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Abstract: Soft topology studies a structure on the collection of all soft sets on a given set of alternatives
(the relevant attributes being fixed). It is directly inspired by the axioms of a topological space.
This paper contributes to the theoretical bases of soft topology in various ways. We extend a general
construction of soft topologies from topologies on the set of alternatives in two different directions.
An extensive discussion with criteria about what a soft counterpart of “topological separability”
should satisfy is also given. The interactions of the properties that arise with separability, and of
second-countability and its soft counterpart, are studied under the general mechanisms that generate
soft topological spaces. The first non-trivial examples of soft second-countable soft topological spaces
are produced as a consequence.
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1. Introduction

Soft topology stands at the junction of soft set theory [1] and topology [2,3]. It is concerned with a
structure on the set of all soft sets, and is inspired by the standard axioms of a topological space.

Soft sets were introduced to describe a universe of alternatives by a set of relevant attributes.
Soft set theory has been a thriving field of research and interaction with other disciplines ever since its
establishment in 1999. Specifically, the field of soft topology was independently set up by the works of
Çağman, Karataş and Enginoglu [4] and Shabir and Naz [5]. Although many sudies followed their
directions, the growth of the literature has been irregular and there is a scant collection of keystone
articles and results. We acknowledge the foremost role of [6–11] among others.

This article has several objectives. Its driving force is the construction of soft topologies on the set
of alternatives from elements pertaining to standard topology theory (either a collection of topologies,
or bases of topologies). We also propose some axioms of ‘soft separability’ and study their behavior
and the theoretical properties of soft second-countability.

Let us give a more precise list of the research goals of this paper.
First, we improve a known process that produces a soft topology from one topology by the

recourse to a family of topologies (one for each attribute). Despite its generality, we will show that this
procedure interacts nicely with interesting axioms.

Secondly, we perform a specific analysis of what ‘soft separability’ should mean, as an extension of
the usual concept of topological separability. Three criteria for the suitability of the soft counterpart(s)
of topological separability are proposed. Then, two related concepts are put forward. They rely on
completely different approaches to the idea of ‘soft separability’, however, they are not independent.
Their relationship with topological separability is analyzed through the (improved) process that passes
topologies on to soft topologies. Soft second-countability, which is quite indisputable as an axiom
in soft topology, is strictly stronger than these concepts, and we prove by example that it is indeed
different from them.
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From a theoretical standpoint, we prove a characterization of soft second-countable topologies
that are generated by several topologies from the aforementioned procedure. When the set of attributes
is at most countable, soft second-countability is equivalent to the fact that all the topologies associated
with the attributes are second-countable.

Last but not least, we introduce a practical new procedure that produces soft topologies and
depends upon a family of bases for topologies (one for each attribute). It allows us to visualize
soft topologies in a simpler manner because bases are simpler than topologies and the same is
true in the field of soft topologies. Another advantage is that it is a very natural way for the
analysis of soft second-countability. Actually, with the help of this construction we put forward
several non-trivial classes of (countable and uncountable) soft topological spaces with the soft
second-countability property.

The remainder of this paper is organized as follows. Section 2 briefly recalls some basic notions
concerning soft sets and soft topologies. We also show how a family of topologies (one for each
attribute) can be used to generate a soft topology. Section 3 discusses the elusive concept of ‘soft
separability’. Here we make some new proposals and discuss why they are nice candidates for being
accepted as suitable extensions of the concept of separability in topology. Section 4 addresses our
characterization of soft second-countability of soft topologies generated by families of topologies.
Section 5 introduces a novel construction of soft topologies from bases for a crisp topology. Finally,
the last section summarizes this study and suggests possible future works.

2. Preliminaries

Henceforth, P(X) denotes the set of parts of a set X, i.e., P(X) is the set formed by all the subsets
of X. In this section, we briefly recall the rudiments of soft set theory and soft topology. To emphasize
the distinction between topologies and soft topologies, we sometimes use the term “crisp topology” to
refer to a standard topology on a set. For the basic notions in (crisp) topology that we use, the reader
can refer to Munkres [2] and Willard [3].

