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Abstract: We develop a new concept of a solution, called the limit solution, to fully nonlinear
differential inclusions in Banach spaces. That enables us to study such kind of inclusions under
relatively weak conditions. Namely we prove the existence of this type of solutions and some
qualitative properties, replacing the commonly used compact or Lipschitz conditions by a dissipative
one, i.e., one-sided Perron condition. Under some natural assumptions we prove that the set of limit
solutions is the closure of the set of integral solutions.
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1. Introduction and Preliminaries

Let X be a real Banach space with the norm | · |, A : D(A) ⊂ X ⇒ X an m–dissipative operator
generating the semigroup {S(t) : D(A) → D(A); t ≥ 0} and F : I × X ⇒ X a multifunction with
nonempty, closed and bounded values, where I = [t0, T].

In this paper, we study evolution inclusions of the form

ẋ(t) ∈ Ax(t) + F(t, x(t)), x(t0) = x0 ∈ D(A). (1)

Notice that many parabolic systems can be written in the form (1). We refer the reader to [1–3] for the
general theory of the system (1) when F is single valued. In the case when X∗ is uniformly convex,
the system (1) is comprehensively studied in [4]. We recall also the monograph [5], where (1) is studied
in different settings.

An important problem regarding the system (1) is to find the closure of the set of integral solutions.
This problem is not solved in the case of general Banach spaces.

We consider the associated Cauchy problem

ẋ(t) ∈ Ax(t) + f (t), x(t0) = x0 ∈ D(A), (2)

where f (·) is a Bochner integrable function. We denote by [·, ·]+ the right directional derivative of the
norm, i.e., [x, y]+ = lim

h→0+
h−1(|x + hy| − |x|) (see, e.g., ([6], Section 1.2) for definition and properties).
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Following [7], we say that a continuous function x : [t0, T] → D(A) is an integral solution of (2) on
[t0, T] if x(t0) = x0 and for every u ∈ D(A), v ∈ Au and t0 ≤ τ < t ≤ T the following inequality holds

|x(t)− u| ≤ |x(τ)− u|+
∫ t

τ
[x(s)− u, f (s) + v]+ds.

Definition 1. The Bochner integrable function g(·) is said to be pseudoderivative of the continuous function
y(·) (with respect to A) if y(·) is an integral solution of (2) on [t0, T] with f (·) replaced by g(·).

Notice that the pseudoderivative g(·) (if it exists) depends on A and y(·). However, along this
paper A is fixed and we assume without loss of generality that the pseudoderivative depends only on
y(·). To stress this dependence on y, we will denote the pseudoderivative g(·) by gy(·).

It is well known that for each x0 ∈ D(A) the Cauchy problem (2) has a unique integral solution
on [t0, T]. Moreover, if x(·) and y(·) are integral solutions of (2) with x(t0) = x0 and y(t0) = y0 then

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

[x(s)− y(s), fx(s)− fy(s)]+ds, (3)

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

| fx(s)− fy(s)|ds, (4)

for every t ∈ [t0, T] (see, e.g., [7]).
We define now the notion of integral solution for the differential inclusion (1). Moreover,

following [8], where the semilinear case was considered, we define the notions of ε-solution (called
outer ε-solution in [8]) and limit solution for (1). In the following, B denotes the closed unit ball in X.

Definition 2. The function x : I → D(A) is said to be an integral solution of (1) on I if it is an integral
solution of (2) such that its pseudoderivative fx(·) satisfies fx(t) ∈ F(t, x(t)) for a.a. t ∈ I.

Consider the following system{
ẋ(t) ∈ Ax(t) + F(t, x(t) +B) +B,

x(t0) = x0.
(5)

Definition 3. (i) Let ε > 0. The continuous function x : I → D(A) is said to be an ε–solution of (1) on I if it
is a solution of (5) and its pseudoderivative fx(·) satisfies∫

I
dist( fx(t), F(t, x(t)))dt ≤ ε.

(ii) The function x(·) is said to be a limit solution of (1) on I if x(t) = lim
n→∞

xn(t) uniformly on I for some

sequence (xn(·)) of εn–solutions as εn ↓ 0+.

Recall that the distance between a point u ∈ X and a subset C of X is given by dist(u; C) =

inf{‖u− c‖; c ∈ C}.
In the literature, we can find different definitions for ε–solutions. Maybe the most popular is

when its pseudoderivative satisfies fx(t) ∈ F(t, x(t) + εB) a.e. on I. However, our definition given
above is more convenient for the study of the qualitative properties of the set of integral solutions
of (1) in the case when X is an arbitrary Banach space.

For ordinary differential inclusions (A = 0), the limit solutions are usually called quasitrajectories
(cf., [9] ). We prefer the notion of limit solution because it is the original definition of the integral
solution in the case of m–dissipative systems (cf. [6]). For ordinary differential inclusions in Rn,
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the limit solutions are the integral solutions of the relaxed system. In our case, the relaxed system has
the form

ẋ(t) ∈ Ax(t) + co F(t, x(t)), x(t0) = x0, (6)

where co F(t, x(t)) stands for the closed convex hull of the set F(t, x(t)). In this general setting, the limit
solutions are not integral solutions of the relaxed system (6).

It is well known that the set of integral solutions of (6) is not necessarily closed in C(I, X) even if
X is finite dimensional. For instance, in [10] the author constructed an example in which a sequence
(xn(·)) of integral solutions of

ẋ(t) ∈ Ax(t) + fn(t), x(t0) = x0,

converges uniformly on [t0, T] to a function x(·), ( fn(·)) converges weakly in L1(t0, T; X) to f (·),
but x(·) is not an integral solution of

x′(t) ∈ Ax(t) + f (t), x(t0) = x0.

The main results of this paper are summarized as follows.

(I) We prove that the set of limit solutions of (1) is nonempty and closed in C(I, X) when X is a
general Banach space and F(·, ·) is almost continuous and satisfies a one-sided Perron condition.

(II) We prove that in the case when A generates a compact semigroup, the closure of the set of
integral solutions of (1) is exactly the set of limit solutions, which in general does not coincide
with the set of integral solutions of the relaxed system. The same result is proved also when
F(t, ·) is full Perron, but without any restrictions on the semigroup A.

The limit solutions in the case when A is linear were studied in [8]. It was shown there that the
limit solutions of (1) and (6) coincide. It is not the case for the nonlinear problem.

