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Abstract: This paper deals with a complex optimization problem, more specifically the two-stage
transportation problem with fixed costs. In our investigated transportation problem, we are modeling
a distribution network in a two-stage supply chain. The considered two-stage supply chain includes
manufacturers, distribution centers, and customers, and its principal feature is that in addition to
the variable transportation costs, we have fixed costs for the opening of the distribution centers, as
well as associated with the routes. In this paper, we describe a different approach for solving the
problem, which is an effective hybrid genetic algorithm. Our proposed hybrid genetic algorithm is
constructed to fit the challenges of the investigated supply chain network design problem, and it
is achieved by incorporating a linear programming optimization problem within the framework of
a genetic algorithm. Our achieved computational results are compared with the existing solution
approaches on a set of 150 benchmark instances from the literature and on a set of 50 new randomly
generated instances of larger sizes. The outputs proved that we have developed a very competitive
approach as compared to the methods that one can find in the literature.

Keywords: artificial intelligence; two-stage supply chain network design with fixed costs; mixed
integer programming model; hybrid algorithms; genetic algorithms

1. Introduction

Supply chains (SCs) are considered to be worldwide networks in which the actors are: suppliers,
manufacturer plants, distribution centers (DCs), retailers, and customers, and their principal objective
is the fulfillment of the customer needs. In order to obtain an effective management of SC systems,
researchers have emphasized the transportation system design, as it plays a significant role within the
SC. A supply chain is represented usually as a multi-level structure, while its optimal design has been
acknowledged to be an NP-hard problem. For more information on supply chain network design,
we refer to Govindan et al. [1], Klibi et al. [2], Melo et al. [3], Wang [4], Dotoli [5,6], etc.

The goal of a transportation model is to minimize the total cost in transporting goods from a set
of sources to a set of destinations, fulfilling the request of the destinations and using the capacities of
the sources. In practical applications, fixed costs are associated with the arcs connecting sources to
destinations, supplementary to the variable transportation costs, which are proportional to the amount
of goods distributed along the arcs, resulting in a problem known in the literature as the fixed cost
transportation problem (FCTP). Obviously, FCTP is a generalization of the classical transportation
problem, and it was introduced by Balinski [7]. Guisewite and Pardalos [8] showed that the FCTP is
NP-hard. For more information on the FCTP including a review of exact and heuristic approaches
developed for solving the problem, we refer to Buson et al. [9].
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This paper focuses on a variation of the fixed cost transportation problem in a supply chain
network, namely the two-stage supply chain network design problem in which we consider two kinds
of fixed costs: ones for opening the DCs and the others associated with the routes between
manufacturers and DCs and between DCs and customers. In the form considered in our paper,
the two-stage supply chain network design problem with fixed costs (TSSCNDP-FC) was defined by
Hong et al. [10]. The same authors proposed an integer linear programming model of the problem,
as well as a solution approach based on ant colony optimization tested on a set of 150 instances
split into three classes: small, medium, and large sized instances. Recently, Sabo et al. [11] described
a valid model of the problem and pointed out some inaccuracies regarding the paper published by
Hong et al. [10].

Some other two-stage transportation problems with fixed costs considered in the literature and
related to the investigated problem are:

• The two-stage transportation problem with fixed costs associated with the routes: Raj and
Rajendran [12] proposed two scenarios of the two-stage transportation problem: the first one,
called Scenario 1, takes into consideration fixed costs associated with the routes in addition to unit
transportation costs and boundless capacities of the DCs, while the second one, called Scenario
2, considers the opening costs of the DCs in addition to unit transportation costs. The same
authors developed a genetic algorithm (GA) with a particular coding scheme applicable for
two-stage transportation problems, and also, they provided a set of 20 benchmark instances.
Another GA dealing with the two-stage transportation problem with fixed charge associated
with the routes from plants to customers through DCs was proposed by Jawahar and Balaji [13].
Pop et al. [14] proposed a hybrid method that combines a steady-state GA with a powerful local
search procedure. Cosma et al. [15] described an efficient multi-start iterated local search (ILS)
procedure for the total transportation cost minimization of the two-stage transportation problem,
which begins with a feasible solution of the problem, makes use of a local search procedure with
the goal of increasing the exploration, a perturbation mechanism, and a neighborhood operator
with the scope of diversifying the search.

• The two-stage transportation problem with fixed costs for opening the distribution centers
(DCs): This two-stage transportation problem was introduced by Gen et al. [16]. The present
literature regarding the two-stage transportation problem with fixed costs for opening the DCs is
rather limited. This optimization problem has also been investigated by Raj and Rajendran [12],
who called it Scenario 2. Calvete et al. [17] proposed a hybrid evolutionary algorithm whose
principal characteristic is the employment of a chromosome encoding that offers information
about the DCs used within the transportation system. Cosma et al. [18] described an effective
heuristic algorithm that reduces the solution search space to a subspace with a reasonable size,
without losing optimal or sub-optimal solutions by means of a perturbation mechanism that
allows the reconsideration of the feasible solutions that are discarded and that might lead to such
solutions. Lately, Cosma et al. [19] proposed a matheuristic approach for solving the two-stage
transportation problem with fixed costs associated with the routes by incorporating a linear
programming optimization problem within the framework of a genetic algorithm.

• A particular case is where there exists only one plant manufacturer, and this version was
considered by Molla et al. [20]. They proposed an integer linear programming mathematical model
of the problem, and in addition, they described two solution approaches for solving it: a spanning
tree-based genetic algorithm with a Prüfer number representation and an artificial immune
algorithm. Some remarks regarding the mathematical model of the problem were published by
El-Sherbiny [21]. Pintea et al. [22] proposed some hybrid algorithms, and Pintea and Pop [23]
described an efficient hybrid approach combining the nearest neighbor search heuristic with
a local search procedure for solving this particular two-stage transportation problem with fixed
costs. Pop et al. [24] developed an innovative hybrid heuristic method achieved by combining
a genetic algorithm based on a hash table coding of the individuals with a powerful local search
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procedure. Recently, Cosma et al. [25] described an effective hybrid heuristic approach that
builds an initial feasible solution, then uses a local search procedure whose goal is to increase the
exploration and a neighborhood structure for diversifying the search.

• Another two-stage transportation problem takes into consideration its effect on the environment
by reducing the greenhouse gas emissions and was introduced by Santibanez-Gonzales [26]
for dealing with a practical application from the public sector. For this version of the problem,
Pintea et al. [27] described a set of hybrid heuristic methods, and Pop et al. [28] proposed an
effective reverse distribution system for solving it.

As we can observe, the investigated supply chain network design problem generalizes the
previously mentioned transportation problems by considering simultaneously two types of fixed costs:
ones associated with the transportation routes and the others for opening the DCs in addition to the
variable transportation costs, which are proportional to the amount of goods distributed along the arcs.

We organize the remainder of the paper as follows: in Section 2, we define the investigated
two-stage supply chain problem with fixed costs and present a set of notations that will be used
throughout the paper, and in Section 3, we describe a mixed integer linear formulation of the problem.
The novel hybrid method, which incorporates a linear programming problem within the framework of
a genetic algorithm, is presented in Section 4, and the comprehensive computational experiments with
their outcomes are showcased and analyzed in Section 5. Finally, we conclude our work and discuss
our plans for future work in Section 6.

