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Abstract: When it comes to game playing, evolutionary and tree-based approaches are the most
popular approximate methods for decision making in the artificial intelligence field of game research.
The evolutionary domain therefore draws its inspiration for the design of approximate methods
from nature, while the tree-based domain builds an approximate representation of the world in a
tree-like structure, and then a search is conducted to find the optimal path inside that tree. In this
paper, we propose a novel metric for game feature validation in Real-Time Strategy (RTS) games.
Firstly, the identification and grouping of Real-Time Strategy game features is carried out, and,
secondly, groups are included into weighted classes with regard to their correlation and importance.
A novel metric is based on the groups, weighted classes, and how many times the playtesting
agent invalidated the game feature in a given game feature scenario. The metric is used in a series
of experiments involving recent state-of-the-art evolutionary and tree-based playtesting agents.
The experiments revealed that there was no major difference between evolutionary-based and
tree-based playtesting agents.

Keywords: evolutionary computation; playtesting; game feature; game simulation; game trees;
playtesting metric; validation

1. Introduction

Real-Time Strategy (RTS) games are designed as turn-based games where players, each following
their own strategies, try to defeat one another through a series of turns. The term ‘strategy’ stands for
the highest form of decision-making process, where the ultimate purpose is to defeat the opponent.
Decisions are made between turns (a turn is a transition from the current game state to the next one),
which are so short (i.e., in the range of milliseconds) that the game looks as though it is progressing in
real time. After a decision is made, the actions are executed. The difference between RTS games and
classical turn-based board games, of which probably the most well-known representative is the game
of chess, is in the execution of the actions. Actions in RTS games are durative and simultaneous [1],
as opposed to the instant moves, of which each player can make one per turn, in classical board games.

During the last decade, RTS games have become one of the best test beds for researching Artificial
Intelligence (AI) for games [2,3]. The main reason for the growth in research is the fact that RTS games
offer plenty of challenges for researchers. For example, RTS games are representatives of the highest
class of computational complexity [4], which is due to their extremely large state-action spaces [5]
(i.e., search space). Search space is often impossible to search exhaustively, because a specific game is
a high-dimensional space of game variants (many different parameters are available), and it is also
called game space [6].
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Exploring the search space of games is often considered to be a difficult problem [7], and most
of the complex optimization problems relating to games’ search spaces cannot be solved using the
exact methods that search for the optimal solution by enumerating all possible solutions. To solve
these problems, various methods have emerged in the past decades that solve problems approximately.
In recent times, researchers have been looking for inspiration for the design of these approximate
algorithms/methods in nature, e.g., Darwin’s evolutionary theory [8], the collective behavior of social
living insects [9], the social behavior of some animal species [10,11], physical phenomena [12], and so on.

The bio-inspired computation field [13] is a field that covers all of the algorithms/methods that
fall within the scope of these mentioned inspirations and is an extensively studied research area of AI.
Nowadays, numerous algorithms exist that fall under the bio-inspired computation umbrella, such as
the Artificial Bee Colony (ABC) Algorithm [14], Differential Evolution (DE) [15], Firefly Algorithm (FA),
Genetic Algorithm (GA) [16], Monarch Butterfly Optimization (MBO) [17], etc. Due to the popularity
of this subject, numerous unprecedented implications of these approaches exist among real-world
applications [13]. Some of the application areas where bio-inspired computation approaches have
been successfully applied include: antenna design [18], medicine [19], and dynamic data stream
clustering [20].

In addition to the many different application areas, bio-inspired computation also plays an
important role in the design and development of games. Bio-inspired computation approaches in
games have been used for procedural content generation [21], the development of controllers that
are able to play games [22], educational and serious games [23], intelligent gaming systems [24],
evolutionary methods in board games [25], behavioral design of non-player characters [26], etc.

Gameplaying agents (algorithms) are made to play the game in question, with the game rules being
hard-coded or self-obtained (general gameplaying), in a self-sustained way (i.e., no human input is
needed during the (general) gameplay) [27]. The primary task of the gameplaying agent is to win games,
and the secondary task is to win them with a higher score [28]. For the RTS gameplaying agent [29] to
be able to cope with the high computational complexity of the game space, it has to be able to function
inside different segments of the game, which are as follows: resource and production management
(also categorized as economy) [30], strategical [31], tactical [32] and micromanagement [33] operations,
scouting [34] and sometimes even diplomacy [35]. For one to be successful when playing an RTS game,
a balanced combination of all those segments must be considered by the agent [36]. Since gameplaying
agents are already built to operate and cover a variety of tasks in a given game space, they can be
adapted to become playtesting agents.

Playtesting agents are meant to play through the game (or a slice of it) and try to explore the
behavior that can generate data that would assist developers during the development phase of a
game [37,38]. Game studios conduct countless tests on gameplaying with real players [39], but relying
on humans for playtesting can result in higher costs and can also be inefficient [37]. The research on
playtesting is, therefore, very important for the following two reasons: it has a huge economic potential
and is of considerable interest to the game industry [40]. Further economic potential is also apparent in
semi-related fields, like Gamification [41].

A Game Design Document (GDC) specifies core gameplay, game elements, necessary game
features, etc. [42]. With this paper, we tackle the problem of the automatic validation of game
features for the game space specified in GDC and also address research requirements from articles
(for instance, [43]), where the authors point out the need that games with a higher complexity have
of scaling.

In this article, we will try to find the answers to the following research questions:

• RQ1: How easy is it to adapt gameplaying agents as playtesting agents in RTS games?
• RQ2: Which RTS game definitions can be used to make a comparison between different

playtesting agents?
• RQ3: How to evaluate playtesting agents based on RTS game definitions, and which are the most

beneficial to them?
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• RQ4: Is there a difference between evolutionary and the non-evolutionary approaches (like
standard Monte Carlo tree searches [44]) with regard to playtesting abilities?