Let us now define a few classes of multifunctions which will be used in the following.
We say that F(·, ·) is lower semicontinuous (LSC) at (t0, x0) ∈ I × X if for every f0 ∈ F(t0, x0),

every xk → x0 and every tk → t0 there exists fk ∈ F(tk, xk) such that fk → f0. This definition is
equivalent to the following property of the graph: for every α ∈ F(t0, x0) and every ε > 0, there exists
δ > 0 such that α ∈ F(t, x) + εB, when |t− t0| ≤ δ and |x− x0| ≤ δ.

The multifunction F(·, ·) is called LSC if it is LSC at every (t, x) ∈ I × X.
The multifunction F(·, ·) is called continuous if it is continuous with respect to the Hausdorff

distance. We recall that the Hausdorff distance between the bounded sets B and C is defined by

DH(B; C) = max{e(B; C), e(C; B)},

where e(B; C) is the excess of B to C, defined by e(B; C) = supx∈B dist(x; C).
The multifunction F(·, ·) is called almost LSC (continuous) if for every ε > 0 there exists a compact

set Iε ⊂ I with Lebesgue measure meas(I \ Iε) ≤ ε such that F |Iε×X is LSC (continuous).
Let v : I ×R+ → R+ be Carathéodory and integrally bounded on the bounded sets. As is well

known, the scalar differential equation

ṙ(t) = v(t, r(t)), r(t0) = r0 ≥ 0, (7)

has maximal solutions h(·), i.e., 0 ≤ r(t) ≤ h(t) for every solution r(·) of (7) on the existence interval
of h(·) (see, e.g., [6]).

We introduce now the standing hypotheses of this paper.

Hypothesis 1 (H1). The multifunction F(·, ·) is almost continuous.



Mathematics 2020, 8, 750 4 of 17

Hypothesis 2 (H2). There exists γ > 0 such that ‖F(t, x)‖ ≤ γ(1 + |x|) for a.a. t ∈ I and every x ∈ X. We
recall that ‖F(t, x)‖ = sup

y∈F(t,x)
|y|.

Hypothesis 3 (H3). (One-sided Perron condition) There exist a Perron function w(·, ·) and a null set N ⊂ I
such that such for every x, y ∈ X, for every ε > 0 and for every f ∈ F(t, x) there exists g ∈ F(t, y) such that

[x− y, f − g]+ ≤ w(t, |x− y|) + ε

on I \ N .

We recall that the Carathéodory function w : I ×R+ → R+ is said to be Perron function if it is
integrally bounded on bounded sets, w(t, 0) ≡ 0, w(t, ·) is nondecreasing for every t ∈ I and the zero
function is the only solution of the scalar differential equation r′(t) = w(t, r(t)), r(t0) = 0, on I.

Notice that it is more popular to call such kind of functions Kamke functions. We refer the reader
to [11], where Perron and Kamke functions are comprehensively studied. That paper is the main reason
to use here the notion of Perron (not Kamke) function. In [12] some examples of the Perron (Kamke)
functions different from the Lipshitz one are given (see, e.g., Corollary 1.13 and Corollary 1.15).

Remark 1. Due to Gronwall’s lemma, there exists a constant M > 0 such that |x(t)| ≤ M for every t ∈ I and
every solution x(·) of (5). Let N = 1 + γ(2 + M). Then ‖F(t, x(t) + B) + B‖ ≤ N for every solution x(·)
of (5).

Clearly, for every solution x(·) of (5), in particular for every ε–solution x(·) of (1), with the
pseudoderivative fx(·), we have that dist( fx(t), F(t, x(t))) ≤ 2N on I, since | fx(t)| ≤ N and
‖F(t, x(t))‖ ≤ N for every t ∈ I.

2. Main Results

The main results are given in three subsections. In the first one, we prove the existence of limit
solutions. In the second subsection, we prove the most interesting results of this paper, namely, that the
set of limit solutions of (1) is the closure of the set of integral solutions of (1) when A generates a
compact semigroup or when F(t, ·) is full Perron. An example and some applications are discussed in
the last two subsections.

2.1. Existence of Limit Solutions

In this subsection we prove an existence result of ε-solutions of the Cauchy problem (1) on I and a
variant of the well known lemma of Filippov–Pliś.

First, recall that t̄ is said to be a right dense point of a closed subset I ⊂ I if for every τ > 0 there
exists a point s ∈ (t̄, t̄ + τ)

⋂ I . Clearly, t̄ is not a right dense point of I if there exists τ > 0 such that
(t̄, t̄ + τ)

⋂ I = ∅.

Lemma 1. Assume that F(·, ·) is almost LSC and satisfies (H2). Then for every ε > 0 there exists at least one
ε–solution of (1) defined on the whole I.

Proof. Let ε > 0. We take ε′ ≤ ε

T − t0 + 2N
. There exists I′ ⊂ I a closed set with Lebesgue measure

meas(I′) ≥ T − t0 − ε′ such that F|I′×X is LSC on I′ × X.
We take f0 ∈ F(t0, x0) arbitrary but fixed and let f1(·) be Bochner integrable with f1(t) ∈ F(t, x0)

on I. Two cases are possible.
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Case 1. If t0 is a right dense point of I′. Since F|I′×X is LSC at (t0, x0), then there exists δ ∈ (0, 1/2)
such that if t ∈ I′ with t− t0 ≤ δ and |y− x0| ≤ δ then f0 ∈ F(t, y) + ε′B. We pick

fy(t) =

{
f0, t ∈ I′

f1(t), t ∈ I \ I′.

Let y1(·) be the integral solution of the Cauchy problem

ẏ(t) ∈ Ay(t) + fy(t), y(t0) = x0.

Since lim
t↓t0

y1(t) = x0, we deduce that there exists τ ∈ (t0, t0 + δ) such that |y1(t)− x0| ≤ δ whenever

t ∈ [t0, τ). Thus, f0 ∈ F(t, y1(t)) + ε′B for every t ∈ [t0, τ)
⋂

I′ and f1(t) ∈ F(t, y1(t) + B) for
t ∈ [t0, τ)

⋂
(I \ I′). Therefore, fy(t) ∈ F(t, y1(t) + B) + B for every t ∈ [t0, τ), i.e., y1(·) is a solution

of (5) on [t0, τ).
We let y(t) = y1(t) for every t ∈ [t0, τ). Thus, dist( fy(t), F(t, y(t))) ≤ ε′ for every t ∈ [t0, τ)

⋂
I′

and, due to Remark 1, dist( fy(t), F(t, y(t))) ≤ 2N for every t ∈ [t0, τ)
⋂
(I \ I′).