In this paper, X is a fixed nonempty set, often called a universe of discourse, and E is a set of
attributes. Unless otherwise stated, henceforth X and E are unrestricted sets, i.e., they are possibly very
large. We underline this feature because in almost all examples in the literature about soft topologies,
both X and E are finite.

2.1. Soft Sets and Their Operations

According to [1], a soft set on X is a pair (F, E) where F is a mapping F : E −→ P(X). It is assumed
that set E consists of all relevant attributes. Thus, a soft set over X is regarded as a parameterized
family of subsets of X. The collection of all soft sets on X with attributes E is denoted as SSE(X),
or simply SS(X) when E is common knowledge.

When e ∈ E, the subset F(e) ⊆ X is called the set of e-approximate elements of X, or alternatively,
the subset of X approximated by e.

Examples include the null Φ and the absolute X̃ soft sets on X. They satisfy Φ(e) = ∅ for each
e ∈ E, and X̃(e) = X for each e ∈ E, respectively.

Soft sets on X with F(e) finite, resp., countable, for each e ∈ E are called finite, resp., countable,
soft sets on X [8,9].

Soft points are also special soft sets. Two concepts have appeared in the literature under the same
term [8,11], but we only need one of them. Thus, in this paper, soft points are soft sets (F, E) for which
there exists x ∈ X such that F(e) = {x} for all e ∈ E, and we denote by ({x}, E) this soft point [11].
Note that in [8] and elsewhere, the term soft points has also been used for soft sets (F, E) for which
there exists x ∈ X and e ∈ E such that F(e) = {x} and F(e′) = ∅ for all e′ ∈ E \ {e}.

Two notations make it easier to operate with soft sets.

(1) The soft set (F, E) described above is usually represented as {(e, F(e)) : e ∈ E}.
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(2) Assume a finite environment such that X = {x1, x2, . . . , xm} and E = {e1, e2, . . . , en}. Then the
soft set (F, E) can be represented in tabular form as in Figure 1.

In this representation, the binary digit rjk is 1 when xj ∈ F(ek) and it is 0 otherwise.

(F, E) e1 e2 · · · en
x1 r11 r12 · · · r1n
x2 r21 r22 · · · r2n
...

...
...

...
xm rm1 rm2 · · · rmn

Figure 1. The tabular representation of a soft set (F, E).

Unions, intersections, inclusions and complements are standard set-theoretic operations on soft
sets [12]. Unions and intersections of two soft sets on a common set X are defined as follows (and their
extensions to arbitrary collections of soft sets are immediate): when (F1, E), (F2, E),

(F1, E) t (F2, E) is (F3, E) ∈ SSE(X) such that F3(e) = F1(e) ∪ F2(e) for each e ∈ E, and (F1, E) u
(F2, E) is (F4, E) ∈ SSE(X) such that F4(e) = F1(e) ∩ F2(e) for each e ∈ E.

We write (F1, E) v (F2, E) when F1(e) ⊆ F2(e) for each e ∈ E.
Finally, the complement of (F, E) ∈ SSE(X) is (F, E)c = (Fc, E) ∈ SSE(X) with the property

that Fc(e) = X \ F(e) for each e ∈ E. In the tabular representation, the complement swaps 0’s and
1’s elsewhere.

Aygünoğlu and Aygün [7], Theorem 2.1 summarize results on the behavior of these operators
from [12,13]. They endow SSE(X) with the structure of a Boolean lattice.

2.2. Soft Topologies, Soft Bases and Soft Open Bases

The main concept in this section was independently proposed by Çağman, Karataş and
Enginoglu [4] and Shabir and Naz [5].

Definition 1 ([4,5]). A soft topology τ on X is defined as a collection of soft sets on X, τ ∈ P(SSE(X)),
with the following properties:

(1) Φ, X̃ ∈ τ;
(2) the union of soft sets in τ belongs to τ; and
(3) the intersection of a finite number of soft sets in τ belongs to τ.