2. Definition of the Two-Stage Supply Chain Network Design Problem with Fixed Costs for
Opening the Distribution Centers and Transportation Routes

In order to define and model the two-stage supply chain network design problem with fixed costs
for opening the DCs and transportation routes, we consider a tripartite directed graph G = (V, A) that
consists of a set of vertices V = V1 ∪V2 ∪V3 and a set of arcs A = A1 ∪ A2 defined as follows:

A1 = {(i, j) | i ∈ V1 and j ∈ V2} and A2 = {(j, k) | j ∈ V2 and k ∈ V3}

The entire set of nodes V is partitioned into three mutually exclusive sets corresponding to the
set of manufacturers denoted by V1 with |V1| = m, the set of distribution centers denoted by V2 with
|V2| = d, and the set of customers denoted by V3 with |V3| = r.

In addition, we suppose that:

• Every manufacturer i ∈ V1 has Si units of supply; every distribution center j ∈ V2 has a given
capacity SCj; each customer k ∈ V3 has a demand Dk;

• Every manufacturer may transport to any of the q distribution centers at a transportation cost c
′
ij

per unit from manufacturer i ∈ V1 to DC j ∈ V2;
• Every DC may transport to any of the r customers at a transportation cost c

′′
jk per unit from DC

j ∈ V2 to customer k ∈ V3;
• In order to open any of the DCs, we have to pay a given fixed cost denoted by f j, and there

exist fixed transportation costs from each manufacturer to each distribution center, denoted by
f ′ij, where i ∈ V1 and j ∈ V2, and from each DC to each customer, denoted by f ′′jk, where j ∈ V2

and k ∈ V3.

The aim of the two-stage supply chain network design problem with fixed costs associated with
the transportation routes and for opening the DCs is to select the DCs and the routes to be opened and
the corresponding transported quantities on these routes, such that the demands of the customers are
satisfied, all transportation restrictions are fulfilled, and the total transportation costs are minimized.

Figure 1 illustrates the two-stage supply chain network design problem with fixed costs that
we investigated.
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Figure 1. Illustration of the two-stage supply chain network design problem with fixed costs.

3. A Valid Mathematical Model of the Two-Stage Supply Chain Network Design Problem with
Fixed Costs

In this section, we present a valid mathematical formulation based on mixed integer programming
of the investigated two-stage supply chain network design problem with fixed costs associated with
the transportation routes and for opening the DCs.

We introduce the following decision variables:

• Linear variables:

– x′ij, specifying the number of units shipped from plant i to the DC j;
– x′′jk, specifying the number of units shipped from DC j to the customer k;

• Binary variables:

– y′ij, specifying if there are units transported from manufacturer plant i to the DC j (y′ij = 1, if
x′ij > 0, and y′ij = 0, otherwise);

– y′′jk, specifying if there are units transported from DC j to the customer k (y′′jk = 1, if x′′jk > 0,
and y′′jk = 0, otherwise);

– zj, specifying if the DC j is open (zj = 1, if the DC j is open, and zj = 0, otherwise).

Then, the two-stage supply chain network design problem with fixed costs can be formulated as
the following mixed integer problem, described by Sabo et al. [11]:
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Z = min
m

∑
i=1

d

∑
j=1

(c′ijx
′
ij + f ′ijy

′
ij) +

d

∑
j=1

r

∑
k=1

(c′′jkx′′jk + f ′′jky′′jk) +
d

∑
j=1

f jzj (1)

s.t.
d

∑
j=1

x′ij ≤ Si, ∀ i ∈ V1 (2)

d

∑
j=1

x′′jk = Dk, ∀ k ∈ V3 (3)

m

∑
i=1

x′ij =
r

∑
k=1

x′′jk, ∀ j ∈ V2 (4)

r

∑
k=1

x′′jk ≤ SCj · zj, ∀ j ∈ V2 (5)

x′ij ≥ 0, ∀ i ∈ V1, ∀ j ∈ V2 (6)

x′′jk ≥ 0, ∀ j ∈ V2, ∀ k ∈ V3 (7)

y′ij ∈ {0, 1}, ∀i ∈ V1, ∀ j ∈ V2 (8)

y′′jk ∈ {0, 1}, ∀j ∈ V2, ∀ k ∈ V3 (9)

zj ∈ {0, 1}, ∀ j ∈ V2 (10)

Our objective is to minimize the total transportation cost including the unit transportation costs
and the fixed costs (for opening DC’s and associated with the routes). Constraint (2) guarantees that the
capacity of the manufacturers is not surpassed. Constraint (3) guarantees that the customers demands
are fulfilled. Constraint (4) is the flow conservation conditions and assures that the units collected by
a given distribution center from manufacturers are equal to the units transported from that distribution
center to the customers. Constraint (5) guarantees that the storage capacities of the distribution centers
are not surpassed. Finally, the last constraint sets the ranges of the decision variables.

Hong et al. [10] described an illustrative example consisting of 2 manufacturing plants, 4 DCs,
and 6 customers, whose characteristics are presented in Figure 2.

Figure 2. The characteristics of the example described by Hong et al. [10].

We solved this example using our proposed mixed integer programming formulation of the
problem with CPLEX Version 12.7.0, and in Figure 3, we present the obtained optimal solution.
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Figure 3. An illustrative example of the of the two-stage supply chain network design problem with
fixed costs and the obtained optimal solution.

In Figure 3, we point out the capacities of the manufacturers, the storage capacities of the DCs,
the demands of the customers, the transportation costs, and with red color, the fixed costs for opening
the DCs and fixed costs associated with the selected transportation routes.

In order to obtain the optimal solution for this example, using our model by means of CPLEX
only took 0.05 s and 30 iterations, in contrast to the model proposed by Hong et al. [10], which used the
LINGO solver in order to find the optimal solution of a cost of 449,050 within 93 iterations, and their
proposed ant colony approach, which provided an suboptimal solution cost of 476,138 within 0.24 s.

4. Description of the Novel Solution Approach

To solve TSSCNDP-FC, we propose a genetic algorithm, hybridized with a linear programming
procedure. Genetic algorithms (GAs) were introduced by Holland [29] and are search metaheuristic
techniques inspired by the Darwinian evolutionary theory based on the “survival of the fittest” concept.
GAs have the capability to deliver “good” sub-optimal solutions within reasonable computational
running times, making them very attractive for solving optimization problems characterized by a large
feasible solution space. A genetic algorithm begins with a collection of feasible solutions, called the
initial population, which are represented by chromosomes. Solutions from the current population
are selected and employed to compose a new population. This is motivated by the belief that the
newly created population will be better than the old one in terms of the quality of the solutions.
The solutions that are picked to generate the offspring are selected according to their fitness; the more
appropriate they are, the more opportunities they have to reproduce. This is repeated until some
criteria (for example, the number of populations, improvement of the best solution, etc.) are fulfilled.