Case 2. If t0 is not a right dense point of I′, let y1(·) be the integral solution of the Cauchy problem

ẏ(t) ∈ Ay(t) + f1(t), y(t0) = x0.

Then there exists τ > t0 such that [t0, τ) ⊂ I \ I′ and |y1(t)− x0| < ε′ for t ∈ [t0, τ). Thus, y1(·) is a
solution of (5) on [t0, τ).

We let y(t) = y1(t) and fy(t) = f1(t) for every t ∈ [t0, τ). Moreover, dist( fy(t), F(t, y(t))) ≤ 2N
for every t ∈ [t0, τ).

In both cases we let yτ = lim
t↑τ

y(t). We continue the above construction in a similar way by

replacing t0 by τ and x0 by yτ .
Let [t0, t̄) be the maximal interval of the existence of solution y(·) of (5), with the properties

that dist( fy(t), F(t, y(t))) ≤ ε′ on [t0, t̄)
⋂

I′ and dist( fy(t), F(t, y(t))) ≤ 2N on [t0, t̄)
⋂
(I \ I′),

where fy(·) is the pseudoderivative of y(·). Suppose that t̄ < T. Due to the growth condition
lim
t↑t̄

y(t) exists. Let yt̄ = lim
t↑t̄

y(t). Then, using a similar construction as above with t̄ instead of t0

and yt̄ instead of x0, we can extend the solution y(·) on some interval [t0, t̄ + θ), θ > 0, such that
dist( fy(t), F(t, y(t))) ≤ ε′ on [t0, t̄ + θ)

⋂
I′ and dist( fy(t), F(t, y(t))) ≤ 2N on [t0, t̄ + θ)

⋂
(I \ I′),

which contradicts the maximality of [t0, t̄). Hence t̄ = T.
It is clear that the pseudoderivative fy(·) satisfies dist( fy(t), F(t, y(t))) = ky(t) with ky(t) ≤ ε′ for

every t ∈ I′ and ky(t) ≤ 2N for every t ∈ I \ I′. One checks easily that
∫

I
ky(t)dt ≤ ε. Hence, y(·) is an

ε–solution of (1) on I.

The next lemma will play a crucial role in the sequel.

Lemma 2. Assume (H1)–(H3). Let ε > 0 and let x(·) be an ε–solution of (1) on I. Then, there exist l(·)
positive and bounded on I with

∫
I

l(t)dt ≤ 2ε and η > 0 such that for every y0 ∈ D(A) with |x0 − y0| < η

we have that:

(i) the maximal solution ṽ(·) of the scalar differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|,

exists on I and
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(ii) for every 0 < δ < ε there exists a δ–solution y(·) of (1) on I with x0 replaced by y0, satisfying

|x(t)− y(t)| ≤ ṽ(t),

for all t ∈ I.

Proof. The assertion (i) follows from ([13], Lemma 2.4) (see also Lemma 3 below).
Let ε > 0 be fixed and let fx(·) be the pseudoderivative of x(·). Then, due to Definition 3,

fx(t) ∈ F(t, x(t) +B) +B a.e. on I and kx(t) = dist( fx(t), F(t, x(t))) satisfies
∫

I
kx(t)dt ≤ ε. Moreover,

due to Remark 1, kx(t) ≤ 2N for any t ∈ I.

We take ε′ ≤ ε

5(T − t0 + N)
. We can assume without loss of generality that there exists a compact

set Iε ⊂ I, with meas(I \ Iε) < ε′, such that the functions fx|Iε , kx|Iε and w|Iε×R are continuous.
Let δ < ε. We can assume that there exists a compact set Iδ ⊂ I such that Iε ⊂ Iδ, meas(I \ Iδ) < δ′,

where δ′ ≤ min
{

δ

5(T − t0 + N)
, ε′
}

, and F|Iδ×X is continuous.

We take fx ∈ F(t0, x0) such that | fx − fx(t0)| ≤ kx(t0) + ε′. Let η ∈ (0, 1) and y0 ∈ D(A) with
|x0 − y0| < η. By (H3), there exists f1 ∈ F(t0, y0) such that

[x0 − y0, fx − f1]+ ≤ w(t0, |x0 − y0|) + ε′. (8)

Hence,

[x0 − y0, fx(t0)− f1]+ ≤ [x0 − y0, fx − f1]+ + | fx(t0)− fx| ≤ w(t0, |x0 − y0|) + 2ε′ + kx(t0).

Let f (·) be a Bochner integrable function such that f (t) ∈ F(t, y0) for every t ∈ I.
We consider the following cases.

Case 1. t0 is a right dense point of Iε (hence it is a right dense point also for Iδ).
We pick

fy(t) =

{
f1, if t ∈ Iδ

f (t), if t ∈ I \ Iδ.

Let y1(·) be the integral solution of

ẏ(t) ∈ Ay(t) + fy(t), y(t0) = y0. (9)

Then, by the continuity of F|Iδ×X and y1(·), there exists τ > t0 such that f1 ∈ F(t, y1(t)) + δ′B for every
t ∈ [t0, τ)

⋂
Iδ.

Due to the continuity of y1(·), the upper semicontinuity of [·, ·]+ and the continuity of w(·, ·) at

(t0, |x0 − y0|) and of kx(·) at t0, the number τ > t0 can be chosen such that |y1(t)− y0| ≤
1
2

for every

t ∈ [t0, τ), and moreover,

[x(t)− y1(t), fx(t)− f1]+ ≤ [x0 − y0, fx(t0)− f1]+ + ε′

≤ w(t0, |x0 − y0|) + 3ε′ + kx(t0)

≤ |w(t0, |x0 − y0|)− w(t, |x(t)− y1(t)|)|+ w(t, |x(t)− y1(t)|) + 4ε′ + kx(t)

≤ w(t, |x(t)− y1(t)|) + 5ε′ + kx(t),

for every t ∈ [t0, τ)
⋂

Iε.
Clearly, due to our choice of τ, we have that fy(t) ∈ F(t, y1(t) +B) +B for any t ∈ [t0, τ), hence

y1(·) is a solution of (5) on [t0, τ).
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We set y(t) = y1(t) for any t ∈ [t0, τ) and let ky(t) = dist( fy(t), F(t, y(t))). Then ky(t) ≤ δ′ for
t ∈ [t0, τ)

⋂
Iδ and ky(t) ≤ 2N for t ∈ [t0, τ)

⋂
(I \ Iδ).