In this definition, union means t and intersection means u.
The literature has produced few examples of soft topologies. Beyond the trivial cases (τid =

{Φ, X̃}, the indiscrete soft topology, and τd = SS(X), the discrete soft topology [5], Definitions 21
and 22) and some specific examples, the only general construction we are aware of appeared in
Terepeta [11].

Definition 2 ([11]). Suppose that Σ is a crisp topology on X.
The soft topology on X generated by Σ, τ(Σ), is the collection of all soft sets (F, E) on X for which every

F(e) lies in Σ. Formally:

τ(Σ) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that F(e) ∈ Σ for each e ∈ E

}
. (1)

The single set soft topology on X generated by Σ, τ̂(Σ), is the collection of all soft sets (F, E) on X for
which there is T ∈ Σ such that every F(e) coincides with T. Formally:

τ̂(Σ) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that F(e) = F(e′) ∈ Σ for each e, e′ ∈ E

}
. (2)
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The next example demonstrates the applicability of the procedure in Definition 2.

Example 1. Suppose that Σc is the cofinite topology on X, also called the topology of finite complements ([3],
Example 3.8 a). This is the topology that declares open those subsets of X whose complements are finite, together
with ∅. When X is finite, it is the discrete topology. When X is uncountably infinite, the topology is separable
but not first-countable, therefore not second-countable [14], II.19.

The soft topology on X generated by Σc, namely, τ(Σc), is called the cofinite soft topology on X.
It can be characterized as follows:

τ(Σc) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that X \ F(e) is finite, for each e ∈ E

}
=

{
(F, E) ∈ SSE(X) such that (F, E)c is a finite soft set

}
(3)

It is in this guise that the cofinite soft topology was introduced by [9], Definition 3.2. Here we just present
it as an application of Definition 2.

Observe that the general construction of soft topologies given by Definition 2 can be improved by
the recourse to several topologies, one for each attribute:

Corollary 1. Suppose that Σ = {Σe}e∈E is a family of crisp topologies on X, indexed by a set E. Then

τ(Σ) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that F(e) ∈ Σe for each e ∈ E

}
(4)

is a soft topology on X. When Σe = Σe′ = Σ for each e, e′ ∈ E, τ(Σ) = τ(Σ).

We say that τ(Σ) is the soft topology on X generated by the family of topologies Σ. It is the
collection of all soft sets (F, E) on X for which every F(e) lies in Σe. When all the Σe coincide (to a
common topology Σ) then the soft topologies on X generated by the family Σ and the topology Σ
coincide as well.

Just like bases are collections of subsets that generate topologies, soft bases are collections of soft
sets that produce a soft topology by taking the set formed by all unions of their elements. The abstract
concept of a soft base for a given soft topology has been known since [4].

Definition 3 ([4]). Suppose that τ is a soft topology on X. Then B ⊆ τ is a soft base for τ when every
(F, E) ∈ τ can be expressed as a union of soft sets from B.

However Definition 3 cannot be used to enlarge the catalogue of actual soft topologies. Roy and
Samanta [10] produced a related concept that can be eventually used to this purpose (but we believe
that it has never been used to create distinguished soft topologies).

Definition 4 ([10]). Suppose that B ∈ P(SSE(X)) is a collection of soft sets on X. It is a soft open base for a
soft topology on X, when B satisfies the following conditions:

(1) Φ ∈ B;
(2) the union of all soft sets in B is X̃, i.e., for each e ∈ E and x ∈ X, there exists (Fx, E) ∈ B such that

x ∈ Fx(e); and
(3) when (F1, E), (F2, E) ∈ B and x ∈ ((F1, E) u (F2, E))(e) = F1(e) ∩ F2(e), there exists (G, E) ∈ B such

that (G, E) v (F1, E) u (F2, E) and x ∈ G(e).

Roy and Samanta [10], Theorem 13 establish the soft topology generated by a soft open base B,
denoted τB . Their Theorem 16 proves that B ⊆ τB is a soft base for τB in the sense of Definition 3.
Thus, the members of τB are exactly the soft sets that can be written as a union of soft sets from B.
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In other words, a soft set (F, E) belongs to τB if and only if there is a family {(Fi, E)}i∈I of members of
B such that (F, E) = ti∈I(Fi, E). And conversely, their Theorem 17 proves that any soft base for a soft
topology τ on X (in the sense of Definition 3) must be a soft open base for a soft topology (in the sense
of Definition 4).

