# Δ-Convergence of Products of Operators in p-Uniformly Convex Metric Spaces

## Abstract

**:**

## 1. Introduction

## 2. Geodesic Metric Spaces

#### 2.1. p-Uniformly Convex Metric Spaces

**Example**

**1.**

#### 2.2. $\Delta $-Convergence in Geodesic Metric Spaces

**Proposition**

**1**

- (i)
- The asymptotic center of $\left\{{x}_{n}\right\}$ has only one point.
- (ii)
- $\left\{{x}_{n}\right\}$ has a Δ-cluster point.

**Lemma**

**1**

## 3. $\Delta $-Convergence Results

**Example**

**2.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

**Lemma**

**4.**

**Lemma**

**5.**

**Proof.**

**Example**

**3.**

**Theorem**

**1.**

**Proof.**

**Lemma**

**6.**

**Proof.**

**Theorem**

**2.**

## Funding

## Conflicts of Interest

## References

- Ariza-Ruiz, D.; López-Acedo, G.; Nicolae, A. The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl.
**2015**, 167, 409–429. [Google Scholar] [CrossRef] [Green Version] - Auslender, A. Méthodes Numériques pour la Résolution des Problèmes d’Optimisation avec Constraintes. Master’s Thesis, Faculté des Sciences, University of Grenoble, Grenoble, France, 1969. [Google Scholar]
- Bačák, M.; Searston, I.; Sims, B. Alternating projections in CAT(0) spaces. J. Math. Anal. Appl.
**2012**, 385, 599–607. [Google Scholar] [CrossRef] [Green Version] - Bauschke, H.H.; Borwein, J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev.
**1996**, 38, 367–426. [Google Scholar] [CrossRef] [Green Version] - Bauschke, H.H.; Matoušková, E.; Reich, S. Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal.
**2004**, 56, 15–738. [Google Scholar] [CrossRef] - Brègman, L.M. Finding the common point of convex sets by the method of successive projection. Dokl. Akad. Nauk SSSR
**1965**, 162, 487–490. (In Russian) [Google Scholar] - Choi, B.J. Δ-convergences of weighted average projections in CAT(κ) spaces. J. Aust. Math. Soc.
**2020**. accept. [Google Scholar] - Choi, B.J.; Ji, U.C.; Lim, Y. Convergences of alternating projections in CAT(κ) spaces. Constr. Approx.
**2018**, 47, 391–405. [Google Scholar] [CrossRef] - Choi, B.J.; Ji, U.C.; Lim, Y. Convex feasibility problems on uniformly convex metric spaces. Optim. Methods Softw.
**2020**, 35, 21–36. [Google Scholar] [CrossRef] - Combettes, P.L. Hilbertian convex feasibility problem: Convergence of projection methods. Appl. Math. Optim.
**1997**, 35, 311–330. [Google Scholar] [CrossRef] - Hundal, H.S. An alternating projection that does not converge in norm. Nonlinear Anal.
**2004**, 57, 35–61. [Google Scholar] [CrossRef] - von Neumann, J. Functional Operators II: The Geometry of Orthogonal Spaces; Annals of Mathematics Studies 22; Princeton University Press: Princeton, NJ, USA, 1950. [Google Scholar]
- Ćirić, L.; Rafiq, A.; Radenović, S.; Rajović, M.; Ume, J.S. On Mann implicit iterations for strongly accretive and strongly pseudo-contractive mappings. Appl. Math. Comput.
**2008**, 198, 128–137. [Google Scholar] [CrossRef] - Malkowsky, E.; Rakočević, V. Advanced Functional Analysis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Bačák, M. Convex Analysis and Optimization in Hadamard Spaces; De Gruyter Series in Nonlinear Analysis and Applications; 22 De Gruyter: Berlin, Germany, 2014. [Google Scholar]
- Kuwae, K. Jensen’s inequality on convex spaces. Calc. Var. Part. Differ. Equ.
**2014**, 49, 1359–1378. [Google Scholar] [CrossRef] - Naor, A.; Silberman, L. Poincaré inequalities, embeddings, and wild groups. Compos. Math.
**2011**, 147, 1546–1572. [Google Scholar] [CrossRef] [Green Version] - Ohta, S. Convexities of metric spaces. Geom. Dedicata
**2007**, 125, 225–250. [Google Scholar] [CrossRef] - Lim, T.C. Remarks on some fixed point theorems. Proc. Am. Math. Soc.
**1976**, 60, 179–182. [Google Scholar] [CrossRef] - He, J.S.; Fang, D.H.; López, G.; Li, C. Mann’s algorithm for nonexpansive mappings in CAT(κ) spaces. Nonlinear Anal.
**2012**, 75, 445–452. [Google Scholar] [CrossRef] - Kirk, W.A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal.
**2008**, 68, 3689–3696. [Google Scholar] [CrossRef] - Bačák, M.; Reich, S. The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl.
**2014**, 16, 189–202. [Google Scholar] [CrossRef] [Green Version] - Espínola, R.; Fernández-León, A. CAT(κ)-spaces, weak convergence and fixed points. J. Math. Anal. Appl.
**2009**, 353, 410–427. [Google Scholar] [CrossRef] [Green Version] - Reich, S.; Salinas, Z. Weak convergence of infinite products of operators in Hadamard spaces. Rend. Circ. Mater. Palermo
**2016**, 65, 55–71. [Google Scholar] [CrossRef] - Kimura, Y.; Satô, K. Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one. Fixed Point Theory Appl.
**2013**, 2013, 7. [Google Scholar] [CrossRef] [Green Version]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Choi, B.J.
Δ-Convergence of Products of Operators in *p*-Uniformly Convex Metric Spaces. *Mathematics* **2020**, *8*, 741.
https://doi.org/10.3390/math8050741

**AMA Style**

Choi BJ.
Δ-Convergence of Products of Operators in *p*-Uniformly Convex Metric Spaces. *Mathematics*. 2020; 8(5):741.
https://doi.org/10.3390/math8050741

**Chicago/Turabian Style**

Choi, Byoung Jin.
2020. "Δ-Convergence of Products of Operators in *p*-Uniformly Convex Metric Spaces" *Mathematics* 8, no. 5: 741.
https://doi.org/10.3390/math8050741