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Abstract: In the present paper, we prove that if Laplacian for the warping function of complete warped
product submanifold Mm = Bp ×h Fq in a unit sphere Sm+k satisfies some extrinsic inequalities
depending on the dimensions of the base Bp and fiber Fq such that the base Bp is minimal, then Mm

must be diffeomorphic to a unit sphere Sm. Moreover, we give some geometrical classification in
terms of Euler–Lagrange equation and Hamiltonian of the warped function. We also discuss some
related results.
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1. Introduction and Main Results

We will use the following acronyms throughout the paper: ‘WP’ for Warped product, ‘WF’ for
warping function, ‘RM’ for Riemannian manifold, and ‘SFF’ for second fundamental form. The idea of
the warped product was initiated by Bishop and O’Neil [1] when they gave an example of complete
Riemannian manifold with negative curvature. If (B, gB) and (F, gF) are two Riemannian manifolds
(RMs), and h is a positive differentiable function defined on the base manifold B, then we define the
metric g = π∗gB + h2σ∗gF on the product manifold B× F, where π and σ are the projection maps on
B and F, respectively. Under such stipulations, the product manifold is referred to as warped product
(WP) of B and F, and written as M = B×h F. Here, h is referred to as warping function (WF).

We observe that M is a Riemannian product, or trivial warped product, when h is constant.
Notice that there has been a great interest in the study of warped products over the recent years.
For example, S. Nolker [2] derived the decompositions of the standard spaces of an isometric immersion
of warped products and D.K. Kim and Y.H. Kim in [3] proved that if the scalar is non-constant then
there is no non-trivial compact Einstein warped product. Recently, an interesting fundamental result
proved by Djaczer in [4] showed that an isometric immersion of warped products into space forms
must be product of isometric immersions under extrinsic conditions. Moreover, by using DDVV
conjecture, Roth [5] obtained an inequality for submanifold of WP I ×h Mm(c) where I is an interval
and Mm(c) is a real space form and also provided some rigidity results based on submanifolds of
R×eλt Hm(c), where λ is a real constant. Salavessa in [6] obtained that the Heinz mean curvature
m‖H‖2 ≤ AΨ(∂D)

VΨ(D)
holds in WP spaces of type M×eΨ N in case that a graph of submanifold (x, h(x)) of

Riemannian WP M×eΨ N is immersed with parallel mean curvature, where AΨ(∂D) and VΨ(D) are
Ψ−weighted area and volume, respectively.
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On the other hand, the investigation of the relations between curvature invariants and topology is
an important problem in Riemannian geometry as well as in global differential geometry. For instance,
a beautiful and classical theorem established by Myers [7] states that “if M is a complete Riemannian
manifold with Ricci curvature Ric(M) > 1, then the diameter d(M) of M is not greater than π,
and, therefore, M is compact and its fundamental group π1((M) is finite”. Due to the distinctive work
of Rauch [8], Berger [9] proved the rigidity theorem for a simply connected and complete manifold
M of even dimension and the sectional curvature satisfying 1

4 ≤ KM ≤ 1. Furthermore, Grove and
Shiohama in [10] has generalized the sphere theorem. There are lots of interesting and well-known
results regarding the topology of complete manifolds of positive Ricci curvature. The curvature and
topology of manifolds play a substantial role in global differential geometry. Later on, a splitting
theorem, resulting from the work of Cheeger and Gromoll in [11], states that “if M is a complete
non-compact manifold of non-negative Ricci curvature and if M contains a straight line, then M is
isometric to the Riemannian product M×R”. In the sequel, Schoen and Yau [12] proved that a complete
non-compact M of dimension 3 and positive Ricci curvature is diffeomorphic to R3. Using the first
eigenvalue of the Laplacian operator, the result stating that “if M is complete such that if Ric(M) > 1
and if d(M) = π, then M is isometric to the standard unit sphere” has been proven by Cheng in [13].