Hence, for any t ∈ [t0, τ)
⋂

Iε,

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + 5ε′ + kx(t).

On the other hand, for any t ∈ [t0, τ)
⋂
(I \ Iε) we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ | fx(t)− fy(t)| ≤ 2N ≤ 2N + w(t, |x(t)− y(t)|).

Case 2. t0 is not a right dense point of Iε but it is a right dense point of Iδ.
Let y1(·) be the integral solution of (9), where fy(·) is chosen as in Case 1. Then there exists τ > t0

such that |y1(t)− y0| ≤
1
2

for every t ∈ [t0, τ), and moreover, [t0, τ) ⊂ I \ Iε. Moreover, we can choose

τ such that f1 ∈ F(t, y1(t)) + δ′B for every t ∈ [t0, τ)
⋂

Iδ.
We set, as in the previous case, y(t) = y1(t) for any t ∈ [t0, τ). Hence ky(t) ≤ δ′ for t ∈ [t0, τ)

⋂
Iδ

and ky(t) ≤ 2N for t ∈ [t0, τ)
⋂
(I \ Iδ).

Case 3. t0 is not a right dense point of Iδ.
In this case, we let y1(·) to be the integral solution of

ẏ(t) ∈ Ay(t) + f (t), y(t0) = y0.

Then there exists τ > t0 such that |y1(t)− y0| ≤
1
2

for every t ∈ [t0, τ), and moreover, [t0, τ) ⊂ I \ Iδ ⊂
I \ Iε. We have that y1(·) is a solution of (5) on [t0, τ).

We let y(t) = y1(t) and fy(t) = f (t) for every t ∈ [t0, τ) and hence ky(t) ≤ 2N on [t0, τ).
Moreover, in both cases 2 and 3, for any t ∈ [t0, τ) we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ 2N + w(t, |x(t)− y(t)|).

We continue the above construction in a similar way by replacing t0 by τ and y0 by yτ = lim
t↑τ

y(t).

Finally, reasoning as in the proof of Lemma 1, we define y(·) on I, solution of (5).
Its pseudoderivative fy(·) satisfies dist( fy(t), F(t, y(t))) = ky(t) with ky(t) ≤ δ′ for every t ∈ Iδ

and ky(t) ≤ 2N for every t ∈ I \ Iδ. One checks easily that
∫

I
ky(t)dt ≤ δ. Hence, y(·) is a δ–solution

of (1) on I.
Moreover, for any t ∈ Iε, we have that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + 5ε′ + kx(t)

and, for any t ∈ I \ Iε,

[x(t)− y(t), fx(t)− fy(t)]+ ≤ 2N + w(t, |x(t)− y(t)|).

Furthermore, using (3), we have that

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

[x(s)− y(s), fx(s)− fy(s)]+ds

≤ |x0 − y0|+
∫
[t0,t]

⋂
Iε

(
w(s, |x(s)− y(s)|) + 5ε′ + kx(s)

)
ds

+
∫
[t0,t]

⋂
(I\Iε)

(
w(s, |x(s)− y(s)|) + 2N

)
ds
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≤ |x0 − y0|+
∫ t

t0

w(s, |x(s)− y(s)|)ds +
∫
[t0,t]

⋂
Iε

(5ε′ + kx(s))ds +
∫
[t0,t]

⋂
(I\Iε)

2Nds

for any t ∈ I. Let l(t) = 5ε′ + kx(t) for t ∈ Iε and l(t) = 2N for t ∈ I \ Iε. Then, for any t ∈ I,

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

w(s, |x(s)− y(s)|)ds +
∫ t

t0

l(s)ds.

Hence, |x(t) − y(t)| ≤ ṽ(t) for every t ∈ I, where ṽ(·) is the maximal solution of the scalar
differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|

on I. Clearly, l(·) is bounded on I and∫
I

l(s)ds =
∫

Iε

(5ε′ + kx(s))ds +
∫

I\Iε

2Nds ≤ 5ε′(T − t0) + ε + 2Nε′ ≤ 2ε.

The proof is completed.

The proof of the following result follows the same steps as the proof of ([13], Lemma 2.4) and it
is omitted.

Lemma 3. Let λ ∈ L1(I;R+) and let v : I ×R+ → R+ be a Carathéodory function, integrally bounded on
the bounded sets, with v(t, ·) nondecreasing for every t ∈ I. If the maximal solution h(·) of (7) exists on I,
then for every ε > 0 there exists δ > 0 such that the maximal solution r̄(·) of

ṙ(t) = v(t, r(t)) + µ(t), r(t0) = r̄0 ∈ [r0, r0 + δ],

exists on I and r̄(t) ≤ h(t) + ε on I, for every function µ(·) such that 0 ≤ µ(t) ≤ λ(t) for t ∈ I and∫
I

µ(t)dt ≤ δ.

Now, by using the previous lemmas, we will prove the following existence result of a limit
solution for the Cauchy problem (1).

Theorem 1. Assume (H1)–(H3). Let ε > 0 and let x(·) be an ε–solution of (1). Then, there exist a positive

and bounded function l(·) with
∫

I
l(t)dt ≤ 2ε and η > 0 such that for every y0 ∈ D(A) with |x0 − y0| < η

we have that:

(i) the maximal solution ṽ(·) of the scalar differential equation

v̇(t) = w(t, v(t)) + l(t), v(t0) = |x0 − y0|, (10)

exists on I and
(ii) there exists a limit solution y(·) of (1) on I with y(t0) = y0 such that

|x(t)− y(t)| ≤ ṽ(t) + ε,

for every t ∈ I.