Quite naturally, we say that a soft topology is soft second-countable (S2C) when there is a soft
base for it with countably many elements [8], Definition 4.32. This definition is a faithful replication
of the pattern of a second-countable topological space. In contrast, the notion of soft separability is
controversial. The next section discusses this issue in depth.

3. Soft Separability: New Proposal

In the case of crisp topologies, separability amounts to the existence of a countable dense subset.
Remember that when Σ is a crisp topology on X, U ⊆ X is dense in X if its topological closure is X,
i.e., if Cl(U) = X.

Attempts have been made to define soft separability of a soft topology on X. The only reliable
source for a definition was given by Das and Samanta [8] in the context of soft metric spaces. It mimics
the standard definition in crisp topologies. However this comes at the cost of being rather difficult
to handle. It may also be possible to put forward alternative definitions with a different principle.
Whereas [8] builds on countable soft sets whose soft closure is the absolute soft set X̄, one might
instead rely on the existence of countable collections of soft points with a similar behavior.

At any rate, a nice concept of soft separability is requested to satisfy three desirable characteristics:

(1) It should, to some extent, replicate the spirit of separability in crisp topologies.
(2) It must be implied by S2C, which is universally accepted.
(3) It should be easy to understand and amenable to technical operations.

In our view Das and Samanta’s soft separability meets the first two characteristics. It is a matter of
opinion whether the third one is met, since it is highly subjective as a foundation for a concept of soft
separability. Nevertheless, separability of crisp topologies is indeed simple to explain and we would
expect a similarly undemanding notion in the soft context.

All things considered, we proceed to study soft separability with two principles in mind. First,
the distinction between soft separabilities based on countable soft sets versus countable collections of
‘soft points’. We dedicate separate subsections to each position. Secondly, a simpler approach to the
concept that understands density (thus separability) as follows:

Lemma 1. Suppose that Σ is a crisp topology on X, and U ⊆ X. Then U is dense in X (i.e., Cl(U) = X) if
and only if each non-empty V ∈ Σ intersects U (i.e., U ∩V 6= ∅ for each V ∈ Σ \ {∅}).

Therefore Σ is a separable crisp topology on X if and only if there is a countable U ⊆ X such that
U ∩V 6= ∅ for each V ∈ Σ, V 6= ∅.

It is this alternative (and equivalent) definition of separability that we intend to extend to the
realm of soft topologies. To avoid further confusion with existing literature, our two adapted versions
of topological separability will avoid this term. In this we follow Munkres [2], Chapter 4, §30, who
claims that the name separability is “an unfortunate choice of terminology” and “a good example
of how a word can be overused”. Indeed, separation of a space and separation axioms in topology
are based on very different ideas. And the same goes for soft topology. In addition, we will give
persuasive arguments to recommend these ideas as convenient extensions of the idea of separability to
soft topological spaces.

For further use we define a special type of soft sets. They are vaguely related to the idea of soft
points in [8].

Definition 5. For any U ⊆ X and e ∈ E, we define (Fe
U , E) ∈ SSE(X) such that Fe

U(e) = U and Fe
U(e
′) = ∅

when e′ 6= e.
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3.1. Soft Separability as Countable Soft-Set Density

In view of Lemma 1, it is natural to extend the spirit of topological separability as follows:

Definition 6. Suppose that τ is a soft topology on X. We say that
(F, E) ∈ SSE(X) is τ-soft dense in X if (F, E) u (G, E) 6= Φ, for every (G, E) ∈ τ, (G, E) 6= Φ; and
τ is countably soft-set-dense (henceforth CS2D) if there is a countable soft set that is τ-soft dense in X.

Thus, CS2D is similar to Das and Samanta’s soft separability in that it postulates the existence of a
countable soft set with suitable characteristics. The difference is that our concept bypasses the appeal
to additional definitions, like soft closures or soft limit points, in order to replicate the behavior of a
countable dense set in crisp topologies.