The non-existence of a compact stable minimal submanifold or stable currents is sharply associated
with the topology and geometric function theory on Riemannian structure of the whole manifold.
Recently, it has been shown in [14] that if the sectional curvature of a compact oriented minimal
submanifold M of dimension m in the unit sphere Sm+k with codimension p satisfies some pinching
condition KM ≥

p.sign(p−1)
2(p+1) , then M is either a totally geodesic sphere, one of the Clifford minimal

hypersurface Sk( k
m )× Sm−k(m−k

m ) in Sm+1 for k = 1, . . . , m− 1, or the Veronese surface in S4. Later on,
some new results for the non-existence of the stable currents, vanishing homology groups, topological
and differential theorems are well known (see [15–23] and references therein). Therefore, it was
an objective for mathematicians to understand geometric function theory and topological invariant of
Riemannian submanifolds as well as in Riemannian space forms. Surely, this is a fruitful problem in
Riemannian geometry. Using the result of Lawson and Simon [24] and following Leung [20] homotopic
sphere theorem for compact oriented submanifolds in a sphere, also motivated by the idea of complete
Riemannian manifold and without assumption that Mm is simply connected, Xu and Zao (Theorem 1.2
in [21]) concluded the following result:

Theorem 1. [21] Let Mm be an oriented complete submanifold of dimension m in the unit sphere Sm+k

satisfying the following inequality

‖B(X,X)‖2 <
1
3

, ∀X ∈ Γ(TM), (1)

where X is a unit vector at any point of Mm and B is SFF, the second fundamental form. Then Mm is
diffeomorphic to the sphere Sm.

This is one of the motivations to study—the differential and topological manifolds, and their
direct relations with warped product submanifolds theory. In this way, a natural question arises: Is it
possible to extend Theorem 1 to the warped product submanifolds to the cases with base manifold is
minimal in a sphere? What is the best pinching constant for the differentiable rigidity sphere theorem
of complete minimal warped product submanifold in a unite sphere under pinching conditions using
the Laplace operator for the warping function?

The main goal of this note is to extend the rigidity Theorem 1 to a complete warped product
submanifolds and find the solution for our proposed problem where motivation comes from the Nash
embedding theorem [25] which states that “every Riemannian manifold has an isometric immersion
into Euclidean space of sufficient high codimension”. To prove our findings we shall use the technique
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of Chen [26] for an isometric minimal immersion from warped products to the ambient manifold,
where he proved the following relation as:

p

∑
α=1

q

∑
β=1

K(eα ∧ eβ) =
q∆h

h
. (2)

Therefore, using Theorem 1 and formula (2), we announce our main finding of this study
as follows:

Theorem 2. Let ` : Mp+q = Bp ×h Fq −→ Sp+q+k be an isometric immersion from a WP submanifold Mp+q

of dimension (p + q) into a unit sphere Sp+q+k of dimension (p + q + k) such that the base manifold Bp is
minimal. Assume that Mp+q is an oriented complete WP submanifold satisfying the following inequality

∆h
h

>

(
2(3pq− 1)

3q

)
, (3)

where ∆h is the Laplace operator for the warping function h defined on base manifold Bp. Then Mp+q is
diffeomorphic to a sphere Sp+q.

In particular, if we follows the statement of Theorem D in [21], then we give another topological
sphere theorem which is a consequence of Theorem 2, i.e.,

Theorem 3. Let ` : Mp+q = Bp ×h Fq −→ Sp+q+k be an isometric immersion from an (p + q)-dimensional
oriented complete WP submanifold Mp+q into a (p + q + k)-dimensional unit sphere Sp+q+k such that the base
manifold Bp is minimal. If the following inequality holds

∆h
h

>

(
2(3pq− 1)

3q

)
,

where ∆ f is the Laplace of f defined on base manifold Bp, then Mp+q is homeomorphic to the sphere Sp+q.

Hence, we noticed that Theorems 2 and 3 are differentiable sphere theorems for complete warped
product submanifolds without assumption that Mn is simply connected.

2. Preliminaries and Notations

Let Sm+k denote the sphere with constant sectional curvature c = 1 > 0 and dimension (m + k).
We use the fact that Sm+k admits a canonical isometric embedding in Rm+k+1 as

Sm+k = {X ∈ Rm+k+1 : ||X||2 = 1}.

Thus, the Riemannian curvature tensor R̃ of a sphere Sm+k fulfils

R̃(Z1, Z2, Z3, Z4) = g(Z1, Z4)g(Z2, Z3)− g(Z2, Z4)g(Z1, Z4), (4)

∀ Z1, Z2, Z3, Z4 ∈ Γ(TM̃), where TM̃ is a tangent bundle of Sm+k. Hence, Sm+k is a manifold with
constant sectional curvature 1 and codimension k.