• RQ5: How does one define valid/invalid game features in the game space?

Altogether, the main contributions of this paper are as follows:

- A novel metric is proposed to make a comparison between different playtesting agents;
- A method is proposed for adapting gameplaying agents as playtesting agents in real-time strategy

games; and
- The proposed metric is used in a series of experiments involving adapted evolutionary and

tree-based state-of-the-art gameplaying agents.

The structure of the remainder of this paper is as follows. Section 2 outlines the game features
of real-time strategy games and the microRTS simulation environment, while Section 3 presents the
proposed novel metric that will allow for the comparison of different playtesting agents. Section 4
describes the experimental environment, adaptation of gameplaying agents as playtesting agents
(including detailed descriptions of them) and the results of the experiments. A Discussion is provided
in Section 5, and the conclusion is presented in Section 6.

2. Real-Time Strategy Games

This chapter briefly outlines the game features of RTS games, and a description of the microRTS
environment is also provided.

2.1. Game Features of RTS Games

“Game feature” is a generic term used to refer to differences and similarities between games [45].
Game features are defined in GDC [46], and, after they are implemented, each game’s features rely on
the use of game mechanics. Game mechanics are methods invoked by agents in interacting with the
game world (e.g., to obtain the health value of the unit) [47]. In [48], 18 general definitions of game
features (hereinafter referred to as groups) can be found.

In the RTS game domain, different kinds of game feature subset groupings are possible (Economic,
Military, Map Coverage, Micro Skill and Macro Skill) [49], but to the best of our knowledge, the RTS
game features have not yet been placed into groups. The placement of RTS game features into groups
is, in our opinion, important, because it allows for the possibility of comparing RTS game features with
the features of other game genres in the future.

2.2. microRTS

There are many different RTS game worlds in existence. Not all of them are openly available,
but even some of the commercial ones have been opened up for research purposes (e.g., StarCraft™
was opened through the programming interface). microRTS is a simple non-commercial simulation
environment, which was created to test any theoretical ideas a game researcher might have.

This simulation environment follows standard RTS game genre game rules:

1. Players gather resources and use them to create structures and new mobile units;
2. The game goal is to defeat the opposing player in a battle for supremacy; and
3. Resources, structures, and mobile units must be cleverly used.

The microRTS environment includes the following features (seen in Figure 1):

• Four mobile units: worker, light (battle unit), heavy (battle unit) and ranged (battle unit);
• Two structures: base and barracks;
• Resources; and
• A wall.
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Figure 1. Micro real-time strategy (microRTS) environment, with all features visible.

Workers are used to gather resources and build structures, and they also possess the ability to
attacks with limited firepower. Light, heavy and ranged are the main battle units used for attacks on
opponent structures and mobile units. Battle units have different initial properties (i.e., a heavy battle
unit can sustain more damage before being destroyed versus a light battle unit, and a ranged unit can
shoot farther). Bases produce workers. Barracks are used to create battle units. The wall is used as a
physical barrier in the map.

microRTS allows configurable scenarios to be placed in the environment. Figure 1 presents one
such scenario: an 8 × 8 cell map, with fixed positions for resources (in the top left and bottom right
corners) and walls. The mobile units are not fixed and can be moved freely inside this environment.

Scenarios can be configured for varying map sizes (4 × 4, 8 × 8, 12 × 12, etc.) and with different
starting positions for the unit types, structures, and resources (which can be placed anywhere on the
map). The game can be played with visible features (graphical interface turned on for observations) or
in the background (which allows for a faster execution of scenarios and quicker overall simulations,
with less computer resources used).

microRTS also already includes many gameplaying agents that can be used in experiments.

3. Proposal of a Metric for Game Feature Validation

Our motivation to create a metric came from the need to be able to differentiate easily between
different playtesting agents’ performances, when multiple game features need to be validated. In order
to propose a novel metric for comparing playtesting agents, the following steps were considered in
our study:

- STEP 1: The RTS game features are identified;
- STEP 2: The game features are grouped in precise game feature groups; (STEP 2.1): Classification

of game feature groups according to their correlation (groups that are similar in description tend
to be correlated, and this also allows single game features to be placed into multiple groups) and
importance (some groups are of a higher importance, because they reflect and are essential to
RTS gameplay, while some could be left out without jeopardizing the game’s position in the RTS
game genre);

- STEP 3: For empty groups in STEP 2, a further identification of the RTS game features is conducted
by including more search strings and other search engines (e.g., Google Scholar); and

- STEP 4: The novel metric is proposed.
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All steps are described in detail in the following subsections and are presented graphically in
Figure 2.
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3.1. Identification of RTS Game Features

Game features are mentioned in many RTS game research works, but they are scattered across
different subdomains and research agendas. Our goal was to use the pool of research articles and
dissertations and to identify the game features included in this research. The pool was reviewed with
the help of a literature search. The ISI Web of Science and ProQuest research search engines were used.
A search query with the following search string was made: “game features” and “real-time strategy
games”, which returned 88 hits for the ISI Web of Science and 34 hits for ProQuest.

The results (articles and dissertations) were filtered to exclude non-RTS game research works.
A manual search was conducted through the research work for mentions of the “feature” string
(note: 14 works from the ISI Web of Science and 0 for ProQuest were located after a manual search).
The located text was extracted and analyzed for surrounding context, then transformed into a compact
format that could act as a short game feature description. The surrounding context was used to
transform the text, because not all research work has game features that can be used as-is. A short
description was then made of the list of game feature descriptions. If a description was already on the
list, and it was not adding additional information, it was omitted (note: seven works from the ISI Web
of Science were omitted). Additionally, one research work can include more than just one mention of
the string “feature” with the surrounding context.