Proof. Let δ > 0 be given by Lemma 3, corresponding to ε/2. Take ε1 ≤ min{ε/2, δ/2}. By Lemma 2

there exist l1(·) a positive and bounded function with
∫

I
l1(t)dt ≤ 2ε and η > 0 such that for any

y0 ∈ D(A) with |x0 − y0| < η there exists y1(·) an ε1–solution of (1) with y1(t0) = y0 satisfying

|x(t)− y1(t)| ≤ v1(t),
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where v1(·) is the maximal solution of

v̇(t) = w(t, v(t)) + l1(t), v(t0) = |x0 − y0|, (11)

on I.
Let δ1 > 0 be given by Lemma 3 corresponding to ε1/2. Take ε2 ≤ min{ε1/2, δ1/2}. By Lemma 2

there exists an ε2–solution y2(·) of (1) on I with y2(t0) = y0 such that

|y2(t)− y1(t)| ≤ v2(t),

for every t ∈ I. Here v2(·) is the maximal solution of

v̇(t) = w(t, v(t)) + l2(t), v(t0) = 0,

where l2(·) is positive and bounded on I and
∫

I
l2(t)dt ≤ 2ε1 ≤ δ. Then, by Lemma 3, v2(t) ≤ ε/2 for

any t ∈ I.
We construct by induction a sequence of εn–solutions (yn(·)) of (1) on I, where εn ≤

min{εn−1/2, δn−1/2}, for any n = 2, 3, . . ., such that

|yn+1(t)− yn(t)| ≤ vn+1(t),

for every t ∈ I. Here vn+1(·) is the maximal solution of

v̇(t) = w(t, v(t)) + ln+1(t), v(t0) = 0,

where ln+1(·) is positive and bounded on I and satisfies
∫

I
ln+1(t)dt ≤ 2εn ≤ δn−1. Moreover,

vn+1(t) ≤ εn−1/2 for every t ∈ I and every n = 2, 3, . . .. Therefore,

|yn+1(t)− yn(t)| ≤ εn−1

for every t ∈ I and every n = 2, 3, . . .. Taking into account that
∞

∑
n=1

εn ≤ ε, we conclude that (yn(·))

is a Cauchy sequence in C(I; X). Thus, there exists a continuous function y : I → X such that
lim

n→∞
yn(t) = y(t) uniformly on I. Furthermore, |x(t)− y(t)| ≤ v1(t) + ε, where v1(·) is the maximal

solution of (11).

The next theorem is a variant of the well known lemma of Filippov–Pliś. This lemma has numerous
applications in optimal control theory and had been proved on different variants by different authors.
In the next theorem, we extend this result to the case when the integral solutions do not necessarily
exist. Variants of this lemma have been proved in [14,15] for the case of uniformly convex dual space
and in [16] for the case when A generates a compact semigroup.

Theorem 2. Assume (H1)–(H3). Let x(·) be an integral solution of the differential inclusion{
ẋ(t) ∈ Ax(t) + F(t, x(t)) + g(t)B,

x(t0) = x0 ∈ D(A),
(12)

on I, where g ∈ L1(I;R+). Then for every ε > 0 and every y0 ∈ D(A) for which the maximal solution v(·) of
the scalar differential equation

v̇(t) = w(t, v(t)) + g(t), v(t0) = |x0 − y0|, (13)
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exists on I, there exists a limit solution z(·) of (1) on I with z(t0) = y0, satisfying

|x(t)− z(t)| ≤ v(t) + ε,

for all t ∈ I.

Proof. Let fx(·) be the pseudoderivative of x(·). Then fx(t) ∈ F(t, x(t)) + g(t)B for every t ∈ I.
Furthermore, for every ε > 0 there exists a compact Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε

such that fx|Iε , g|Iε , F|Iε×X and w|Iε×R+
are continuous. We fix ν > 0 and define the multifunction

G(t, u) = {v ∈ F(t, u); [x(t)− u, fx(t)− v]+ < w(t, |x(t)− u|) + g(t) + ν}.

It follows from (H3) that G(·, ·) has nonempty closed values. Moreover, G(·, ·) is almost LSC (the proof
follows, with obvious modifications, the same lines as the proof of ([16], Theorem 2). Due to Lemma 1,
for every µ > 0 the evolution inclusion{

ẋ(t) ∈ Ax(t) + G(t, x(t)),

x(t0) = y0

has a µ–solution y(·) defined on the whole I. Then, its pseudoderivative fy(·) satisfies fy(t) ∈
G(t, y(t)) + hy(t)B for any t ∈ I, where hy(t) ≤ 2N on I and

∫
I

hy(s)ds ≤ µ. It follows from the

properties of [·, ·]+ that

[x(t)− y(t), fx(t)− fy(t)]+ ≤ w(t, |x(t)− y(t)|) + g(t) + ν + hy(t).

Thus, |x(t)− y(t)| ≤ r(t), where r(·) is the maximal solution of the inequality ṙ(t) ≤ w(t, r(t)) + g(t) +
ν + hy(t) with r(t0) = |x0 − y0|.

Due to Lemma 3, r(·) exists on the whole I for sufficiently small ν and µ and moreover, for every
ε > 0 there exists κ > 0 such that r(t) ≤ v(t) + ε for µ, ν < κ.

Clearly, y(·) is a µ–solution also of (1). It follows from Theorem 1 that there exists a limit
solution z(·) of (1) such that |z(t) − y(t)| ≤ ε. The proof is therefore complete thanks to the
triangle inequality.

Remark 2. In fact, Theorem 2 says that the solution set of (1) depends continuously on small perturbations of
the initial condition and the right-hand side.

2.2. Limit and Integral Solutions

We start this subsection by giving a simple example to illustrate the notion of limit solutions.

Example 1. Let A ≡ 0. We consider the ordinary differential inclusion:

ẋ(t) ∈ B, t ∈ (0, 1), x(0) = 0. (14)

Here B denotes the unit ball in L1(0, 1;Rn). Clearly, the limit solutions of (14) are all Lipschitz functions (of
Lipschitz constant 1). However, there exists such kind of functions nowhere differentiable, i.e., which are not
integral solutions.

First, we will prove that the set of limit solutions is the closure of the set of integral solutions of (1)
when F(·, ·) satisfies the following stronger assumption than (H3).
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Hypothesis 3′ (H3′). (Full Perron condition) There exists a Perron function w(·, ·) such that

DH(F(t, x), F(t, y)) ≤ w(t, |x− y|)

for every x, y ∈ X and every t ∈ I.