Let∇⊥ and∇ be the induced connections on normal bundle T⊥M and the tangent bundle TM of
M, respectively, where M is a m-dimensional RM in a Riemannian M̃n of dimension n with induced
metric g. The Weingarten and Gauss formulae are defined as

∇̃Z1 ξ = −Aξ Z1 +∇⊥Z1
ξ,
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and
∇̃Z1 Z2 = ∇Z1 Z2 + B(Z1, Z2),

∀ Z1, Z2 ∈ Γ(TM) and ξ ∈ Γ(T⊥M), where Aξ and B are, respectively, shape operator (corresponding
to ξ) and the second fundamental form as Mm immersed into M̃, and they verify the relation

g(B(Z1, Z2), ξ) = g(Aξ Z1, Z2).

If the curvature tensors of M̃n and Mm are denoted by R̃ and R, then the Gauss equation is
given by

R(Z1, Z2, Z3, Z4) = R̃(Z1, Z2, Z3, Z4) + g
(
B(Z1, Z4), B(Z2, Z3)

)
− g
(
B(Z1, Z3), B(Z2, Z4)

)
, (5)

∀ Z1, Z2, Z3, Z4 ∈ Γ(TM̃).
Let {e1, · · · em} be an orthonormal basis of TxM and es = (em+1, · · · em+k) belongs to

an orthonormal basis of T⊥M, then the squared norm of B is

Bs
αβ = g(B(eα, eβ), es), (6)

and

||B(eα, eβ)||2 =
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(
Bs

αβ

)2. (7)

The squared norm of the mean curvature vector H of a Riemannian submanifold Mm is defined by

||H||2 =
1

m2

m+k

∑
s=m+1

( m

∑
α=1

Bs
αα

)2

. (8)

A submanifold Mm of a RM, M̃m+k, is referred to as totally geodesic and totally umbilical if

B(Z1, Z2) = 0 and B(Z1, Z2) = g(Z1, Z2)H,

∀ Z1, Z2 ∈ Γ(TM), respectively, where H is the mean curvature vector of Mm. Moreover, if H = 0,
then Mm is minimal in M̃m+k.

Now, we give a definition of the scalar curvature of Riemannian submanifold Mm, which is
denoted by τ(TxMm), at some x in Mm, as

τ(Tx Mm) = ∑
1≤α<β≤m

Kαβ, (9)

where Kαβ = K
(
eα ∧ eβ

)
. The first equality (9) is equal to the following equation:

2τ(Tx Mm) = ∑
1≤α<β≤m

Kαβ, 1 ≤ α, β ≤ m.

The above equation will be considerably used in subsequent proofs throughout the paper.
In similar way, the scalar curvature τ(Lx) of an L−plane is defined as

τ(Lx) = ∑
1≤α<β≤m

Kαβ.

If the plane section spanned by eα and eβ at x, then the sectional curvatures of the submanifold
Mm and Riemannian manifold M̃m+k are denoted by Kαβ and K̃αβ, respectively. Thus, K̃αβ and Kαβ are
considered to be the extrinsic and intrinsic sectional curvature of the span {eα, eβ} at x. Using Gauss
Equation (5), and using (9), we conclude that
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∑
1≤α<β≤m+k

Kαβ = ∑
1≤α<β≤m+k

K̃αβ +
n+k

∑
r=m+1

(
Br

ααBr
ββ − (Br

αβ)
2
)

. (10)

Now, we provide the proofs of the main findings of the study.

3. Proof of Main Findings

3.1. Proof of Theorem 2

Assume that Mm = Bp ×h Fq → Sm+k is a warped product in which the base Bp is minimal.
Let {e1 . . . ep, ep+1 . . . em} be a local orthonormal frame fields of Mm such that {e1 . . . ep} are tangents
to Bp and {ep+1 . . . em} are tangents to Fq. First, we define the two unit vectors X and Y to estimate
the upper bound of the terms ||B(eα, eβ)||2. We can define these two unit vectors as follows:

X =
1√
2

(
eα + eβ

)
, and Y =

1√
2

(
eα − eβ

)
, 1 ≤ α ≤ p & 1 ≤ β ≤ q.

Eliminating eα and eβ from the above equation, one obtains:

eα =
1√
2

(
X+Y

)
, and eβ =

1√
2

(
X−Y

)
, 1 ≤ α ≤ p & 1 ≤ β ≤ q.

Then we derive

||B(eα, eβ)||2 =‖B
(X+Y√

2
,
X−Y√

2

)
‖2

=
1
4
‖B(X,X)− B(Y,Y)‖2

=
1
4

{
‖B(X,X)‖2 + ‖B(Y,Y)‖2 − 2g

(
B(X,X), B(Y,Y)

)}
.

Using the Cauchy–Schwartz inequality for orthonormal vector fields, we conclude that

‖B(eα, eβ)‖2 ≤ 1
4

{
‖B(X,X)‖2 + ‖B(Y,Y)‖2 + 2||B(X,X)‖‖B(Y,Y)‖

}
.