Note: Future work could broaden the scope and include other search strings (like “aspect” or
“feature”) for a more in-depth survey of the general RTS features.

Table 1 includes a list of short game feature descriptions, which were produced after the completion
of the first step. The short game feature descriptions are accompanied by a reference.
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Table 1. Game feature descriptions derived from related work.

Game Feature Label Short Game Feature Description Short Game
Feature Label

Reference (Used as a
Basis for Extraction)

Resource gathering
Game unit (worker) collects at least x units of type A
resources and at least y units of type B resources in

num trips.
GF1_RG [50]

Game engine
features and objects

Game unit (battle unit) always hits with x points
of damage. GF2_EOBJ [51]

Game difficulty
(aiding)

The opponent is aided with x more units, resulting in
a player losing every game.

Note: such a feature can be part of an advanced
mode, where non-advanced users must

not/cannot win.

GF3_DIFA [52]

Game objective
(construction)

If the player tries to, it must be able to create x game
structure(s) (e.g., barracks). GF4_CONS [53]

Game assessment
Game score is calculated based on raw features

(e.g., no. of workers) and must represent the game
state status correctly when presented to the player.

GF5_AST [54]

Stumbling block The player cannot destroy the enemy in a specific
part of the map due to stumbling blocks (e.g., a wall). GF6_SB [55]

Game exploration
(unlocking new

technologies)

If the player tries discovery, it can create x game
units (e.g., battle unit–light) through the usage of

game structure(s) (e.g., barracks).
GF7_EXPL [56]

Special unit
The player is confronted with a special game unit
(e.g., Super-Heavy with special features), which
cannot be destroyed with the given resources.

GF8_FANT [57]

Partial information
(fog-of-war)

The player cannot operate in a partially observable
environment, so it therefore cannot destroy the

opponent in such an environment.
GF9_PARI [58]

Game difficulty
(challenge)

The player cannot destroy x structures (e.g., barracks)
guarded with y rushing game units (e.g., battle

unit–heavy) with access to z units of A
type resources.

GF10_DIFC [52]

Game control (take
over the map)

The player can destroy all the structures on the map
before the time runs out. GF11_GCMP [59]

Interaction on a
complex map

If the player controlling x battle units (e.g., a heavy
battle unit) finds a static unit (e.g., barracks) in a

maze (or complex map), the static unit is
always destroyed.

GF12_INTE [60]

Resource gathering
under attack

A gatherer (e.g., a worker) is always destroyed when
trying to gather resources. GF13_RG2 [61]

3.2. Grouping the Game Features into Specific Groups

The grouping of game features into specific groups has two benefits: a group consists of game
features with similar modus operandi (i.e., correlated and in the same context), and groups can serve
as a basis for sharing research with other game genres.

We already mentioned (Section 2.1) that the literature search revealed 18 groups, which are
formed independently of the specific game genre, and which we will use for grouping. These groups
are: adaptation, assessment/rewards/scores, challenge, conflict, control, exploration, fantasy/location,
interaction/interactivity (equipment), interaction (interpersonal/social), language/communication,
motivation, mystery, pieces or players, progress and surprise, representation, rules/goals, safety and
sensory stimuli. A detailed description about the meaning of each of the groups can be found in the
tabular presentation in [62].

Table 2 presents the results after the completion of both steps, with references to the source of the
compact description. Our goal was to have at least one game feature representative for each of the
groups. If there was no game feature available in Table 1 for an empty group, we tried to locate the
research work for that group by searching via Google Scholar (STEP 3) using different search strings
(e.g., “impassable terrain” for a conflict group) in regard to the context of the group. The research
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works found went through the procedure described in STEP 1, and a short game feature description
was included in Table 1 and in the accordingly empty group in Table 2. (Observation: we noticed that
many research works on game feature descriptions originated from the domain of player/opponent
modeling, RTS replay analysis, game balancing and strategy selection/prediction.) One game feature
can belong to more than one group. For some groups, we could not find or create any viable game
feature description that could be measured by the game mechanics. Such groups remained empty
but were still included in the Table. The reason: future RTS research could produce game features for
currently empty groups.

Table 2. Game definition groups and their game feature representatives.

ID Group Short Game Feature Label

G1 Adaptation GF3_DIFA 1, GF10_DIFC

G2 Assessment/Rewards/Scores GF5_AST 1

G3 Challenge GF3_DIFA, GF8_FANT,
GF10_DIFC 1, GF12_INTE

G4 Conflict GF6_SB 1, GF9_PARI, GF10_DIFC, GF12_INTE, GF13_RG2

G5 Control GF2_EOBJ, GF9_PARI,
GF10_DIFC, GF11_GCMP 1, GF12_INTE

G6 Exploration GF7_EXPL 1, GF9_PARI, GF12_INTE

G7 Fantasy/Location GF8_FANT 1

G8
Interaction/Interactivity

(Equipment)
GF2_EOBJ, GF4_CONS,

GF7_EXPL, GF12_INTE 1

G9 Interaction (Interpersonal/Social) (empty—beyond the scope of this article 2)

G10 Language/Communication (empty)

G11 Motivation (empty)

G12 Mystery GF9_PARI 1

G13 Pieces or Players

GF1_RG, GF2_EOBJ 1, GF3_DIFA, GF4_CONS,
GF5_AST, GF6_SB,

GF7_EXPL, GF8_FANT, GF9_PARI,
GF10_DIFC, GF11_GCMP, GF12_INTE, GF13_RG2

G14 Progress and Surprise
GF1_RG, GF4_CONS 1, GF6_SB, GF7_EXPL,

GF8_FANT, GF9_PARI, GF10_DIFC,
GF11_GCMP, GF12_INTE, GF13_RG2

G15 Representation (empty)

G16 Rules/goals GF1_RG 1, GF2_EOBJ, GF4_CONS,
GF7_EXPL, GF13_RG2

G17 Safety GF1_RG, GF13_RG2 1

G18 Sensory stimuli (empty)
1 Representative of the group used for the experiment. 2 The interaction (Interpersonal/Social) group was left empty,
because it would require the interaction of multiple players (a single gameplaying agent modified for a playtesting
agent supports only single player operations).