Our genetic algorithm builds different breeds of chromosomes that evolve separately from random
populations, until evolution stagnates. Then, the breeds are merged together, hoping that the newly
formed hybrid chromosomes will be better.

The operating principle of our hybrid genetic algorithm is shown in Figure 4, and the description
of its blocks are described within this section.
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Figure 4. The operation principle of our proposed hybrid genetic algorithm for solving the two-stage
supply chain network design problem with fixed costs.

The proposed GA makes use of an effective representation in which the genes of the chromosome
represent the estimates of the flows corresponding to the optimal solution of the problem. Therefore,
the chromosome contains two parts: the first one is an m× d matrix associated with the links from
manufacturers to distribution centers, and the second one is a d× r matrix associated with the links
from distribution centers to customers. We denote by x̃′ij the gene corresponding to the link between
manufacturer i and DC j and x̃′′jk the gene corresponding to the link between DC j and customer k.
Initially, the chromosomes are generated randomly, with the only natural conditions that the estimates
must not exceed the capacities of the manufactures, respectively the demands of the customers,
i.e., x̃′ij ∈ [0, Si], for all i ∈ V1 and j ∈ V2, and x̃′′jk ∈ [0, Dk], for all j ∈ V2 and k ∈ V3.

It is unlikely that such a random chromosome would represent a correct estimate of a feasible
solution of the two-stage supply chain network design problem with fixed costs for opening the DCs
and associated with the routes. However, each chromosome has an associated feasible solution that can
be effectively determined by solving the following linear programming problem, which is a simplified
variant of the mathematical model of the TSSCNDP-FC:

min
m

∑
i=1

d

∑
j=1

c̃′ijx
′
ij +

d

∑
j=1

r

∑
k=1

c̃′′jkx′′jk (11)

s.t. (2) − (7)
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where:

c̃′ij =


c′ij +

f ′ij
x̃′ij

+
f j

x̃j
, if x̃′ij 6= 0

c′ij + f ′ij, if x̃′ij = 0 and x̃j 6= 0
c′ij + f ′ij + f j, if x̃′ij = 0 and x̃j = 0

(12)

c̃′′jk =


c′′jk +

f ′′jk
x̃′′jk

+
f j

x̃j
, if x̃′′jk 6= 0

c′′jk + f ′′jk, if x̃′′jk = 0 and x̃j 6= 0
c′′jk + f ′′jk + f j, if x̃′′jk = 0 and x̃j = 0

(13)

x̃j =
m

∑
i=1

x̃′ij +
r

∑
k=1

x̃′′jk (14)

The simplified variant of the mathematical model of the TSSCNDP-FC is actually a minimum cost
flow problem for which there are well-known algorithms that solve it optimally in an efficient manner.
We used the network simplex algorithm for solving this linear programming problem. The cost of the
TSSCNDP-FC solution associated with the considered chromosome can be obtained using Relation (1)
and the flows x′ij and x′′jk determined by solving the simplified variant of the problem.

In order to boost the chances of discovering the optimal solution of the investigated supply chain
problem with fixed costs, we developed a chromosome enhancement procedure shown in Algorithm 1,
that processes all the chromosomes created throughout our genetic algorithm.

Algorithm 1: Procedure Chromosome enhancement

input : chromosome c{x̃′ij, x̃′′jk}
1 z← ∞;
2 repeat
3 Determine the flows x′ij and x′′jk by solving the simplified version of the TSSCNDP-FC (11);

4 Determine the cost z̃ for c’s associated solution, using relation (1);
5 if z̃ < z then
6 z← z̃;
7 s← c;
8 Update c’s genes: x̃′ij ← x′ij, x̃′′jk ← x′′jk;

9 end
10 until z̃ ≥ z or c is a duplicate;
11 c← s;

Each iteration of the loop in the chromosome enhancement procedure involves solving a simplified
model of the TSSCNDP-FC, based on chromosome c (Step 3). The flows x′ij and x′′jk determined in Step
3 are used in Step 4 to calculate the cost of the TSSCNDP-FC solution associated with chromosome c.
If the solution has been improved, then the chromosome genes are updated in Step 8, using the streams
determined in step 3. However, there is no guarantee that each iteration of the algorithm will enhance
the TSSCNDP-FC solution associated with chromosome c. The algorithm stops when the solution
worsens or a duplicate chromosome is reached. Finally, the genes of c are replaced with those of the last
chromosome saved in Step 6. A chromosome c2 is considered a duplicate of c1 if the two chromosomes
have the same corresponding TSSCNDP-FC solution.

For the newly created random chromosomes, the condition in Step 5 is changed to z̃ ≤ z.
This produces cleaner chromosomes in the initial population. Experiments showed that for the other
chromosomes, it was better that the decision remained unchanged, because thus, there would be more
diversity among the offspring.
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In Figure 5, we illustrate the representation of an estimated chromosome associated with the
example provided by Hong et al. [10], whose characteristics were presented in the previous section,
where the entries of the matrix must not overcome the capacities of the manufacturers and the
demands of the customers, and the representation of the chromosome after applying the chromosome
enhancement procedure:

Figure 5. The representation of the estimated chromosome and the enhanced chromosome.

We remark that the chromosome C1 correspond to an unfeasible solution, while the enhanced
chromosome P1 corresponds to a feasible solution of the problem.

For initializing the algorithm, an initial population of 2× (m× d + d× r) enhanced chromosomes
is generated by the random generator block; see Figure 4.

The admission block chooses the chromosomes that will form the current population (generation)
from a pool of chromosomes that can be either from the current population or the offspring resulting
from applying genetic operators (crossover and mutation). The size of each generation is kept constant
at (m × d + d × r)/2 chromosomes. The admission block applies the following rules, which were
adjusted based on computational experiments:

• The first two-thirds of the current population will be completed with the best chromosomes in
the pool. At least half of these chromosomes must be newborn, i.e., not being part of the current
population in the previous stages of evolution.

• The other chromosomes in the current population are randomly chosen from the pool.

Selection is the phase of a GA in which individual chromosomes are selected from a population
for later breeding. Our selection block uses the tournament selection strategy for choosing the
two chromosomes that will be selected to undergo crossover in order to form an offspring. The number
of participants for each tournament was randomly settled between two and 10.

Crossover is a genetic operator that combines the genetic information of two parents in order to
achieve new offspring. Our crossover block groups the chromosomes supplied by the selection block
two-by-two. Then, with each pair, it forms an offspring. Each gene of the offspring is taken with the
same probability either from the first parent or from the second one. The way our proposed crossover
operator works is illustrated in Figure 6.

The chromosomes C1 and C2 in Figure 6 are two random chromosomes associated with the
illustrative example presented in the previous section. By applying the chromosome enhancement
procedure, they are transformed into two new chromosomes denoted by P1 and P2, which are feasible
solutions of the TSSCNDP-FC. The offspring O1 is obtained by applying the crossover operator to
parents P1 and P2, and finally, the enhanced offspring O1e is obtained by applying the enhancement
procedure to O1. We can observe that the enhanced offspring O1e represents a better solution than the
two feasible solutions corresponding to the parents P1 and P2. In Figure 6, we represent with red color
the genes inherited by the offspring O1 from each of the parents P1 and P2.
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Figure 6. The crossover operator.