In virtue of (1), the above equation implies that

||B(eα, eβ)||2 <
1
4

(
1
3
+

2
3
+

1
3

)
=

1
3

. (11)

Next, from curvature tensor Equation (4) of the sphere Sm+k and the Gauss Equation (5),
we find that

m2||H||2 + m(m− 1) = ||B||2 + ∑
1≤A<B≤m

K(eA ∧ eB).

The above equation can be written for warped product manifold Mn and from the viewpoint
of (8) and (6) as:
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m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

+ m(m− 1) =
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
p

∑
α=1

q

∑
β=1

K(eα ∧ eβ)

+ ∑
1≤i<j≤p

K(ei ∧ ej) + ∑
1≤a<b≤q

K(ea ∧ eb).

Using (10) and (2) in the above equation, we derive

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

+ m(m− 1) =
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
q∆ f

f

+ ∑
1≤i<j≤p

K̃(ei ∧ ej) + ∑
1≤a<b≤q

K̃(ea ∧ eb)

+
m+k

∑
s=m+1

∑
1≤i<j≤p

(
Bs

iiB
s
jj − (Bs

ij)
2
)

+
m+k

∑
s=m+1

∑
1≤a<b≤q

(
Bs

aaBs
bb − (Bs

ab)
2
)

.

Thus, from (4) and some rearrangements in the last equation, one obtains:

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
q∆h

h
−

m+k

∑
s=m+1

∑
1≤i<j≤p

(Bs
ij)

2

+
m+k

∑
s=m+1

∑
1≤i<j≤p

Bs
iiB

s
jj +

m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)

−
m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)
+

m+k

∑
s=m+1

∑
1≤a<b≤q

Bs
aahs

bb

−
m+k

∑
s=m+1

∑
1≤a<b≤q

(Bs
ab)

2 +
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)

−
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)

.
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This can take the form

m+k

∑
s=m+1

(
m

∑
A=1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
q∆h

h

+
m+k

∑
s=m+1

{
∑

1≤i<j≤p
Bs

iiB
s
jj + (Bs

11)
2 + · · ·+ (Bs

pp)
2

}

−
m+k

∑
s=m+1

{
∑

1≤i<j≤p
(Bs

ij)
2 + (Bs

11)
2 + · · ·+ (Bs

pp)
2

}

+
m+k

∑
s=m+1

{
∑

1≤a<b≤q
Bs

aaBs
bb + (Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2

}

−
m+k

∑
s=m+1

{
∑

1≤a<b≤q
(Bs

ab)
2 + (Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2

}

Using the binomial theorem and the fact that the base manifold Bp is minimal, then it not hard to
check that

m+k

∑
s=m+1

(
m

∑
A=p+1

Bs
AA

)2

=
m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2 +
m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2 − 2pq

+ 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
q∆h

h

+
m+k

∑
s=m+1

(
(Bs

11)
2 + · · ·+ (Bs

pp)
2
)
−

m+k

∑
s=m+1

p

∑
i,j=1

(Bs
ij)

2

+
m+k

∑
s=m+1

(
(Bs

p+1p+1)
2 + · · ·+ (Bs

mm)
2
)
−

m+k

∑
s=m+1

q

∑
a,b=1

(Bs
ab)

2. (12)

From the hypothesis of the theorem, we know that Bp is minimal and using this, we get that the
fifth term of the right hand side in Equation (12) is equal to zero and seventh the term is equal to the
first term of left hand side. Thus, we have:

2pq = 2
m+k

∑
s=m+1

p

∑
α=1

q

∑
β=1

(Bs
αβ)

2 +
q∆h

h
.

From (7), it implies that

||B(eα, eβ)||2 =
q
2

(
− ∆h

h

)
+ pq. (13)

From assumption(3), we find that

−∆h
h

<
(2− 6pq

3q

)
(14)
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Combining (13) with (14), one obtains:

||B(eα, eβ)||2 <
q
2

(2− 6pq
3q

)
+ pq =

1
3
− 3pq

3
+ pq

<
1
3

. (15)

Therefore, the proof follows from Theorem 1 and pinching condition (1) together with (15).

Remark 1. The proofs of Theorems 2 and 3 follow easily using the same technique.