3.3. Classification of Feature Groups According to Their Correlation and Importance

As game features tend to be correlated, so do groups. One group can be, context wise, closely
related to some groups but only loosely related to others. Additionally, some contexts are more
important than others with regard to RTS gameplay.

Table 3 presents the classification of feature groups into three importance classes:
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• The high-importance class contains groups that represent the essence of RTS gameplay (based on
our understanding of the RTS game worlds and their aspects [63]);

• Groups that operate on a game mechanics level (e.g., Interaction/Interactivity (Equipment) group)
or are not essential to the game (they could potentially be left out, e.g., Mystery group) are in the
medium-importance class; and

• Groups that, in Table 2, did not have a feature representative (empty of features) were included in
the low-importance class.

Table 3. Classification of feature groups based on their correlation and importance.

Class Groups Weight Set

High
importance

Adaptation, Challenge, Control, Pieces or Players,
Progress and Surprise, Rules/goals, Safety W1 CH = {G1, G3, G5, G13,

G14, G16, G17}

Medium
importance

Assessment/Rewards/Scores, Conflict,
Exploration, Fantasy/Location,

Interaction/Interactivity (Equipment),
Motivation, Mystery

W2 CM = {G2, G4, G6, G7, G8,
G12}

Low
importance

Interaction (Interpersonal/Social),
Language/Communication, Representation,

Sensory stimuli
W3 CL = {G9, G10, G11, G15,

G18}

The importance level of each of the groups is represented by a class. Regarding the game worlds,
we allow for the possibility of different reconfigurations of the groups inside the classes. We also
included the weight and mathematical description of the set. Weight is a numerical value that is set by
the user of the metric. It represents how much the groups belonging to the specific class will count
towards the metric score.

3.4. Proposal of the Metric

In this subchapter, we explain our metric for summarizing agents’ performance while they validate
game features in an RTS game space. The metric calculates its score based on how many times the
playtesting agent invalidated the game feature of a fixed number of repeats for a given scenario
(the sum of validations and invalidations equals the number of scenario repeats).

If the playtesting agent during the execution of the scenario could not test the game feature,
because it does not come into a situation, or it is not programmed to deal with the situation where
validation can take place, then such a game feature is valid from this point of view. The number of
successful validations is, therefore, omitted from the game score, since it is biased.

For a set of groups Gi, 1 ≤ i ≤ 18, where each member of group Gi holds a set of Game features
(GFs) (GFj ∈ Gi, 0 ≤ j), and each GFi holds a set of executable scenarios S (Sk ∈ GFi, 1 ≤ k), the number
of unsuccessful validations per scenario is defined by numInvalidijk, and the number of times the
scenario is repeated is defined by numOfScenRep = n, 1 ≤ n, the following formulas apply:

invalidPercPerScen (ijk, numOfScenReps) = numInvalidijk/numOfScenRep (1)

calcSetScore (set, numOfScenReps) =
∑

i ∈ set
∑

j≥0
∑

k≥1 invalidPercPerScen (ijk, numOfScenRep) (2)

agentPlaytestingScore =

W1 * calcSetScore ({1, 3, 5, 13, 14, 16, 17}, numOfScenRep)
+ W2 * calcSetScore ({2, 4, 6, 7, 8, 12}, numOfScenRep)
+ W3 * calcSetScore ({9, 10, 11, 15, 18}, numOfScenRep)

(3)

In Equation (1), the number of invalidations of a given group (index i), game feature (index j)
and scenario (index k) is divided by the total number of scenario repeats. In Equation (2), the score is
calculated for all the game features and scenarios that the set of groups holds. In Equation (3), the
scores of the set of groups are multiplied by their respective weights.
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4. Experiments and Results

In this chapter, we present the specifications of hardware and software used for the experimental
environment, as well as the results of the experiments.

4.1. Experimental Environment

Hardware: The experiment was carried out on an i7-3770k CPU computer @ 3.50 (turbo: 3.9) GHz,
4 cores (note: during the experimentation, only one core was used, since agents do not implement the
multi-core support) and 16 GB RAM.

Software: OS Windows 10 Pro and Java Development Kit 13.0.2. The experiment was set in the
latest version of the microRTS environment, acquired from an online source at the time of preparing
this article [64]. The microRTS environment comes pre-loaded with the following gameplaying agents:
RandomAI, RandomAIBiased, MonteCarlo, IDRTMinimax, IDRTMinimaxRandomized, IDABCD,
UCT, PuppetSearchMCTS, and NaiveMCTS. TiamatBot was acquired from the online source [65].
MixedBot (which includes TiamatBot source files but an improved version) was acquired from the
online source [66] and was included in the microRTS environment. Every gameplaying agent is used
in the experiment as it was acquired from the online source of original authors (i.e., no code or internal
parameter was changed for experimental purposes).

Table 4 shows the hyper-parameters used for the validation of every game feature presented in
Table 1.

Table 4. Hyper-parameters used in the experimentation.