Mutation is a genetic operator whose main scope is to maintain the diversity of the chromosomes
between consecutive generations of the GA. It is similar to biological mutation and usually happens
with low probability. Our mutation operation was applied with a probability of 1% to each newborn
chromosome. To accomplish this operation, a client k and a set of minimum 1 and maximum d DCs
are randomly chosen. Then, all genes corresponding to the links between the k client and the chosen
DCs are changed as follows: x̃′′jk ← random value[1, Dk]. Then, a DC j and a set of a minimum of one
and a maximum of m manufacturers are randomly chosen. Then, all genes corresponding to the links
between the d DCs and the chosen manufacturers are changed as follows: x̃′ij ← random value ∈ [1, Si].
The way the proposed mutation operator works is depicted in Figure 7.

The chromosome O2 in Figure 7 represents the result of applying the mutation operator to the
offspring O1 presented in Figure 5. In this example, the mutation operator chooses the sixth client and
a group of three DCS (1, 3, and 4), after which, it chooses the fourth DC and only one manufacturer (2).
The enhanced offspring O2e is obtained by applying the enhancement procedure to O2. This actually
represents the optimal solution of the considered TSSCNDP-FC.

The genes of the chromosomes involved in the crossover and mutation examples are presented in
Figure 8. The red entries in the representations of P1 and P2 are the genes inherited by the offspring O1

and in O2 are the genes that are changed by applying the mutation operator.
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Figure 7. The mutation operator.

Figure 8. The genes of the chromosomes involved in the mutation and crossover examples.

The evolution of a chromosome population ends when the best chromosome has not been
improved in the last 25 generations. If a breed pool is available, then it is merged with the current
population, using hybrid selection. The hybrid selection is different from the selection operation
by the fact that it processes chromosomes from two different pools: the current population and the
breed pool. One of the parent chromosomes is selected from the current population, and the other
one is selected from the breed pool. The merging completes when the desired number of newborn
chromosomes has been added to the offspring pool or when the desired number of crossover operations
has been performed.

When the merging operation finishes, the breed pool is replaced with chromosomes taken from
the current population, the existing breed pool, and the offspring. This operation is performed by the
hybrid admission block, which applies the same rules as the admission block.

5. Discussion

This section is dedicated to the achieved computational results with the aim of assessing the
effectiveness of our developed approach for solving the two-stage supply chain network design
problem with fixed costs associated with the transportation routes and for opening the DCs.

We performed our computational experiments for solving the two-stage supply chain problem
with fixed costs associated with the routes and for opening the distribution centers on a set of
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200 instances randomly generated with varying characteristics in the same way as Hong et al. [10]
generated. Since the test instances used by Hong et al. [10] could not be obtained in the literature,
we generated new instances similar to those in Hong et al. [10]: the first 150 test instances classified into
three problem classes: smaller, which consisted of 2 manufacturing plants, 5 DCs, and 10 customers,
medium, which consisted of 4 manufacturing plants, 8 DCs, and 15 customers, and large, which
consisted of 6 manufacturing plants, 10 DCs, and 20 customers. In addition, we generated randomly
50 test instances of the larger size consisting of 8 manufacturing plants, 12 distribution centers,
and 25 customers, respectively 10 manufacturing plants, 15 distribution centers, and 30 customers.
All the instances used in our computational experiments are available in [30].

We coded our algorithm in Java 8, and for each instance, we carried out 10 independent trials,
on a PC with Intel Core i5-4590 3.3GHz, 4GB RAM, and the Windows 10 Education 64 bit operating
system. To solve the proposed mixed integer programming formulation of the problem, we used
CPLEX Version 12.7.0.

Tables 1–5 summarize the computational experiments performed for solving the considered
instances using CPLEX 12.7.0 and the proposed hybrid solution approach.

In Table 1, we present the results obtained by CPLEX and the proposed hybrid genetic algorithm
for solving small instances of the problem. The experimental study implied running each instance
ten times. The first column displays the number of the instance; the next two columns contain the
value of the optimal solution Zopt and the necessary computing time spent in solving the instances
provided by CPLEX. The following six columns contain the results obtained by our hybrid genetic
algorithm: the minimum and the maximum of the objective function achieved in the ten runs of each
instance (Zmin and Zmax), the percentage gap defined as 100× (Zavg. − Zmin)/Zmin, the minimum,
maximum, and average computing times (Tmin, Tmax, and Tavg.) necessary for solving the instances.
Zavg. is the average of the objective function achieved in the ten runs of each instance. The last
column provides the improvement gap of the time necessary to deliver the optimal solution by the
hybrid genetic algorithm in comparison to CPLEX. The improvement time gap is calculated as follows:
100× (TCPLEX − Tavg.)/TCPLEX . The instances are ordered based on these improvements.

Analyzing the results presented in Table 1, we can remark that for all the considered small sized
instances, CPLEX delivered the optimal solutions within a computational time ranging from 0.047
to 0.172 s. Our hybrid solution approach delivered as well the optimal solutions in all ten runs of
each instance and the average computational time spent in solving the instances ranged from 0.000 to
0.009 s. The average improvement gap of the time spent to deliver the optimal solution by the hybrid
genetic algorithm in comparison to CPLEX was greater than 95%.

In Table 2, we present the results obtained by CPLEX and the proposed hybrid genetic algorithm
for solving medium instances of the problem. The columns of Table 2 are similar to those of Table 1,
and we ordered the instances based on the improvement of the time necessary to deliver the optimal
solution by the hybrid genetic algorithm in comparison to CPLEX.

Analyzing the results presented in Table 2, we can remark that for all the considered medium
sized instances, CPLEX delivered the optimal solutions within a computational time ranging from
1.39 to 16.63 s. Our hybrid solution approach delivered as well the optimal solutions in all ten runs
of each instance, i.e., Zmin = Zmax = Zopt, and the average computational time spent in solving the
instances ranged from 0.09 to 3.07 s. The average improvement gap of the time spent to deliver the
optimal solution by the hybrid genetic algorithm in comparison to CPLEX was greater than 87%.
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Table 1. Computational results achieved in the case of small sized instances.