3.2. Some Applications

Assume that {e1, . . . , em} is a local orthonormal basis of vector field Mm. Then the gradient of
function ϕ and its squared norm is defined as:

∇ϕ =
m

∑
i=1

ei(ϕ)ei,

and

‖∇ϕ‖2 =
m

∑
i=1

(
ei(ϕ)

)2. (16)

Let ϕ be a differentiable function defined on Mm such that ϕ ∈ F (Mm), then the Lagrangian of
the function ϕ is given in (p. 44, [27]).

Lϕ =
1
2
||∇ϕ||2. (17)

The Euler–Lagrange formula of the Lagrangian (17) satisfies

∆ϕ = 0. (18)

At point x ∈Mn in a local orthonormal basis, the Hamiltonian would take the form (see [27] for
more details):

H(p, x) =
1
2

m

∑
i=1

p(ei)
2.

Put p = dϕ, where d is a differential operator, and using (16), we get:

H(dϕ, x) =
1
2

m

∑
i=1

dϕ(ei)
2 =

1
2

m

∑
i=1

ei(ϕ)2 =
1
2
||∇ϕ||2. (19)

Assuming that Mm = Bp × f Fq is a warped product, then ∀ Z1 ∈ Γ(TB) and Z2 ∈ Γ(TF),
we have

∇Z2 Z1 = ∇Z1 Z2 = (Z1 ln h)Z2.

Using the unit vector fields X and Z which are tangents to Γ(TB) and Γ(TF), resp.;
then one obtains:

K(Z1 ∧ Z2) =g(R(Z1, Z2)Z1, Z2) = (∇Z1 Z1) ln hg(Z2, Z2)− g
(
∇Z1((Z1 ln h)Z2), Z2

)
=(∇Z1 Z1) ln hg(Z2, Z2)− g

(
∇Z1(Z1 ln h)Z2 + (Z1 ln h)∇Z1 Z2, Z2

)
=(∇Z1 Z1) ln hg(Z2, Z2)− (Z1 ln h)2 − Z1(Z1 ln h).
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If {e1, · · · em} is an orthonormal basis for Mm, then we can take a sum over the vector fields
as follows

p

∑
α=1

q

∑
β=1

K(eα ∧ eβ) =
p

∑
α=1

q

∑
β=1

((
∇eα eα

)
ln h− eα

(
eβ ln h

)
−
(
eα ln f

)2
)

= q
(

∆(ln h)− ||∇(ln h)||2
)

. (20)

Thus, from (20) and (2), it follows that

∆h
h

= ∆(ln h)− ||∇(ln h)||2. (21)

Here, motivated by the historical development on the study of Lagrangian and Hamiltonian,
we will give the following theorems as

Theorem 4. Let ` : Mm = Bp ×h Fq −→ Sm+k be an isometric immersion from an oriented complete WP
submanifold Mm of dimension m into a sphere Sm+k of dimension (m + k) such that the base manifold Bp is
minimal and the function h satisfies the Euler–Lagrange equation with following inequality

Lh <

(
1− 3pq

3q

)
2h2, (22)

where Lh is the Lagrangian of h. Then Mm is diffeomorphic to Sm.

Proof. Using the fact that the warping function ln h satisfies the Euler–Lagrange equation, from the
hypothesis of the theorem, and using (18), we have

∆ ln h = 0. (23)

From (21) and (15), we derive

∆ ln h− ‖∇h‖2

h2 > 2p− 2
3q

. (24)

It follows from (23) and (24) that

‖∇h‖2 < 2ph2 − 2h2

3q
.

Using (17), we get desired result (22) which ends the proof.

Theorem 5. Suppose that ` : Mm = Bp ×h Fq −→ Sm+k is an isometric immersion from an oriented complete
WP submanifold Mm of dimension m into a sphere Sm+k of dimension (m + k) such that the base manifold Bp

is minimal and satisfies the relation

H(dh, x) <
{

∆(lnh)
2

+

(
1
3q
− p

)}
h2. (25)

Then Mm is diffeomorphic to Sm.

Proof. Using Equation (19) in (24), we get required pinching condition (25).
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4. Conclusion Remark

We provide the characterization of a complete warped manifold to be diffeomorphically a unit
sphere and some geometric classifications using Euler Lagrange formula along with Hamiltonian of
the warping function. The topology of warped products and main extrinsic and intrinsic curvature
invariants are emphatically related. Hence, our results may be seen as topological and differential
sphere theorems from the viewpoint of warped product submanifolds theory. This paper shows
the relation between the notion of warped product manifold and homotopy-homology theory.
Therefore, we hope that this paper will be of great interest with respect to the topology of Riemannian
geometry [28–35] which may find possible applications in physics.
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