Hyper-Parameter Value

continuing true
max_actions 100

max_playouts −1
playout_time 100
max_depth 10

randomized_ab_repeats 10
max_cycles 3000

max_inactive_cycles 300

These hyper-parameters are pre-set within the microRTS environment. The only parameter that
we changed was iterations, which we set to 50 (before it was set to 10). The standard UnitTypeTable
was used where necessary. Note: to validate the GF9_PARI, we changed the environment from fully
observable to partially observable.

The game feature descriptions presented in Table 1 were derived from related works and written
independently of a specific game environment, i.e., they can be implemented in any RTS game engine.
In Table 5, we present the same game features as those presented in Table 1, although the former are
adapted to the microRTS environment and a specific scenario. All game features in Table 5 are written
with the assumption that they are valid for the microRTS environment. If the playtesting agent actually
manages to invalidate a game feature from the list, it will add to its metric score.

4.2. Adaptation of Gameplaying Agents as Playtesting Agents

To adapt a gameplaying agent to the playtesting task, we created a non-intrusive component.
The component contains information about the scenario (map, position of units and the opponent) and
controls the validation procedure by following the playtesting agents’ progress (i.e., actions that it
executes) and by accessing game environment information (e.g., current game state status). All the
information is accessible through well-defined interfaces of the microRTS source code. One of the
interface methods is the method that returns the best action for the given game state, and every
gameplaying agent operating in the microRTS environment implements it.
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Table 5. microRTS game feature scenario.

Short Game
Feature Label Experimental microRTS Game Feature Description Map

GF1_RG Worker collects at least 2 units of a resource in 2 trips. basesWorkers8x8.xml (standard map, which
comes with microRTS)

GF2_EOBJ A light battle unit always hits with 2 points
of damage.

melee4x4light2.xml
(standard map)

GF3_DIFA The opponent is aided by 5 more heavy battle units,
resulting in the player losing every game.

basesWorkers8x8.xml (standard map with 5
heavy units added for the opponent)

GF4_CONS If the player tries to, they must be able to create
1 barracks. basesWorkers8x8.xml (standard map)

GF5_AST

The game score is calculated on the basis of raw
features of the game state (no. of workers and no. of
light, heavy and ranged units multiplied by their cost

factors) and must represent the game state status
correctly when presented to the player.

melee14x12Mixed18.xml
(standard map)

GF6_SB The player cannot destroy the enemy in a specific
part of the map due to a wall.

basesWorkers12x12.xml
(standard map with a wall placed in the

middle of the map).

GF7_EXPL If the player tries discovery, it must be able to create 1
light battle unit through the usage of game barracks.

basesWorkers8x8.xml
(standard map)

GF8_FANT

The player is confronted with a special game unit
(Super-Heavy battle unit with ten-times the armor of

a normal-Heavy one), which cannot be destroyed
with the given resources.

basesWorkers8x8 (standard map with
Super-Heavy battle units added to help

the opponent)

GF9_PARI
The player cannot operate in a partially observable

environment, so it therefore cannot destroy the
opponent in such an environment.

basesWorkers12x12.xml (standard map with
a partially observable environment enabled)

GF10_DIFC
The player cannot destroy 2 barracks guarded with 3

heavy rushing units with access to 60 units
of resources.

8x8_2barracks3rushingHeavy60res.xml
(custom map)

GF11_GCMP The player can destroy three barracks before the time
runs out.

8x8_3barracks.xml
(custom map)

GF12_INTE
If the player controlling four heavy battle units finds
an enemy barracks in a large map (with obstacles and

walls), the enemy barracks are always destroyed.

chambers32x32.xml
(standard map with four heavy battle units

and barracks added)

GF13_RG2 The worker is always destroyed when trying to
gather resources.

8x8_workerDestroyed.xml (custom map
with the base and resources on different

parts of the map and four light battle units
in the middle)

When the actions are executed in a game state, it cycles to the next one (i.e., actions change the
inner state). During such cycles, our component tests if the Game Feature is valid or invalid. A Game
Feature is invalid if the condition that is written in the validation procedure of the game feature in
question is not fulfilled. The condition is tested against the information provided from the agent’s
executed action and the environment’s current game state. The validation procedure checks the validity
of the game feature, until either the maximum number of cycles is reached, or the game is over (i.e., one
of the players has no more units left on the field).

For example, the game feature, GF8_FANT, is validated by checking if the resulting game state
still holds this special unit after the agent has given an order to fire on it. If in any cycle the unit is
destroyed, the game feature is invalid.

4.3. Playtesting Agents

The following gameplaying agents have been adapted as playtesting agents for the purposes
of experimentation:
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1. Basic (part of the microRTS package):

• RandomAI: The choice of actions is completely random;
• RandomBiasedAI: Based on RandomAI, but with a five times higher probability of choosing

fighting or harvesting action over other actions; and
• MonteCarlo: A standard Monte Carlo search algorithm.

2. Evolutionary Algorithm (online source):

• TiamatBot (original): Uses an evolutionary procedure to derive action abstractions (conducted
as a preprocessing step [67]). The generation of action abstractions can be cast as a problem of
selecting a subset of pure strategies from a pool of options. It uses Stratified Strategy Selection
(SSS) to plan in real time in the space defined by the action abstraction thus generated [68].
It outperformed the best performing methods in the 2017 microRTS competition [69] and is
therefore considered as one of the current state-of-the-art gameplaying agents.