Theorem 3. Assume (H1), (H2) and (H3′). Then (1) has integral solutions. Furthermore, the set of integral
solutions of (1) is dense in the set of limit solutions of (1).

Proof. Let ε > 0 and let y(·) be an ε-solution (1) with the pseudoderivative fy(·). Then fy(t) ∈
F(t, y(t)) + hy(t)B for any t ∈ I, where hy(t) ≤ 2N on I and

∫
I

hy(t)dt ≤ ε.

Let 0 < δ < ε. Since the function w(·, ·) is Perron, there exists 0 < µ < ε such that
∫

I
w(t, µ)dt < δ.

Furthermore, there exists t1 > t0 such that |y(t)− x0| < µ for t ∈ [t0, t1]. Let z(t) := y(t) on [t0, t1)

and denote z1 = z(t1). By (H1) and (H3′), there exists a strongly measurable function f1(·) such that
f1(t) ∈ F(t, z1) and

| fy(t)− f1(t)| ≤ w(t, |y(t)− z1|) + hy(t) + µ

a.e. on [t1, T]. Consider the problem {
ż(t) ∈ Az(t) + f1(t)

z(t1) = z1
(15)

and let z1(·) be a solution of (15) on [t1, T]. There exists t2 > t1 such that |z1(t)− z1| < µ for any
t ∈ [t1, t2]. Then, on [t1, t2],

| fy(t)− f1(t)| ≤ w(t, |y(t)− z1(t)|) + |w(t, |y(t)− z1(t)|+ µ)− w(t, |y(t)− z1(t)|) + hy(t) + µ.

Denote Mw(µ) := sup
|x|≤2N

|w(t, |x| + µ) − w(t, |x|)| and let z(t) := z1(t) on [t1, t2]. Then, z(·) is a

solution of ż(t) ∈ Az(t) + F(t, z(t)) + w(t, µ)B and

| fy(t)− fz(t)| ≤ w(t, |y(t)− z(t)|) + Mw(µ) + hy(t) + µ

on [t1, t2].
Using the same method as above, as in the proof of Lemma 1, we can extend z(·) on the whole

interval I, such that ż(t) ∈ Az(t) + F(t, z(t)) + w(t, µ)B and

| fy(t)− fz(t)| ≤ w(t, |y(t)− z(t)|) + Mw(µ) + hy(t) + µ

for any t ∈ I. Moreover,
∫

I
dist( fz(t), F(t, z(t)))dt ≤

∫
I

w(t, µ) < δ on I. Hence, z(·) is a δ-solution

of (1). Using (4), we get that |y(t)− z(t)| ≤ r(t), where r(·) is the maximal solution of

ṙ(t) ≤ w(t, r(t)) + Mw(ε) + hy(t) + ε, r(t0) = 0.

Now, let εn ↓ 0 and let (xn(·)) be a sequence of εn-solutions of (1), constructed as above,
with ( fn(·)) the corresponding sequence of pseudoderivatives. Then

|xn(t)− xn+1(t)| ≤ rn(t)

and
| fn(t)− fn+1(t)| ≤ w(t, rn(t)) + Mw(εn) + hn+1(t) + εn,
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where rn(·) is the maximal solution of

ṙn(t) ≤ w(t, rn(t)) + Mw(εn) + hn+1(t), rn(t0) = 0.

Due to the definitions of Mw(εn) and since w(·, ·) is Perron, one can choose (εn) such

that
∞

∑
n=1
|xn(t) − xn+1(t)| converges uniformly to 0 and ( fn(·)) converges L1-strongly. Therefore,

lim
n→∞

xn(t) = x(t) and lim
n→∞

fn(t) = f (t). Then f (t) ∈ F(t, x(t)) since F(·, ·) is almost continuous and

ẋ(t) ∈ Ax(t) + f (t) with x(t0) = x0. Therefore, x(·) is an integral solution of (1).
To prove the second part of the theorem, let δ > 0. Let z(·) be a limit solution of (1). Therefore,

for any ε > 0 there exists an ε-solution zε(·) such that |z(t)− zε(t)| < ε for t ∈ I. As in the first part
of the proof starting from zε(·), we can choose εn ↓ 0 with ε1 = ε such that there exists an integral
solution x(·) of (1) with |x(t)− zε(t)| < δ on I. Hence, |z(t)− x(t)| < ε + δ for any t ∈ I. The proof
is completed.

We refer the reader to ([4], pp. 25–27), where the author gives one example of nonexistence of
solutions even when X = Rn. In this case, the set of limit solutions is nonempty and closed.

In [4] it is also studied another example where the solution set of

ẋ(t) ∈ Ax(t) + K, x(t0) = x0 ∈ D(A),

with K convex compact, is not closed. In this case, since the multivalued term is constant, due to
Theorem 3, the set of integral solutions is nonempty and dense in the set of limit solutions.

Remark 3. Consider the relaxed problem (6). The solution set of this problem is not closed, in general. We are
not able to prove that it is contained in the set of limit solutions of (1), even if F(t, ·) is Lipshitz continuous.
Nevertheless, if the solution set of (1) is dense in the solution set of (6), then every relaxed solution is also a
limit solution. We refer the reader to [16,17], where this type of relaxation theorems are proved in Banach spaces
with some additional properties. In our opinion, the limit solution set is more adequate, because it is compact
and, under mild assumptions, it is the closure of the solution set of (1).

Definition 4. (see, e.g., [18]) The m-dissipative operator A is said to be of complete continuous type if for
every a < b and every ( fn(·)) in L1(a, b; X) and (xn(·)) in C([a, b], X), with xn(·) a solution on [a, b] of
ẋn(t) ∈ Axn(t) + fn(t), n = 1, 2, . . ., limn→∞ fn = f weakly in L1(a, b; X) and limn→∞ xn = x uniformly
in C([a, b], X), it follows that x is a solution on [a, b] of

ẋ(t) ∈ Ax(t) + f (t).

We need the following assumption:

Hypothesis 4 (H4). F(·, ·) has nonempty convex weakly compact values.

We give now sufficient conditions that the limit solutions to be integral ones.

Theorem 4. Let A be of complete continuous type. If (H1)–(H4) hold, then every limit solution of (1) is also
an integral solution of (1).