To avail CS2D as a sensible separability-type concept, we do two things. We confirm that it is
implied by S2C in the next section (cf., Proposition 1). In addition, Section 3.3 establishes a strong link
of CS2D with separability in the context of standard topologies.

3.2. Soft Separability as Soft-Points Countable Density

An alternative way of extending topological separability—defined by Lemma 1—to soft topologies
uses countable collections of ‘soft points’ instead of one countable soft set.

We propose to capture the spirit of topological separability in the following additional form:

Definition 7. Suppose that τ is a soft topology on X. We say that
F ∈ P(SSE(X)) is soft τ-dense in X if for every (G, E) ∈ τ, (G, E) 6= Φ, it must be the case that

(F, E) u (G, E) 6= Φ for some (F, E) ∈ F ; and
τ is soft-points countably-dense (henceforth SPCD) if there is a countable collection F of soft points that is

soft τ-dense in X.

Observe that SPCD implies CS2D:

Lemma 2. Suppose that τ is a SPCD soft topology on X. Then τ is CS2D.

Proof. There exists a countable family of soft points, F = {({xi}, E) | i ∈ I}, with I countable and the
property that for every (G, E) ∈ τ, (G, E) 6= Φ, there is i ∈ I such that ({xi}, E) u (G, E) 6= Φ.

Consider (F, E) such that F(e) = {xi | i ∈ I}, a countable subset of X, for each e ∈ E. We have
thus defined (F, E) ∈ SSE(X), a countable soft set. It is obvious that (F, E) is τ-soft dense.

More importantly, SPCD (thus CS2D) is implied by S2C:

Proposition 1. Let τ be a S2C soft topology τ on X. Then τ is SPCD, thus CS2D.

Proof. There exists a countable soft base B = {(Fi, E) | i ∈ I} for τ. Therefore I is countable and
(Fi, E) ∈ SSE(X) for each i ∈ I.

For each i ∈ I, if (Fi, E) 6= Φ = (Fi0 , E) there is e ∈ E such that Fi(e) 6= ∅, thus we can select
xi ∈ Fi(e). We let I0 = I \ {i0}.

Consider the countable family of soft points F = {({xi}, E) | i ∈ I0} thus defined. We claim that
it is soft τ-dense in X, which proves that τ is SPCD.

Fix (G, E) ∈ τ, (G, E) 6= Φ. Because B is a soft base for τ, (G, E) = ti∈J(Fi, E) for some J ⊆ I.
Now we select j ∈ J for which there exists e ∈ E with Fj(e) 6= ∅. By construction, ({xj}, E) ∈ F .
As xj ∈ Fj(e) ⊆ G(e), we can guarantee ({xj}, E) u (G, E) 6= Φ.

At the end of Section 3.3 we prove that S2C is not implied by SPCD.
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3.3. Relationships with Crisp Separability

The next two results show both that Corollary 1 is useful, and that our new notions in this section,
are conveniently linked to the standard notion of separability in topology:

Proposition 2. Suppose that Σ = {Σe}e∈E is a family of topologies on X, such that Σe′ is separable for some
e′ ∈ E. Then the soft topology τ(Σ) is SPCD, thus CS2D.

In particular, if Σ is separable topology on X then the soft topology τ(Σ) on X is SPCD (and CS2D).

Proof. Let us fix {xj | j ∈ I}, a countable dense subset of Σe′ . We prove that {({xj}, E) | j ∈ I} is
soft τ(Σ)-dense in X. To see that this countable collection of soft points satisfies the requirements of
Definition 7, let us fix an arbitrary (F, E) ∈ τ(Σ). Since F(e′) ∈ Σe′ , there must exist i ∈ I such that
xi ∈ F(e′), which implies ({xi}, E) u (F, E) 6= Φ. Therefore Σ is SPCD.

The consequence on τ(Σ) when Σ is separable is now obvious.