Instance CPLEX Our Proposed Hybrid Genetic Algorithm Improvement

Zopt Tcplex Zmin Zmax % gap Tmin Tmax Tavg. Time (%)

1. 150,787 0.047 150,787 150,787 0.00 0.000 0.000 0.000 100.0
2. 156,654 0.047 156,654 156,654 0.00 0.000 0.000 0.000 100.0
3. 139,811 0.047 139,811 139,811 0.00 0.000 0.000 0.000 100.0
4. 128,859 0.047 128,859 128,859 0.00 0.000 0.000 0.000 100.0
5. 116,637 0.093 116,637 116,637 0.00 0.000 0.015 0.002 98.4
6. 87,694 0.078 87,694 87,694 0.00 0.000 0.016 0.002 97.9
7. 105,420 0.063 105,420 105,420 0.00 0.000 0.015 0.002 97.6
8. 120,077 0.063 120,077 120,077 0.00 0.000 0.015 0.002 97.6
9. 117,590 0.063 117,590 117,590 0.00 0.000 0.016 0.002 97.5
10. 131,233 0.063 131,233 131,233 0.00 0.000 0.016 0.002 97.5
11. 121,411 0.062 121,411 121,411 0.00 0.000 0.016 0.002 97.4
12. 149,525 0.109 149,525 149,525 0.00 0.000 0.016 0.003 97.1
13. 134,591 0.156 134,591 134,591 0.00 0.000 0.016 0.005 97.0
14. 105,047 0.047 105,047 105,047 0.00 0.000 0.015 0.002 96.8
15. 127,184 0.047 127,184 127,184 0.00 0.000 0.015 0.002 96.8
16. 122,630 0.094 122,630 122,630 0.00 0.000 0.016 0.003 96.7
17. 101,722 0.094 101,722 101,722 0.00 0.000 0.016 0.003 96.7
18. 132,593 0.047 132,593 132,593 0.00 0.000 0.016 0.002 96.6
19. 113,976 0.047 113,976 113,976 0.00 0.000 0.016 0.002 96.6
20. 129,436 0.172 129,436 129,436 0.00 0.000 0.016 0.006 96.4
21. 146,078 0.125 146,078 146,078 0.00 0.000 0.016 0.005 96.2
22. 119,627 0.079 119,627 119,627 0.00 0.000 0.016 0.003 96.1
23. 95,845 0.078 95,845 95,845 0.00 0.000 0.016 0.003 96.0
24. 104,190 0.078 104,190 104,190 0.00 0.000 0.016 0.003 95.9
25. 127,869 0.140 127,869 127,869 0.00 0.000 0.016 0.006 95.6
26. 100,451 0.171 100,451 100,451 0.00 0.000 0.016 0.008 95.4
27. 128,253 0.094 128,253 128,253 0.00 0.000 0.016 0.005 95.1
28. 150,379 0.125 150,379 150,379 0.00 0.000 0.016 0.006 95.0
29. 108,942 0.093 108,942 108,942 0.00 0.000 0.016 0.005 94.9
30. 137,955 0.062 137,955 137,955 0.00 0.000 0.016 0.003 94.8
31. 170,119 0.109 170,119 170,119 0.00 0.000 0.016 0.006 94.3
32. 126,603 0.079 126,603 126,603 0.00 0.000 0.016 0.005 94.2
33. 134,653 0.078 134,653 134,653 0.00 0.000 0.016 0.005 94.1
34. 142,559 0.078 142,559 142,559 0.00 0.000 0.016 0.005 94.0
35. 126,611 0.125 126,611 126,611 0.00 0.000 0.032 0.008 93.8
36. 116,869 0.047 116,869 116,869 0.00 0.000 0.015 0.003 93.6
37. 108,201 0.094 108,201 108,201 0.00 0.000 0.016 0.006 93.4
38. 129,005 0.047 129,005 129,005 0.00 0.000 0.016 0.003 93.2
39. 127,997 0.110 127,997 127,997 0.00 0.000 0.016 0.008 92.9
40. 104,891 0.109 104,891 104,891 0.00 0.000 0.047 0.008 92.8
41. 111,104 0.063 111,104 111,104 0.00 0.000 0.016 0.005 92.7
42. 108,001 0.062 108,001 108,001 0.00 0.000 0.016 0.005 92.6
43. 143,700 0.063 143,700 143,700 0.00 0.000 0.016 0.005 92.5
44. 138,510 0.078 138,510 138,510 0.00 0.000 0.016 0.006 92.1
45. 135,101 0.079 135,101 135,101 0.00 0.000 0.016 0.006 92.0
46. 129,854 0.078 129,854 129,854 0.00 0.000 0.016 0.006 91.9
47. 116,670 0.094 116,670 116,670 0.00 0.000 0.016 0.008 91.8
48. 141,467 0.047 141,467 141,467 0.00 0.000 0.016 0.005 90.2
49. 141,306 0.094 141,306 141,306 0.00 0.000 0.031 0.009 90.1
50. 125,550 0.062 125,550 125,550 0.00 0.000 0.016 0.006 90.0
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Table 2. Computational results achieved in the case of medium sized instances.

Instance CPLEX Our Proposed Hybrid Genetic Algorithm Improvement

Zopt Tcplex Zmin Zmax % gap Tmin Tmax Tavg. Time (%)

1. 544,062 11.86 544,062 544,062 0.00 0.05 0.42 0.13 98.90
2. 552,793 3.44 552,793 552,793 0.00 0.05 0.13 0.09 97.43
3. 581,825 2.25 581,825 581,825 0.00 0.05 0.11 0.09 95.93
4. 558,047 3.66 558,047 558,047 0.00 0.05 0.62 0.17 95.43
5. 524,346 6.53 524,346 524,346 0.00 0.06 0.51 0.30 95.33
6. 536,344 3.00 536,344 536,344 0.00 0.05 0.65 0.15 95.08
7. 496,753 11.83 496,753 496,753 0.00 0.08 1.93 0.61 94.85
8. 632,867 5.94 632,867 632,867 0.00 0.06 1.29 0.34 94.20
9. 569,351 4.38 569,351 569,351 0.00 0.05 0.76 0.30 93.07