Proof. Let (xn(·)) be a sequence of εn–solutions of (1) with εn ↓ 0 such that lim
n→∞

xn(t) = x(t) uniformly

on I. Consequently, the set M =
⋃
t∈I

∞⋃
n=1

{xn(t)} is compact. Denote by ( fn(·)) the corresponding

sequence of pseudoderivatives, hence
∫

I
dist( fn(t), F(t, xn(t)))dt ≤ εn for any natural n. Let f̄n(·) ∈
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L1(I; X) be such that f̄n(t) ∈ F(t, xn(t)) and | fn(t)− f̄n(t)| ≤
3
2

dist( fn(t), F(t, xn(t))) for a.a. t ∈ I.

Take yn(·) the solutions of
ẏn(t) ∈ Ayn(t) + f̄n(t), yn(t0) = x0.

Due to (4), |xn(t)− yn(t)| ≤
∫ t

t0

| fn(t)− f̄n(t)|dt ≤ 3
2

εn. Consequently, (yn(·)) converges uniformly

to x(·).
On the other hand, since F(·, ·) is almost continuous, for any ε > 0 there exists a compact set Iε ⊂ I

with meas(I \ Iε) ≤ ε such that F|Iε×X is continuous. Therefore, F : Iε × X ⇒ Xw is also continuous.

Here Xw is X endowed with the weak topology. Due to (H4), the set Kε := co(
⋃

t∈Iε

∞⋃
n=1

F(t, xn(t))) is

weakly compact. We have that f̄n(t) ∈ Kε on Iε. Moreover, since ( f̄n(·)) is uniformly integrable, it is
relatively weakly compact. Then, passing to subsequences, f̄n(·)→ f (·) weakly in L1(I; X). Moreover,
as F(·, ·) is almost continuous, f (t) ∈ F(t, x(t)) a.e. on I.

Finally, since A is of complete continuous type, we get that x(·) is the solution of

ẋ(t) ∈ Ax(t) + f (t), x(t0) = x0.

The proof is therefore complete.

2.3. m–Dissipative Inclusions with Compact Semigroup

In this section, we will study the differential inclusion (1) under the following additional
assumption on A.

(A) The semigroup {S(·); t ≥ 0} is compact, i.e., S(t) is a compact operator for every t > 0.

Since ‖F(t, x(T))‖ ≤ N for every solution x(·) of (5) the following result is a consequence of ([4],
Lemma 3.1).

Lemma 4. Under hypotheses (H1)–(H3) and (A), the set of integral solutions of (1) is C(I, X) precompact
(if nonempty).

Notice also the following theorem which is proved in [19].

Theorem 5. Let F(·, ·) be almost LSC with closed bounded values and let X be a separable Banach space.
Under hypotheses (H2) and (A), the set of integral solutions of (1) is nonempty.

As a corollary, one can prove the following variant of Filippov–Pliś Lemma (see ([16], Theorem 3)
for the separable case).

Proposition 1. Assume (H1)–(H3) and (A). Let x(·) be an integral solution of the Cauchy problem

ẋ(t) ∈ Ax(t) + fx(t), x(t0) = x0 ∈ D(A),

on I, where dist( fx(t); F(t, x(t))) ≤ g(t) for all t ∈ I and g ∈ L1(t0, T;R+). Then for any ε > 0 and any
y0 ∈ D(A), there exists a solution y(·) of the Cauchy problem (1) on I with x0 replaced by y0 such that

|x(t)− y(t)| ≤ v(t) + ε,

for all t ∈ I, where v(·) is the maximal solution of the scalar differential equation v̇(t) = w(t, v(t)) +
g(t), v(t0) = |x0 − y0|, on I.

We are ready to prove the following interesting result.
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Theorem 6. Under hypotheses (H1)–(H3) and (A), the set of integral solutions of (1) is dense in the set of limit
solutions of (1).

Proof. Let x(·) be a limit solution of (1) on I. Then there exists a sequence (xn(·)) of εn–solutions of
(1) with εn ↓ 0 such that lim

n→∞
|xn(t)− x(t)| = 0 uniformly on I. Then, for any natural n, xn(·) is a

solution of ẋn(t) ∈ Axn(t) + fn(t), where dist( fn(t); F(t, xn(t)) = gn(t) with 0 < gn(t) ≤ 2N on I and∫
I

gn(t)dt ≤ εn. Due to Proposition 1, to every n there exists a solution yn(·) of (1) such that

|xn(t)− yn(t)| ≤ vn(t) +
ε

2n ,

where vn(·) is the maximal solution of the scalar differential equation v̇(t) = w(t, v(t)) + gn(t), v(t0) = 0,
on I. From Lemma 1, we have that lim

n→∞
vn(t) = 0 uniformly on I. Consequently, lim

n→∞
|xn(t)− yn(t)| = 0

uniformly on I, i.e., x(t) = lim
n→∞

yn(t) uniformly on I.

2.4. Example

The following example is a modification of ([20], Example) and ([16], Example 1).
Let Ω ⊂ Rn with n ≥ 4 be a domain with smooth boundary ∂Ω. Define ϕ(r) = |r|γ−1r for r 6= 0

and 0 < γ <
n− 2

n
. We consider the following system:


ut ∈ ∆ϕ(u) + G(t, y, u)

−∂ϕ(u)
∂ν

∈ β(u) on (0, T)× ∂Ω

u(0, y) = u0(y).

Here, u ∈ R,
∂ϕ(u)

∂ν
is the outward normal derivative on ∂Ω and β(·) is a maximal monotone graph in

R with β(0) 3 0. The multifunction G has nonempty compact values, is measurable on all variables
and continuous on the third one.

Define the operator B in L1(Ω) by

Bu = ∆ϕ(u), for u ∈ D(B), where

D(B) = {u ∈ L1(Ω); ϕ(u) ∈W1,1(Ω), ∆ϕ(u) ∈ L1(Ω), −∂ϕ(u)
∂ν

∈ β(u) on ∂Ω}.

The derivatives here are understood in the sense of distributions.
As it is shown in ([4], p. 97), the operator B defined above is m-dissipative in L1(Ω) and generates

a noncompact semigroup. Notice that in [4] the author works with m-accretive operators A; however A
is m-dissipative iff −A is m-accretive.

Let
F(t, x) = { f ∈ L1(Ω); f (y) ∈ G(t, y, x(t, y)) a.e. in Ω},

which is jointly measurable and continuous on x. We assume also that there exists h ∈ L1([0, T]) such
that ‖F(t, x)‖ ≤ h(t)(1 + |x|). Let x0 = u(·) ∈ D(B). Therefore (H1), (H2) hold true.