It is also possible to prove a converse of Proposition 2:

Proposition 3. Suppose that Σ = {Σe}e∈E is a family of topologies on X, such that τ(Σ) is CS2D. Then Σe is
separable for each e ∈ E. In particular, if Σ is a topology on X such that the soft topology τ(Σ) on X is CS2D
(or SPCD) then Σ is separable.

Proof. Let us fix (F, E), a countable τ(Σ)-soft dense set in X. We claim that for each e ∈ E, F(e) is
dense in X with the Σe topology. Note that by definition, it is a countable subset of X.

We appeal to Lemma 1. Let us fix U ∈ Σe. We define the soft set (Fe
U , E) ∈ τ(Σ) (cf., Definition 5).

Because (F, E) is τ(Σ)-soft dense, it must be the case that (F, E) u (Fe
U , E) 6= Φ. This necessarily entails

F(e) ∩U 6= ∅.
The consequence on τ(Σ) is now obvious.

Finally, Example 1 help us to check that S2C is indeed different from SPCD. Suppose that
E = {e} and that X is uncountable. Then τ(Σc), the cofinite soft topology on X, is SPCD because Σc,
the crisp cofinite topology on X, is separable and we can invoke Proposition 2. The fact that Σc is not
second-countable easily proves that τ(Σc) cannot be S2C. Nevertheless this fact can also be established
by an appeal to Corollary 2 below.

4. A Characterization of Soft Second-Countability for Soft Topologies

Second-countable crisp topologies are those that have countable bases. It is straightforward to
extend the concept to soft topologies: remember that a soft topology with a countable soft base is
a soft second-countable or S2C soft topology. This concept is superfluous when both X and E are
finite because in this case, all soft topologies are finite (i.e., formed by a finite number of soft sets) thus
countable; and countable soft topologies are obviously S2C. In this section we avail ourselves of the
ideas in Section 5.1 in order to produce the first non-trivial soft second-countable soft topologies in
the literature.

Theorem 1. Let Σ be a second-countable topology on X. Then when E is finite, τ(Σ) is S2C.

Proof. Let β be a countable base for Σ. Theorem 3 ensures that τ(Σ) = τB(β) thus B(β) is a soft open
base for τ(Σ) by [10], Theorem 16. We just need to observe that B(β) is countable when E is finite.

In fact, a direct arguments proves an improvement of Theorem 1:

Theorem 2. Let Σ = {Σe}e∈E be a family of topologies on X, such that Σe is second-countable for each e ∈ E.
Then when E is countable, τ(Σ) is S2C.
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Proof. Let {βe} be a countable base for Σe, for each e ∈ E. We claim that

B = {(Fe
U , E) such that U ∈ βe for each e ∈ E} = ∪e∈E{(Fe

U , E) such that U ∈ βe} (5)

is a countable soft base for τ(Σ). It is a countable family because E is countable, each {βe} is countable,
and the countable union of countable sets is countable. Its members belong to τ(Σ) by definition of
this soft topology. To prove that B is a soft base of τ(Σ), let us fix (F, E) ∈ τ(Σ), i.e., F(e) ∈ Σe for
each e ∈ E.

Then there exist {Ui}i∈I(e), respective subfamilies of open sets in βe with the property that
F(e) = ∪i∈I(e)Ui for each e ∈ E. Note that for each U ∈ {Ui}i∈I(e) and e ∈ E, the soft set (Fe

U , E)
belongs to B by definition.

The reader can easily check that F = {(Fe
U , E) such that U ∈ {Ui}i∈I(e) for each e ∈ E} ⊆ B

satisfies (F, E) = t{(Fe
U , E)|(Fe

U , E) ∈ F}.

We can also prove a converse to this result. Its proof follows that of Proposition 3 closely.

Proposition 4. Suppose that Σ = {Σe}e∈E is a family of topologies on X, such that τ(Σ) is S2C. Then Σe

is second-countable for each e ∈ E. In particular, if Σ is a topology on X such that τ(Σ) is S2C then Σ is
second-countable.

Proof. Let us select {(Fi, E)}i∈I , a countable soft base of τ(Σ) in X. We claim that for each e ∈ E,
the countable collection {Fi(e)}i∈I is a base of the Σe topology. Note that Fi(e) ∈ Σe for each i ∈ I and
e ∈ E, by definition of τ(Σ).