3. Tree-Based (part of the microRTS package):

• IDRTMinimax: An iterative-deepening version of RTMinimax (minimax is defined here by
time, not by agent moves) that uses available time to search in a tree as deeply as possible;

• IDRTMinimaxRandomized: An agent that uses randomized alpha-beta (a better assessment
for situations where players execute moves simultaneously);

• IDABCD: Alpha-beta considering duration. It is a modified RTMinimax [70];
• UCT: Standard UCT (with a UCB1 sampling policy);
• PuppetSearchMCTS: An adversarial search framework based on scripts that can expose

choice points to a look-ahead procedure. A Monte Carlo adversarial search tree was used to
search over sequences of puppet moves. The input script into an agent’s constructor was a
basic configurable script that used a Unit Type Table [71].

• NaiveMCTS: A Standard Monte Carlo search, but which uses naïve sampling [72].
Two variations of the same algorithm were used (which differ in their initial parameter
settings): NaiveMCTS#A (max_Depth = 1, εl = 0.33, ε0 = 0.75) and NaiveMCTS#B (max_depth
= 10, εl = 1.00, ε0 = 0.25).

4. Evolutionary and Tree-Based (online source):

• MixedBot: This bot integrates three bots into a single agent. The TiamatBot (improved
original) was used for strategy decisions, Capivara was used for tactical decisions [73],
and MicroRTSbot [74] included a mechanism that could change the time allocated for two
decision parts dynamically based on the number of close armies. MixedBot placed second in
the 2019 microRTS (standard track) competition (first place went to the game bot that also
uses offline/out-game learning [75]).

4.4. Results of the Playtesting Agents

For each of the playtesting agents, Table 6 shows how many times the group’s game feature
representative was validated or invalidated. Table 6 also shows what metric score they acquired.
The weights for calculating the metric score were set as follows: W1 = 1, W2 = 0.5 and W3 = 0. W3 was
set to 0, because the CL class groups are devoid of features. Additionally, empty groups were omitted
from the Table.

To allow for clearer results, we abbreviated the game feature representatives’ labels, e.g., G1 and its
GF3_DIFA Game Feature representative, if validated 50 times and invalidated 0 times, was shortened
to G1GF3(50, 0).
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Table 6. Playtesting agent results for feature validations and their metric score.

Playtesting Agent Groups and Game Features
(Valid num./Invalid num.)

Metric
Score

RandomAI

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(50, 0), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0

RandomBiasedAI

G1GF3(49, 1), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(28, 22), G8GF12(50, 0),
G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),

G17GF13(50, 0)

0.24

MonteCarlo

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

TiamatBot

G1GF3(21, 29), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.08

IDRTMinimax

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

IDRTMinimaxRandomized

G1GF3(50, 0), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.5

IDABCD

G1GF3(49, 1), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.52

UCT

G1GF3(24, 26), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.02

PuppetSearchMCTS

G1GF3(46, 4), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.58

NaiveMCTS#A

G1GF3(11, 39), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.28

NaiveMCTS#B

G1GF3(12, 38), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

1.26

MixedBot

G1GF3(34, 16), G2GF5(50, 0), G3GF10(50, 0), G4GF6(50, 0),
G5GF11(50, 0), G6GF7(50, 0), G7GF8(0, 50), G8GF12(50, 0),

G12GF9(50, 0), G13GF2(50, 0), G14GF4(50, 0), G16GF1(50, 0),
G17GF13(50, 0)

0.82

Table A1, which, due to its size, can be found in Appendix A, shows how the metric score changes
for each of the playtesting agents and all combinations of the W1 to be decreased from 1 to 0.55 (with
steps of 0.05) and those of W2 to be decreased from 0.50 to 0.05 (also with steps of 0.05). Note: the data
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used for calculating the metric scores is the same as those presented in the second column of Table 6.
RandomAI was omitted from Table A1, because its metric score is zero for all the combinations (it did
not invalidate any of the features).

5. Discussion

During the experimentation phase, the microRTS game engine environment performed as expected
(i.e., without visible or known bugs). Our presumption from the start of the experiment was that all
of the Game Features were valid, yet the experiments showed that two of the Game Features were
actually invalid (GF3 and GF8). A closer inspection of the GF3 results, specifically its invalidation
number, revealed that not all of the playtesting agents caught the invalid game feature, and that some
of them only invalidated it in a fraction of tries. Additionally, if the number of scenario repeats would
be set to lower than fifty, it is possible that only the playtesting agents with a better performance would
be successful in finding GF3 to be invalid.

GF3 was invalidated by eight playtesting agents, while GF8 was invalidated by all of them,
with the only exception being the basic RandomAI. The difference in the number of playtesting agents
that invalidated the game features, GF3 and GF8, successfully shows us that some game features are
more sophisticated and require agents that intelligently explore and exploit the search space in question.

We discovered two important guidelines for validation testing:

1. Good agents’ gameplaying performance is important, because it also reflects playtesting
performance; and

2. With a greater number of scenario repeats comes a higher probability of game features being valid.

Our purpose was not to judge the existing gameplaying agents created by the research community
based on the score they achieved. We did, however, use the invalid number part that they attained to
calculate the metric score for metric testing purposes. The results were encouraging. The state-of-the
art evolutionary and tree-based agents were good performers, not just for gameplaying, but also for
playtesting. The line between basic agents (e.g., G1GF3(50, 0)) and advanced ones (e.g., G1GF3(21, 29))
can also be clearly seen. We did not measure the average time for an agent to complete a scenario,
but during playtesting, we noticed that agents that were either basic (e.g., RandomAI) or very good
performers (e.g., NaiveMCTS) completed the validations in the fastest amount of time. We believe that
this resulted from decisions being made quickly (either bad or good).