Suppose also that there exists a Perron function w(·, ·) such that for every x, z ∈ Ω and every
f ∈ F(t, x) there exists g ∈ F(t, z) such that∫

Ω+(x→z)
( f (y)− g(y))dy−

∫
Ω−(x→z)

( f (y)− g(y))dy

±
∫

Ω0(x→z)
( f (y)− g(y))dy ≤ w

(
t,
∫

Ω
| f (y)− g(y)|

)
dy.
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Here, Ω+(−,0)
x→y = {y ∈ Ω; f (y) > g(y)(<,=)}. It follows from the characterization of [·, ·]+ (see,

e.g., [21], Example 1.4.3) that (H3) also hold true.

In the case when γ >
n− 2

n
the operator B generates a compact semigroup and it is of complete

continuous type.

2.5. Applications to Optimal Control

Our results can be applied to the following optimal control problem:

min
{

g(x(T)) +
∫ T

t0

f (t, x(t))dt
}

, (16)

where x(·) is a solution of (1). Here, f (·, ·) is Carathéodory and integrally bounded on the bounded
sets and the function g : X → R is assumed to be lower semicontinuous.

Assume (H1)–(H3) and (A). In this case, the limit solution set of (1) is compact and moreover,
the set of integral solutions of (1) is dense in the set of limit solutions (see Theorem 6 and Lemma 4).

Clearly, in general, the problem (16) has no optimal solution.

Theorem 7. Under the above conditions, the problem (16) admits an optimal limit solution.

Proof. The functional x(·)→
∫ T

t0

f (t, x(t))dt is continuous from C(I, X) into R. Furthermore, x(·)→

g(x(T)) is lower semicontinuous. Consequently, the functional J(x(·)) = g(x(T)) +
∫ T

t0

f (t, x(t))dt is

lower semicontinuous from C(I, X) into R. The proof follows from the facts that the limit solution set
is C(I, X) compact and every lower semicontinuous real valued function attains its minimum on a
compact set.

3. Conclusions

As we pointed out, the theory of parabolic differential equations and inclusions written in
the abstract operator form is growing rapidly. We refer the reader to [1–3] for the theory of PDE
and their investigations as abstract equations. Especially the multivalued evolution equations are
comprehensively studied in [4,5,18]. In the book by [5], the authors study differential inclusions in
evolution (Gelfand) triple. The authors provide many interesting results and examples. In that case,
the compactness assumptions are crucially used. In [17], the author prove relaxation theorem in
that case.

In [4], the author restricted the study to Banach spaces with uniformly convex duals and A
generating a compact semigroup, or he used compactness-type assumptions regarding the Kuratowski
(or Hausdorff) measure of noncompactness. In that case, every limit solution is also an integral one.
That implies that our existence results extend the existence result there. Notice also [19] where lower
semicontinuous perturbations of m-dissipative operators are considered. The existence theorem there
is used in the proof of Theorem 6 in this paper. We recall also the book by [18], devoted to nonlocal
problems of evolution inclusions with time lag. The main assumptions there are that A is completely
continuous and generates a compact semigroup. We mention also [22] where functional evolution
inclusions are studied.

In [12], the author uses full Perron condition in the case of ordinary differential inclusions in
Banach spaces. The author assumes that the multifunction F has strongly compact values.

The one-sided Perron condition as used here was introduced in [23]. Using integral representation
of the solutions the author defined the so-called weak solutions (which are developed in [8]). Here the
integral representation of the solution does not hold when A is nonlinear and we use limit solutions.
The case of a Banach space with uniformly convex dual was studied in [13] where it was shown
that if F has compact values, then the solution set of (1) is compact Rδ and a relaxation theorem has
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been proved. No other compactness conditions were used. The paper [14] was devoted to Lemma
of Filippov–Pliś. The papers [15,16] study the problem (1) in the case when the Banach space has
uniformly convex dual.

In the present paper we introduce the so-called limit solutions for the fully nonlinear evolution
inclusion (1) and we study their properties. In general, the limit solutions of (1) are not solutions of the
relaxed system (6).

(a) The set of limit solutions is nonempty and always C(I, X) closed when the right hand side F
is almost continuous with closed bounded values and one-sided Perron in the state variable.
Furthermore, every integral solution is also a limit solution.

(b) The set of limit solutions is the closure of the set of integral solutions when F(t, ·) is full Perron
or A generates a compact semigroup. In the last case every control problem admits an optimal
limit solution. We extend the existence and relaxation results of [4,5,15,16].

(c) The existence of limit solutions can be also shown for a large class of evolution inclusions.

It appears that the notion of limit solutions is meaningful and it deserves further investigations.

Author Contributions: Conceptualization, methodology, investigation, writing–original draft preparation,
writing–review and editing, T.D., S.B., O.C., N.J. and A.I.L. All authors contributed equally in writing this
article. All authors have read and agreed to the published version of the manuscript.

Funding: The work of A. I. Lazu was supported by a grant of Romanian Ministry of Research and Innovation,
CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2016-0868, within PNCDI III. The work of the other authors
was supported by the Bulgarian National Science Fund under Project KP-06-N32/7.

Acknowledgments: The authors thank the reviewers for their valuable comments and suggestions which
improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces; Springer: New York, NY, USA, 2010.
2. Ito, K.; Kappel, F. Evolution Equations and Approximations; World Scientific: Singapore, 2002.
3. Roubicek, T. Nonlinear Partial Differential Equations with Applications; Birkhauser: Basel, Switzerland, 2005.
4. Bothe, D. Nonlinear Evolutions in Banach Spaces; Habilitationsschritt: Paderborn, Germany, 1999.
5. Hu, S.; Papageorgiou, N. Handbook of Multivalued Analysis Volume II Applications; Kluwer: Dordrecht,

The Netherlands, 2000.
6. Lakshmikantham, V.; Leela, S. Nonlinear Differential Equations in Abstract Spaces; Pergamon Press: Oxford,

UK, 1981.
7. Benilan, P. Solutions intégrales d’équations d’évolution dans un espace de Banach. C. R. Acad. Sci. Paris Ser.

1972, A-B 274, A47–A50.
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