10. 584,386 2.47 584,386 584,386 0.00 0.05 0.61 0.19 92.14
11. 479,204 3.27 479,204 479,204 0.00 0.05 0.81 0.26 92.11
12. 573,488 1.39 573,488 573,488 0.00 0.06 0.42 0.11 91.80
13. 496,399 12.06 496,399 496,399 0.00 0.25 2.31 1.03 91.44
14. 507,962 4.20 507,962 507,962 0.00 0.08 1.94 0.38 90.99
15. 451,712 3.55 451,712 451,712 0.00 0.09 0.83 0.33 90.80
16. 439,677 10.66 439,677 439,677 0.00 0.05 3.89 0.99 90.68
17. 527,756 16.63 527,756 527,756 0.00 0.13 4.88 1.65 90.09
18. 512,029 3.88 512,029 512,029 0.00 0.11 1.11 0.39 90.04
19. 549,311 1.63 549,311 549,311 0.00 0.05 0.47 0.16 89.91
20. 495,912 6.81 495,912 495,912 0.00 0.08 1.94 0.69 89.83
21. 569,762 3.67 569,762 569,762 0.00 0.09 1.33 0.38 89.78
22. 546,127 11.19 546,127 546,127 0.00 0.06 3.52 1.19 89.40
23. 650,947 2.94 650,947 650,947 0.00 0.06 0.82 0.31 89.31
24. 625,285 2.48 625,285 625,285 0.00 0.06 0.54 0.27 89.08
25. 487,665 2.22 487,665 487,665 0.00 0.06 0.62 0.26 88.29
26. 465,159 1.61 465,159 465,159 0.00 0.06 0.64 0.19 88.25
27. 531,891 3.72 531,891 531,891 0.00 0.09 1.73 0.44 88.22
28. 525,336 1.86 525,336 525,336 0.00 0.06 0.51 0.22 88.21
29. 523,061 7.56 523,061 523,061 0.00 0.06 2.19 0.90 88.05
30. 549,113 3.06 549,113 549,113 0.00 0.08 1.10 0.38 87.45
31. 520,665 5.02 520,665 520,665 0.00 0.08 1.23 0.63 87.43
32. 516,235 6.03 516,235 516,235 0.00 0.42 1.25 0.77 87.16
33. 539,978 2.02 539,978 539,978 0.00 0.05 1.02 0.29 85.55
34. 476,725 2.25 476,725 476,725 0.00 0.06 0.56 0.34 85.10
35. 533,005 3.33 533,005 533,005 0.00 0.08 1.21 0.50 85.06
36. 572,411 2.25 572,411 572,411 0.00 0.05 1.12 0.34 84.81
37. 511,875 1.69 511,875 511,875 0.00 0.06 0.82 0.29 82.95
38. 484,094 2.55 484,094 484,094 0.00 0.06 1.55 0.44 82.67
39. 463,149 2.83 463,149 463,149 0.00 0.08 2.20 0.53 81.21
40. 610,328 2.36 610,328 610,328 0.00 0.06 0.93 0.45 80.93
41. 488,715 15.66 488,715 488,715 0.00 0.11 7.86 3.07 80.38
42. 524,444 2.58 524,444 524,444 0.00 0.03 1.39 0.52 80.02
43. 546,901 4.02 546,901 546,901 0.00 0.45 1.55 0.81 79.73
44. 546,789 2.02 546,789 546,789 0.00 0.09 2.03 0.42 79.16
45. 541,521 3.99 541,521 541,521 0.00 0.08 2.56 0.84 78.90
46. 458,557 4.28 458,557 458,557 0.00 0.08 2.90 0.92 78.44
47. 576,066 2.70 576,066 576,066 0.00 0.08 2.25 0.60 77.68
48. 566,729 5.08 566,729 566,729 0.00 0.16 2.76 1.14 77.55
49. 498,891 3.19 498,891 498,891 0.00 0.08 2.13 0.73 77.12
50. 541,012 2.36 541,012 541,012 0.00 0.09 2.32 0.58 75.47

In Table 3, we present the results obtained by CPLEX and the proposed hybrid genetic algorithm
for solving large instances of the problem. The first column displays the number of the instance,
and the next two columns contain the value of the optimal solution ZCPLEX achieved by CPLEX and
the necessary computing time spent in solving the instances provided by CPLEX when available,
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otherwise the solution determined by CPLEX when interrupting the run after 3600 s of computing time.
The following six columns contain the results obtained by our hybrid genetic algorithm: the minimum
and the maximum of the objective function achieved in the ten runs of each instance (Zmin and Zmax),
the percentage gap defined as 100 × (Zmax − Zmin)/Zmin, the minimum, maximum, and average
computing times necessary for solving the instances. The last column provides the improvements of
the solutions delivered by the hybrid genetic algorithm in comparison to the solutions achieved by
CPLEX. The instances are ordered based on these improvements. The improvement gap is calculated
as follows: 100× (ZCPLEX − Zmin)/ZCPLEX . For the instances presented in Table 3, the running time
of the algorithm was limited to 200 s.

Analyzing the computational results reported in Table 3, we can remark that for the first
43 instances, the best solution provided by our hybrid genetic algorithm improved the solution
delivered by CPLEX within 3600 s, and the average computational time spent in solving the instances
ranged from 11.63 to 113.26 s. The average improvement gap of the solutions delivered by the hybrid
genetic algorithm in comparison to the solutions achieved by CPLEX was 0.114%. In the case of the
last seven instances, CPLEX delivered the optimal solutions within a computational time ranging
from 2071.50 to 3595.30 s. Our hybrid solution approach delivered as well the optimal solutions
in all ten runs of each instance, i.e., Zmin = Zmax = Zopt, but with much less computational time
effort, and the average computational time spent in solving the instances ranged from 1.76 to 31.05 s.
The improvement time gap ranged from 98.52% to 99.95%, and the average was greater than 99%.
For 29 out of 50 instances, our proposed approach did not achieve the same solution in all ten runs,
but we could observe that the average percentage gap between the minimum and the maximum of
the objective function achieved ranged from 0.01% and 0.25%, a fact that proved the stability of our
proposed solution approach.

In Table 4, we report the results obtained by CPLEX and the developed hybrid genetic algorithm
for solving larger instances of the problem, namely with 8 manufacturing plants, 12 distribution
centers, and 25 customers. The columns of Table 4 are similar to those of Table 3, and the instances are
ordered based on the achieved improvement gaps. For the instances presented in Table 4, the running
time of the algorithm was limited to 500 s.

Analyzing the computational results reported in Table 4, we can remark that for the first
18 instances, the best solution provided by our hybrid genetic algorithm improved the solution
delivered by CPLEX within 3600 s, and the average computational time spent in solving the
corresponding instances ranged from 24.52 to 255.88 s. In the case of the last seven instances,
the solutions delivered by CPLEX within 3600 s were the same as the solutions achieved by our
hybrid solution approach in all ten runs of each instance, but with much less computational time
effort, and the average computational time spent in solving the instances ranged from 19.81 to 260.02 s.
For 12 out of 25 instances, our proposed approach did not achieve the same solution in all ten runs,
but we could observe that the average percentage gap between the minimum and the maximum of
the objective function achieved ranged from 0.003% and 0.11%, a fact that showed the stability of our
proposed solution approach.

In Table 5, we report the results obtained by CPLEX and the proposed hybrid genetic algorithm
for solving larger instances of the problem, namely with 10 manufacturing plants, 15 distribution
centers, and 30 customers. The columns of Table 5 are similar to those of Table 3, and the instances are
ordered based on the achieved improvement gaps. For the instances presented in Table 5, the running
time of the algorithm was limited to 800 s.



Mathematics 2020, 8, 712 16 of 20

Table 3. Computational results achieved in the case of large sized instances.

Instance CPLEX Our Proposed Hybrid Genetic Algorithm Improvement

ZCPLEX TCPLEX Zmin Zmax % gap Tmin Tmax Tavg. Gap (%)

1. 1,498,462 >3600 1,492,959 1,498,462 0.04 7.58 179.72 70.54 0.367
2. 1,526,157 >3600 1,521,552 1,525,864 0.25 10.56 71.14 34.71 0.302
3. 1,229,762 >3600 1,226,059 1,228,900 0.16 0.73 53.58 12.97 0.301
4. 1,359,194 >3600 1,355,759 1,358,508 0.12 2.01 125.86 50.13 0.253
5. 1,506,789 >3600 1,503,253 1,506,426 0.08 0.69 171.29 54.24 0.235
6. 1,360,560 >3600 1,357,406 1,360,871 0.21 0.73 195.62 76.33 0.232
7. 1,373,481 >3600 1,370,305 1,370,305 0.00 0.33 118.06 32.24 0.231
8. 1,507,877 >3600 1,505,023 1,507,877 0.14 15.42 190.98 86.36 0.189
9. 1,313,779 >3600 1,311,341 1,313,779 0.07 3.95 187.48 56.39 0.186