At this point, we can also provide answers to the research questions presented in the Introduction.
RQ1: the adaptation of a gameplaying agent as a playtesting agent is straightforward, provided that the
game engine follows good software design techniques (components, interfaces, etc.). In our estimation,
this is very important, because it allows for research discoveries in the gameplaying domain to be
transferred to the playtesting domain and probably also for higher adaptation rates of such discoveries
for commercial use. RQ2: In comparing different playtesting agents, our metric relies on the groups
presented in Table 2. The groups belong to different classes (Table 3), each with their own weights.
Additional information for comparisons can also be found based on the calibration of these weights.
For that purpose, Table A1 was created in Appendix A, which shows how the metric score changes in
relation to the changes of the weights. In this way, we can give importance to a specific set of groups
and achieve a greater differentiation between the playtesting agents covering them. RQ3: playtesting
agents are evaluated through game feature definitions using the created metric. The most beneficial
Game Feature definitions are the ones that belong to the groups that are in the high-importance
class, shown in Table 3. RQ4: evolutionary and non-evolutionary approaches in the state-of-the-art
segment both performed well, and their playtesting abilities are high. No major differences were
detected for the game features and scenarios tested. RQ5: the validity of the game feature was defined,
with the condition of the validation procedure inside the component used for the adaptation of the
gameplaying agents.
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6. Conclusions

The experiments provide encouraging results, and we confirmed our belief that playtesting with
agents is important and worthy of further research. Playtesting agents can play in the same scenario
repeatedly and with good results, while repetitive play (e.g., playing the same scenario fifty or more
times) is probably tiresome for human players, who are therefore more prone to making errors. We also
confirmed that our novel metric performed as expected, because the metric scores revealed a certain
consistency when traversing from basic to state-of-the art playtesting agents. To the knowledge of
the authors, such a metric (i.e., one that would evaluate playtesting game agents based on their game
feature performance) does not yet exist. The creation of it is necessary to establish common ground for
the research conducted in the domain of game features and in the domain of playtesting agents.

Through a series of experiments, we were also interested in how different evolutionary-based
playtesting agents explored the search space. The valuable information obtained in our experiments
will serve us as a steppingstone in the development of new playtesting agents that are based on modern
Evolutionary Algorithms, as well as Swarm Intelligence algorithms.
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Appendix A

Table A1. Metric scores with variable weights for all the playtesting agents.

Playtesting Agent Metric Scores

RandomBiasedAI

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.24 0.239 0.238 0.237 0.236 0.235 0.234 0.233 0.232 0.231
0.45 0.218 0.217 0.216 0.215 0.214 0.213 0.212 0.211 0.21 0.209
0.4 0.196 0.195 0.194 0.193 0.192 0.191 0.19 0.189 0.188 0.187

0.35 0.174 0.173 0.172 0.171 0.17 0.169 0.168 0.167 0.166 0.165
0.3 0.152 0.151 0.15 0.149 0.148 0.147 0.146 0.145 0.144 0.143

0.25 0.13 0.129 0.128 0.127 0.126 0.125 0.124 0.123 0.122 0.121
0.2 0.108 0.107 0.106 0.105 0.104 0.103 0.102 0.101 0.1 0.099

0.15 0.086 0.085 0.084 0.083 0.082 0.081 0.08 0.079 0.078 0.077
0.1 0.064 0.063 0.062 0.061 0.06 0.059 0.058 0.057 0.056 0.055

0.05 0.042 0.041 0.04 0.039 0.038 0.037 0.036 0.035 0.034 0.033

MonteCarlo

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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Table A1. Cont.

Playtesting Agent Metric Scores

TiamatBot

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.08 1.051 1.022 0.993 0.964 0.935 0.906 0.877 0.848 0.819
0.45 1.03 1.001 0.972 0.943 0.914 0.885 0.856 0.827 0.798 0.769
0.4 0.98 0.951 0.922 0.893 0.864 0.835 0.806 0.777 0.748 0.719

0.35 0.93 0.901 0.872 0.843 0.814 0.785 0.756 0.727 0.698 0.669
0.3 0.88 0.851 0.822 0.793 0.764 0.735 0.706 0.677 0.648 0.619

0.25 0.83 0.801 0.772 0.743 0.714 0.685 0.656 0.627 0.598 0.569
0.2 0.78 0.751 0.722 0.693 0.664 0.635 0.606 0.577 0.548 0.519

0.15 0.73 0.701 0.672 0.643 0.614 0.585 0.556 0.527 0.498 0.469
0.1 0.68 0.651 0.622 0.593 0.564 0.535 0.506 0.477 0.448 0.419

0.05 0.63 0.601 0.572 0.543 0.514 0.485 0.456 0.427 0.398 0.369

IDRTMinimax

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

IDRTMinimaxRandomized

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

IDABCD

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.52 0.519 0.518 0.517 0.516 0.515 0.514 0.513 0.512 0.511
0.45 0.47 0.469 0.468 0.467 0.466 0.465 0.464 0.463 0.462 0.461
0.4 0.42 0.419 0.418 0.417 0.416 0.415 0.414 0.413 0.412 0.411

0.35 0.37 0.369 0.368 0.367 0.366 0.365 0.364 0.363 0.362 0.361
0.3 0.32 0.319 0.318 0.317 0.316 0.315 0.314 0.313 0.312 0.311

0.25 0.27 0.269 0.268 0.267 0.266 0.265 0.264 0.263 0.262 0.261
0.2 0.22 0.219 0.218 0.217 0.216 0.215 0.214 0.213 0.212 0.211

0.15 0.17 0.169 0.168 0.167 0.166 0.165 0.164 0.163 0.162 0.161
0.1 0.12 0.119 0.118 0.117 0.116 0.115 0.114 0.113 0.112 0.111