Let us fix U ∈ Σe. We define the soft set (Fe
U , E) as in Definition 5, then (Fe

U , E) ∈ τ(Σ). Because
{(Fi, E)}i∈I is a soft base of τ(Σ), (Fe

U , E) = tj∈J(Fj, E) for some subfamily J ∈ I. This necessarily
entails Fe

U(e) = U = ∪j∈J Fj(e). We conclude that {Fi(e)}i∈I is a base of Σe.
The particular consequence for τ(Σ) is now obvious.

If we combine Theorem 2 and Proposition 4 we readily deduce a very appealing property of the
soft topology defined in Corollary 1:

Corollary 2. Suppose that Σ = {Σe}e∈E is a family of topologies on X, and E is a countable set of attributes.
Then τ(Σ) is a S2C soft topology on X if and only if Σe is second-countable for each e ∈ E.

5. A New Constructive Method of Soft Topologies

This section introduces a novel procedure for the construction of soft topologies. It builds on the
concept of a base for a crisp topology. We investigate some fundamental properties of this mechanism.

5.1. Soft Topologies Generated by Bases for Crisp Topologies

Our first result in this section shows how any base for a crisp topology on X generates a soft
topology on X, for any fixed set of attributes E.

Proposition 5. Let β be a base for a topology Σ on X. Then the collection of soft sets on X

B(β) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that F(e) ∈ β ∪ {∅} for each e ∈ E

}
(6)

is a soft open base for a soft topology on X.

Proof. We prove that B(β) satisfies the three requirements of Definition 4. Actually, B(β) agrees with
(1) and (3) in that Definition, and also with a property implying (2).

Note that Φ = {(e, Φ(e)) : e ∈ E} satisfies Φ(e) = ∅, therefore it is clearly a member of B(β) by
construction. This ensures (1).
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We claim that for each x ∈ X, there exists (Fx, E) ∈ B(β) such that ({x}, E) v (Fx, E). Observe
that this property of B(β) is stronger than (2). Let us fix x ∈ X. There exists x ∈ Bx ∈ β therefore if we
define (Fx, E) by Fx(e) = Bx for each e ∈ E, then ({x}, E) v (Fx, E) ∈ B(β) by definition.

In order to prove (3), suppose that (F1, E), (F2, E) ∈ B(β) and x ∈ ((F1, E) u (F2, E))(e) =

F1(e) ∩ F2(e). For each e′ ∈, e′ 6= e, we define G(e′) = ∅. Note that F1(e), F2(e) ∈ β ∪ {∅} by
construction, β is a base for a topology on X by assumption, and x ∈ F1(e) ∩ F2(e) 6= ∅. Therefore
there exists G(e) ∈ β such that x ∈ G(e) ⊆ F1(e) ∩ F2(e). We have thus defined (G, E) ∈ B(β) with the
properties (G, E) v (F1, E) u (F2, E) and x ∈ G(e).

Actually, a straightforward modification of the proof of Proposition 5 assures that we can produce
a more general construction than the procedure that it proposes.

Corollary 3. Suppose that β̄ = {βe}e∈E is a family of bases for respective topologies on X, indexed by a set E.

Then B(β̄) =
{
{(e, F(e)) : e ∈ E} ∈ SSE(X) such that F(e) ∈ βe ∪ {∅} for each e ∈ E

}
is a soft open base

for a soft topology on X.

To demonstrate the implementability of the above Corollary, we consider the following
toy example.

Example 2. Let X = {x, y, z}. Two bases for respective topologies on X are βe1 = {∅, X, {y}} and βe2 =

{∅, X, {y, z}}. Define E = {e1, e2}. Then Corollary 3 assures that a soft open base for a soft topology on X is
defined as the collection of the nine soft sets represented by Table 1. The first one is ΦE whereas the last one is X̃.

Table 1. Tabular representations of the nine members of the soft open base in Example 2.