10. 1,404,192 >3600 1,401,647 1,401,647 0.00 2.59 114.99 31.51 0.181
11. 1,439,014 >3600 1,436,511 1,436,511 0.00 0.59 29.36 12.94 0.174
12. 1,241,920 >3600 1,239,841 1,242,554 0.02 4.45 48.09 25.27 0.167
13. 1,182,028 >3600 1,180,055 1,182,359 0.08 5.36 185.81 67.03 0.167
14. 1,400,016 >3600 1,397,749 1,399,695 0.09 0.41 163.17 48.32 0.162
15. 1,452,499 >3600 1,450,224 1,453,131 0.04 0.58 199.54 79.30 0.157
16. 1,210,260 >3600 1,208,868 1,210,260 0.09 0.42 150.69 33.19 0.115
17. 1,172,705 >3600 1,171,392 1,173,070 0.06 11.33 192.29 92.86 0.112
18. 1,431,188 >3600 1,429,651 1,429,651 0.00 2.16 40.61 11.63 0.107
19. 1,391,275 >3600 1,389,998 1,389,998 0.00 8.58 175.24 113.26 0.092
20. 1,354,598 >3600 1,353,377 1,355,222 0.03 1.24 192.88 69.23 0.090
21. 1,401,338 >3600 1,400,090 1,400,090 0.00 4.80 97.97 34.90 0.089
22. 1,364,919 >3600 1,363,749 1,366,009 0.13 3.25 167.76 47.42 0.086
23. 1,425,663 >3600 1,424,598 1,425,663 0.04 0.59 71.56 20.01 0.075
24. 1,164,525 >3600 1,163,689 1,164,525 0.04 0.41 171.19 45.03 0.072
25. 1,485,811 >3600 1,484,745 1,485,595 0.02 1.17 91.43 37.72 0.072
26. 1,187,478 >3600 1,186,640 1,186,640 0.00 5.47 155.66 59.62 0.071
27. 1,493,211 >3600 1,492,236 1,493,511 0.01 28.94 191.48 106.28 0.065
28. 1,348,937 >3600 1,348,140 1,348,937 0.02 0.54 197.88 68.95 0.059
29. 1,306,728 >3600 1,305,967 1,305,967 0.00 5.26 167.72 48.31 0.058
30. 1,362,966 >3600 1,362,230 1,362,230 0.00 6.81 43.31 16.37 0.054
31. 1,432,828 >3600 1,432,060 1,432,060 0.00 14.73 163.45 58.88 0.054
32. 1,294,145 >3600 1,293,470 1,294,145 0.01 7.53 160.41 67.00 0.052
33. 1,367,135 >3600 1,366,494 1,367,135 0.03 8.97 185.43 58.01 0.047
34. 1,345,140 >3600 1,344,722 1,345,287 0.03 1.63 182.43 75.99 0.031
35. 1,444,708 >3600 1,444,283 1,444,708 0.01 2.39 125.75 33.11 0.029
36. 1,321,196 >3600 1,320,820 1,320,820 0.00 6.27 186.85 68.68 0.028
37. 1,488,631 >3600 1,488,259 1,488,631 0.02 18.45 196.41 99.94 0.025
38. 1,360,169 >3600 1,359,844 1,360,578 0.02 7.05 174.56 81.02 0.024
39. 1,459,280 >3600 1,458,980 1,458,980 0.00 4.57 62.32 28.49 0.021
40. 1,320,505 >3600 1,320,257 1,320,888 0.01 5.34 81.09 52.97 0.019
41. 1,515,575 >3600 1,515,301 1,515,301 0.00 0.39 29.87 12.10 0.018
42. 1,456,015 >3600 1,455,782 1,456,015 0.01 2.82 167.47 45.34 0.016
43. 1,558,119 >3600 1,557,980 1,557,980 0.00 0.39 64.55 17.19 0.009
44. 1,299,299 2071.50 1,299,299 1,299,299 0.00 3.83 81.39 24.67 0.000
45. 1,247,163 2096.72 1,247,163 1,247,163 0.00 1.32 120.01 31.05 0.000
46. 1,427,502 2686.28 1,427,502 1,427,502 0.00 2.21 94.79 25.36 0.000
47. 1,393,412 3595.30 1,393,412 1,393,412 0.00 1.85 12.64 6.86 0.000
48. 1,191,085 3507.41 1,191,085 1,191,085 0.00 0.27 5.60 1.76 0.000
49. 1,391,908 3344.05 1,391,908 1,391,908 0.00 0.30 16.08 4.50 0.000
50. 1,285,900 3348.83 1,285,900 1,285,900 0.00 0.61 14.58 4.94 0.000

Analyzing the computational results reported in Table 5, we can remark that for all 25 instances,
the best solution provided by our hybrid genetic algorithm improved the solution delivered by CPLEX
within 3600 s, and the average computational time spent in solving the corresponding instances ranged
from 22.9 to 484.6 s. In the case of these instances, our proposed approach did not achieve the same
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solution in all ten runs, but we can observe that the average percentage gap between the minimum
and the maximum of the objective function achieved ranged from 0.001% and 0.3%, a fact that proved
the stability of our proposed solution approach.

Overall, the results achieved by our hybrid genetic algorithm can be summarized as follows:

• In the case of small and medium sized instances, our algorithm delivered the optimal solution
in all ten runs of each instance, but with much less computational time effort in comparison to
CPLEX.

• As regards the 50 large sized instances, for seven of them, our hybrid algorithm delivered
the optimal solution in all ten runs of each instance, but with much less computational time
effort in comparison to CPLEX, and for the remaining instances, the best solution achieved by
our algorithm improved the solution provided by CPLEX within 3600 s, but with much less
computational time effort in comparison to CPLEX.

• In the case of the proposed 50 larger instances, the best solution provided by our hybrid
genetic algorithm improved the solution delivered by CPLEX within 3600 s, and the average
computational times spent in solving the corresponding instances were lower compared to CPLEX.

• We can remark that our developed solution outperformed in terms of the quality of the solutions
and of computational times the ACO-based heuristic approach proposed by Hong et al. [10],
which according to the previously mentioned authors, provided sub-optimal solutions with a gap
of about 10% on average from the optimal solutions.

Table 4. Computational results achieved in the case of larger sized instances (8-12-25).