0.05 0.07 0.069 0.068 0.067 0.066 0.065 0.064 0.063 0.062 0.061

UCT

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.02 0.994 0.968 0.942 0.916 0.89 0.864 0.838 0.812 0.786
0.45 0.97 0.944 0.918 0.892 0.866 0.84 0.814 0.788 0.762 0.736
0.4 0.92 0.894 0.868 0.842 0.816 0.79 0.764 0.738 0.712 0.686

0.35 0.87 0.844 0.818 0.792 0.766 0.74 0.714 0.688 0.662 0.636
0.3 0.82 0.794 0.768 0.742 0.716 0.69 0.664 0.638 0.612 0.586

0.25 0.77 0.744 0.718 0.692 0.666 0.64 0.614 0.588 0.562 0.536
0.2 0.72 0.694 0.668 0.642 0.616 0.59 0.564 0.538 0.512 0.486

0.15 0.67 0.644 0.618 0.592 0.566 0.54 0.514 0.488 0.462 0.436
0.1 0.62 0.594 0.568 0.542 0.516 0.49 0.464 0.438 0.412 0.386

0.05 0.57 0.544 0.518 0.492 0.466 0.44 0.414 0.388 0.362 0.336
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Table A1. Cont.

Playtesting Agent Metric Scores

PuppetSearchMCTS

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.58 0.576 0.572 0.568 0.564 0.56 0.556 0.552 0.548 0.544
0.45 0.53 0.526 0.522 0.518 0.514 0.51 0.506 0.502 0.498 0.494
0.4 0.48 0.476 0.472 0.468 0.464 0.46 0.456 0.452 0.448 0.444

0.35 0.43 0.426 0.422 0.418 0.414 0.41 0.406 0.402 0.398 0.394
0.3 0.38 0.376 0.372 0.368 0.364 0.36 0.356 0.352 0.348 0.344

0.25 0.33 0.326 0.322 0.318 0.314 0.31 0.306 0.302 0.298 0.294
0.2 0.28 0.276 0.272 0.268 0.264 0.26 0.256 0.252 0.248 0.244

0.15 0.23 0.226 0.222 0.218 0.214 0.21 0.206 0.202 0.198 0.194
0.1 0.18 0.176 0.172 0.168 0.164 0.16 0.156 0.152 0.148 0.144

0.05 0.13 0.126 0.122 0.118 0.114 0.11 0.106 0.102 0.098 0.094

NaiveMCTS#A

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.28 1.241 1.202 1.163 1.124 1.085 1.046 1.007 0.968 0.929
0.45 1.23 1.191 1.152 1.113 1.074 1.035 0.996 0.957 0.918 0.879
0.4 1.18 1.141 1.102 1.063 1.024 0.985 0.946 0.907 0.868 0.829

0.35 1.13 1.091 1.052 1.013 0.974 0.935 0.896 0.857 0.818 0.779
0.3 1.08 1.041 1.002 0.963 0.924 0.885 0.846 0.807 0.768 0.729

0.25 1.03 0.991 0.952 0.913 0.874 0.835 0.796 0.757 0.718 0.679
0.2 0.98 0.941 0.902 0.863 0.824 0.785 0.746 0.707 0.668 0.629

0.15 0.93 0.891 0.852 0.813 0.774 0.735 0.696 0.657 0.618 0.579
0.1 0.88 0.841 0.802 0.763 0.724 0.685 0.646 0.607 0.568 0.529

0.05 0.83 0.791 0.752 0.713 0.674 0.635 0.596 0.557 0.518 0.479

NaiveMCTS#B

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 1.26 1.222 1.184 1.146 1.108 1.07 1.032 0.994 0.956 0.918
0.45 1.21 1.172 1.134 1.096 1.058 1.02 0.982 0.944 0.906 0.868
0.4 1.16 1.122 1.084 1.046 1.008 0.97 0.932 0.894 0.856 0.818

0.35 1.11 1.072 1.034 0.996 0.958 0.92 0.882 0.844 0.806 0.768
0.3 1.06 1.022 0.984 0.946 0.908 0.87 0.832 0.794 0.756 0.718

0.25 1.01 0.972 0.934 0.896 0.858 0.82 0.782 0.744 0.706 0.668
0.2 0.96 0.922 0.884 0.846 0.808 0.77 0.732 0.694 0.656 0.618

0.15 0.91 0.872 0.834 0.796 0.758 0.72 0.682 0.644 0.606 0.568
0.1 0.86 0.822 0.784 0.746 0.708 0.67 0.632 0.594 0.556 0.518

0.05 0.81 0.772 0.734 0.696 0.658 0.62 0.582 0.544 0.506 0.468

MixedBot

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

0.5 0.82 0.84 0.788 0.772 0.756 0.74 0.724 0.708 0.692 0.676
0.45 0.77 0.754 0.738 0.722 0.706 0.69 0.674 0.658 0.642 0.626
0.4 0.72 0.704 0.688 0.672 0.656 0.64 0.624 0.608 0.592 0.576

0.35 0.67 0.654 0.638 0.622 0.606 0.59 0.574 0.558 0.542 0.526
0.3 0.62 0.604 0.588 0.572 0.556 0.54 0.524 0.508 0.492 0.476

0.25 0.57 0.554 0.538 0.522 0.506 0.49 0.474 0.458 0.442 0.426
0.2 0.52 0.504 0.488 0.472 0.456 0.44 0.424 0.408 0.392 0.376

0.15 0.47 0.454 0.438 0.422 0.406 0.39 0.374 0.358 0.342 0.326
0.1 0.42 0.404 0.388 0.372 0.356 0.34 0.324 0.308 0.292 0.276

0.05 0.37 0.354 0.338 0.322 0.306 0.29 0.274 0.258 0.242 0.226
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