεRεF− Rε A0F‖Hε

ε→0−−−−−→ 0 for all F ∈ V .
• C4 The family of operators Aε is uniformly compact, i.e., for any sequence Fε in Hε such that supε ‖Fε‖Hε is

bounded by a constant independent of ε, we can extract a subsequence Fε′ , that verifies the following:

‖Aε′ F
ε′ − Rε′v

0‖Hε′
→ 0,

as ε′ → 0, for certain v0 ∈ H0.

Let {µε
i}∞

i=1 and {µ0
i }

∞
i=1 be the sequences of the eigenvalues of Aε and A0, respectively, with the classical

convention of repeated eigenvalues. Let {wε
i }∞

i=1 and ({w0
i }

∞
i=1, respectively) be the corresponding eigenfunctions

in Hε, which are assumed to be orthonormal (H0, respectively).
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Then, for each k, there exists a constant Ck
8, independent of ε, such that

|µε
k − µ0

k | ≤ Ck
8 sup

u∈N (µk
0,A0),

‖u‖H0
=1

‖AεRεu− Rε A0u‖Hε ,

where N (µk
0, A0) = {u ∈ H0, A0u = µk

0u}. Moreover, if µ0
k has multiplicity s (µ0

k = µ0
k+1 = · · · = µ0

k+s−1),
then for any w eigenfunction associated with µ0

k , with ‖w‖H0 = 1, there exists a linear combination wε of

eigenfunctions of Aε, {wε
j}

j=k+s−1
j=k associated with {µε

j}
j=k+s−1
j=k such that

‖wε − Rεw‖Hε ≤ Ck
9‖AεRεw− Rε A0w‖Hε ,

where the constant Ck
9 is independent on ε.

We denote by Hε the weighted space L2,ρε(D) with the scalar product

( f ε, gε)Hε ≡
∫
D

ρε(x) f ε(x) gε(x) dx.

We denote by H0 the space L2(D), the scalar product being

( f 0, g0)H0 ≡
∫
D

f 0 g0 dx.

We define the operator
Aε : L2,ρε(D)→ H1

0(D, Γε ∪ γ), Aε f = uε,

where uε is the solution of problem
−∆uε = ρε f in D,

uε = 0 on Γε ∪ γ,
∂uε

∂ν
= 0 on ∂D \ (Γε ∪ γ).

(33)

We define the operator

A0 : L2(D)→ H1
0(D), A0 f = u,

where u is the solution of problem {
−∆u0 = f in D,

u0 = 0 on ∂D.
(34)

In fact, Aε and A0 are operators associated with the eigenvalue problems (31) and (32), respectively.
Now, considering the operators Aε : Hε → Hε and A0 : H0 → H0, it is easy to establish

the positiveness, self–adjointness and compactness of the operators Aε and A0, respectively. In particular,
the compactness of both operators follows from the compactness of the imbedding of H1(D) into the
space L2(D).

Let V be H1
0(D), which satisfies ImA0 ⊆ V ⊂ H0, and let Rε : L2(D) → L2,ρε(D) be the operator

Rε f = f (1− χε), where χε is the indicator function of Bε.
Let us verify the conditions C1− C4 of Theorem 4 (Theorem 1.4 from [51], Section 3.1).
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C1. Obviously,

(RεF, RεF)Hε =
∫

D\Bε

F2 dx −→
∫
D

F2 dx = (F, F)H0

as ε→ 0. Hence, we conclude that this condition is fulfilled with κ0 = 1.
Let us prove that norms ‖Aε‖L(Hε) are uniformly bounded with respect to ε. Keeping in mind the

equivalence of norms and using the Friedrichs inequalities, we obtain

‖Aε f ‖2
Hε

=
∫
D

u2
ε (x) ρε(x) dx ≤ C10‖uε‖2

H1(D) ≤ C11 ‖ f ‖2
Hε

. (35)

Thus, ‖Aε f ‖Hε ≤ C12‖ f ‖Hε holds true and Condition C2 is fulfilled.
By Theorem 3 Condition C3 is satisfied. Let us consider this condition in more detail. Using the

definitions of the operators Aε, A0 for any f ∈ V and applying the Friedrichs inequality for Bε, we have

‖AεRε f − Rε A0 f ‖2
Hε

=
∫
Bε

ρε(x)u2
ε (x) dx ≤ ε2−m

∫
Bε

|∇uε|2 dx −→ 0 as ε→ 0.

Thus, Condition C3 is valid.
Let us verify the last condition, C4. If a sequence { fε} is bounded in Hε, then by standard arguments

we deduce that the solutions {uε = Aε fε}ε to the problem (33) are uniformly bounded with respect to ε

in H1(D). Therefore, there exists w ∈ H1(D) and a subsequence ε′ → 0 such that uε′ → w in L2(D) and
weakly in H1(D). Thus,

‖Aε fε − Rεw‖2
Hε

=
∫
D

(uε(x)− w(x))2 dx

and, then, we obtain that:
‖Aε′ fε′ − Rε′w‖Hε′

→ 0 as ε′ → 0 ,

and Condition C4 is fulfilled.
Now, we consider the spectral problems:

Aεuk
ε = µk

ε uk
ε , uk

ε ∈ Hε,

µ1
ε ≥ µ2

ε ≥ ... ≥ µk
ε ≥ · · · > 0, k = 1, 2, ...,

(ul
ε, uk

ε )Hε = δlk

and
A0uk

0 = µk
0uk

0, uk
0 ∈ H0,

µ1
0 ≥ µ2

0 ≥ ... ≥ µk
0 ≥ · · · > 0, k = 1, 2, ...,

(ul
0, uk

0)H0 = δlk.

According to our definitions µk
ε =

1
λk

ε
, and µk

0 = 1
λk

0
, where λk

ε and λk
0 are the eigenvalues of problems

(31) and (32), respectively.
Finally, applying Theorem 4 (Theorems 1.4 and 1.7 in [51], Section 3.1), we prove the

following statements.
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Theorem 5. For the eigenvalues λk
ε , λk

0 of problems (31) and (32), respectively, the convergence

λk
ε → λk

0

is valid as ε→ 0.

Theorem 6. Let us consider the same hypothesis as in Theorem 5. Suppose that k, l are integers, k ≥ 0, l ≥ 1,
and λk

0 < λk+1
0 = ... = λk+l

0 < λk+l+1
0 . Then, for any eigenfunction w of (32), associated with the eigenvalue λk+1

0 ,
there exists a linear combination uε of the eigenfunctions uk+1

ε , ..., uk+l
ε of problem (31) such that:

uε → Rεw as ε→ 0.

6. Discussion

The obtained results show that, due to the Birkhoff theorem, the behavior of random statistically
homogeneous concentrated masses distributed on the boundary of the domain has similar type as the
behavior of locally periodic concentrated masses on the boundary.

7. Materials and Methods

In the paper, we used boundary homogenization methods as well as methods of stochastic analysis.
It should be noted that the obtained inequalities allowed us to prove the embedding theorems and trace
theorems for the random functional spaces.
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