Instance CPLEX Our Proposed Hybrid Genetic Algorithm Improvement

ZCPLEX TCPLEX Zmin Zmax % gap Tmin Tmax Tavg. Gap (%)

1. 1,630,535 >3600 1,622,981 1,622,981 0.00 2.94 214.05 64.90 0.46
2. 1,585,431 >3600 1,581,579 1,585,261 0.11 28.37 460.47 187.29 0.24
3. 1,564,349 >3600 1,560,978 1,564,196 0.02 19.81 247.37 129.79 0.22
4. 1,688,457 >3600 1,686,019 1,688,457 0.02 16.48 444.18 255.88 0.14
5. 1,795,971 >3600 1,793,474 1,795,971 0.08 11.07 420.04 210.97 0.14
6. 1,693,447 >3600 1,691,203 1,694,066 0.06 136.12 457.29 254.00 0.13
7. 1,468,196 >3600 1,466,264 1,466,264 0.00 6.21 49.07 24.52 0.13
8. 1,670,941 >3600 1,668,943 1,669,456 0.003 6.49 294.80 122.20 0.12
9. 1,543,092 >3600 1,541,280 1,541,280 0.00 1.91 314.22 113.65 0.12

10. 1,850,860 >3600 1,848,732 1,848,732 0.00 25.34 295.75 159.96 0.11
11. 1,710,500 >3600 1,709,078 1,710,500 0.07 1.74 327.84 47.63 0.08
12. 1,616,695 >3600 1,615,417 1,615,417 0.00 13.73 494.86 122.64 0.08
13. 1,660,980 >3600 1,659,883 1,660,980 0.03 22.75 433.65 147.03 0.07
14. 1,631,768 >3600 1,631,244 1,631,244 0.00 14.33 99.50 38.02 0.03
15. 1,658,811 >3600 1,658,512 1,658,811 0.004 1.30 431.92 119.95 0.02
16. 1,583,688 >3600 1,583,449 1,583,688 0.01 6.33 289.25 119.27 0.02
17. 1,570,940 >3600 1,570,729 1,570,940 0.01 4.28 429.81 196.77 0.01
18. 1,778,786 >3600 1,778,647 1779,642 0.01 20.73 430.86 166.33 0.01
19. 1,671,547 >3600 1,671,547 1,671,547 0.00 8.60 412.75 135.36 0.00
20. 1,553,874 >3600 1,553,874 1,553,874 0.00 16.71 404.55 140.02 0.00
21. 1,618,396 >3600 1,618,396 1,618,396 0.00 2.03 120.94 25.57 0.00
22. 1,305,978 >3600 1,305,978 1,305,978 0.00 33.56 463.87 260.02 0.00
23. 1,682,622 >3600 1,682,622 1,682,622 0.00 16.56 117.56 59.01 0.00
24. 1,738,929 >3600 1,738,929 1,738,929 0.00 8.27 43.03 19.81 0.00
25. 1,539,218 >3600 1,539,218 1,539,218 0.00 73.29 398.56 215.22 0.00
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Table 5. Computational results achieved in the case of larger sized instances (10-15-30).

Instance CPLEX Our Proposed Hybrid Genetic Algorithm Improvement

ZCPLEX TCPLEX Zmin Zmax %gap Tmin Tmax Tavg. Gap (%)

1. 2,043,349 >3600 2,031,652 2,036,091 0.05 61.1 742.1 311.5 0.572
2. 2,054,648 >3600 2,046,819 2,052,230 0.09 153.3 800.4 479.5 0.381
3. 2,081,647 >3600 2,073,863 2,076,082 0.07 62.5 781.5 389.5 0.374
4. 1,928,963 >3600 1,923,043 1,926,361 0.08 67.5 782.5 463.1 0.307
5. 1,983,427 >3600 1,977,514 1,986,523 0.30 116.4 707.7 418.8 0.298
6. 1,904,794 >3600 1,899,391 1,905,847 0.18 186.9 797.8 471.1 0.284
7. 2,083,134 >3600 2,077,255 2,077,677 0.01 21.6 769.1 374.0 0.282
8. 2,054,765 >3600 2,049,041 2,050,452 0.02 106.7 763.7 22.9 0.279
9. 1,879,761 >3600 1,874,875 1,879,550 0.11 53.8 756.7 381.2 0.260
10. 2,115,385 >3600 2,110,377 2,112,099 0.04 78.4 601.4 408.8 0.237
11. 2,160,852 >3600 2,156,113 2,160,812 0.08 28.2 732.3 244.9 0.219
12. 2,151,335 >3600 2,147,165 2,151,624 0.09 162.8 696.6 400.6 0.194
13. 1,893,790 >3600 1,890,682 1,894,171 0.12 41.7 699.4 286.0 0.164
14. 2,116,378 >3600 2,113,212 2,118,729 0.18 59.4 788.1 359.1 0.150
15. 2,211,552 >3600 2,208,664 2,211,925 0.12 63.2 754.5 300.9 0.131
16. 2,234,741 >3600 2,232,117 2,234,741 0.07 45.5 685.2 338.9 0.117
17. 2,073,949 >3600 2,071,523 2,073,572 0.05 43.3 738.5 347.0 0.117
18. 2,243,637 >3600 2,241,336 2,243,637 0.05 14.4 767.2 426.0 0.103
19. 2,176,878 >3600 2,174,843 2,177,432 0.04 116.7 666.9 345.8 0.093
20. 2,112,460 >3600 2,110,653 2,113,982 0.07 170.9 648.1 383.6 0.086
21. 1,783,878 >3600 1,782,439 1,782,693 0.001 4.3 343.7 130.6 0.081
22. 1,910,476 >3600 1,909,206 1,913,753 0.05 16.8 647.0 279.0 0.066
23. 1,778,394 >3600 1,777,235 1,778,834 0.05 148.9 695.6 484.6 0.065
24. 2,101,223 >3600 2,099,976 2,103,072 0.06 24.7 764.0 415.6 0.059
25. 2,203,959 >3600 2,202,676 2,204,892 0.06 112.8 709.2 334.3 0.058

6. Conclusions

In this paper, we investigated the two-stage supply chain network design problem in which we
considered two types of fixed costs: ones for opening the DCs and the others associated with the
routes. This optimization problem was introduced recently by Hong et al. [10], and it generalized the
previously considered two-stage transportation problems.

The main goal of our paper was to describe an effective hybrid genetic algorithm for solving
the two-stage transportation network design problem with fixed costs. Our hybrid algorithm was
achieved by incorporating a linear programming optimization problem within the framework of
a genetic algorithm. The method we proposed had certain important features, and here are some
of these: the employment of an efficient representation in which the chromosome was generated
in two stages: from an estimation of the flows to a feasible solution of the problem, the building of
different breeds of chromosomes that evolved separately from random populations, until evolution
stagnates, then the breeds were merged together, hoping that the newly formed hybrid chromosomes
would be better.

We evaluated the effectiveness of the proposed solution approach on a set of 200 instances
classified into four classes: small, medium, large, and larger sized instances. The first 150 instances
were generated in the same way as Hong et al. [10] suggested, and the others were larger sized
instances. The computational results that we obtained proved the efficiency of our developed hybrid
genetic algorithm in yielding high quality solutions within reasonable running times, besides its
superiority as compared to CPLEX and the other existing solution approaches from the literature.

It is our intention to continue our research and further improve the developed hybrid genetic
algorithm through a combination with the local search methods. We intend to carry out a parallel
implementation of the proposed algorithm, in order to fully benefit from the processing power of the
new multicore processors and to generalize the TSSCNDP-FC model so that customers can be supplied
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directly by manufacturers and so that the distribution centers can also supply other distribution centers.
We also plan to assess the generality and scalability of the solution approach that we suggested by
testing it on even larger instances.
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