X e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2 e1 e2

x 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1
y 0 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1
z 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1

We are ready to formulate a problem whose solution constitutes the main result of this section.
Suppose that β is a base for a (crisp) topology Σ on X. From these items we can produce two apparently
different soft topologies on X, namely, τ(Σ) and τB(β). Definition 2 gives τ(Σ). Roy and Samanta [10],
Theorems 13,16 give τB(β) by virtue of Proposition 5. Our next theorem proves that both soft topologies
on X coincide.

Theorem 3. Let β be a base for a (crisp) topology Σ on X. Then τ(Σ) = τB(β).

Proof. We prove by double inclusion the set identity τ(Σ) = τB(β).
Recall that Roy and Samanta [10], Theorem 16 establish that B(β) is a soft base for τB(β) in the

sense of Definition 3. Thus, the members of τB(β) are exactly the soft sets that can be written as a union
of soft sets from B(β). In other words, a soft set (F, E) belongs to τB(β) if and only if there is a family
{(Fi, E)}i∈I of members of B(β) such that (F, E) = ti∈I(Fi, E).

In order to prove τ(Σ) ⊆ τB(β), suppose (F, E) ∈ τ(Σ). If we write (F, E) = {(e, F(e)) : e ∈ E}
then the definition of τ(Σ) implies F(e) ∈ Σ for each e ∈ E. Because β is a base for Σ, with each e ∈ E
we can associate a family {Gi(e)}i∈I(e) of members of β such that F(e) = ∪i∈I(e)Gi(e). Let us define a
family of soft sets on X that belong to B(β), as follows:

{(Fi, E)}i∈I = {(F′, E) = {(e, F′(e)) : e ∈ E} ∈ SSE(X) such that F′(e) = Gi(e), some i ∈ I(e)}. (7)

Because each (F′, E) in this family belongs to B(β) by construction, and it is easy to check for the
equality (F, E) = ti∈I(Fi, E), we can conclude (F, E) ∈ τB(β).
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Conversely, let us fix (F, E) ∈ τB(β). There is {(Fi, E)}i∈I ⊆ B(β) such that (F, E) = ti∈I(Fi, E).
By definition of B(β), Fi(e) ∈ β ∪ {∅} for each e ∈ E and i ∈ I. By definition of t, (F, E) must satisfy
F(e) = ∪i∈I Fi(e) ∈ Σ for each e ∈ E. This in turn assures (F, E) ∈ τ(Σ) by definition of τ(Σ).

The diagram in Figure 2 summarizes the elements that produce Theorem 3.

X SSE(X)

B base B(β) soft open base τB(β) soft topology

Σ topology τ(Σ) soft topology

Figure 2. The commutativity diagram involving the two soft topologies in Theorem 3.

5.2. New Non-Trivial Soft Second-Countable Soft Topologies

Let us now show that the combination of Theorems 1 and 3 permits to define non-trivial examples
of S2C soft topologies. The next example focuses on countable sets X.

Example 3. Let X = N. Bases for respective crisp topologies on X are

β1 =
{
{n, n + 1, . . .} | n ∈ N

}
[3], Problem 5.B, Chapter 2, which is clearly countable (thus the topology

Σ1 that it generates is second-countable); and

βF =
{

A ⊂ N | either 1 /∈ A or N \ A is finite
}

. This is a base for a countable Fort topology on X, ΣF,
which is second-countable [14], II.24.

Let Y = {2, 3, 4 . . .} ⊆ N. Consider for each n > 2, the set of the form Bn = {x ∈ N | x divides n}.
The family βD = {Un}n>2 is a base for the divisor topology on Y, ΣD, which is second-countable [14], II.57
because all elements in the base are finite thus the base itself is countable.

Thus, for any countable set of attributes E, S2C soft topologies on N are τ(Σ1) = τB(β1)
and τ(ΣF) =

τB(βF)
. And a S2C soft topology on Y is τ(ΣD) = τB(βD). The argument in the proof of Theorem 2 provides

formal expressions of respective countable soft bases of these soft topologies.
Actually, we can assure that when E is finite, B(β1) is a countable soft open base of τ(Σ1), and that B(βD)

is a countable soft open base of τ(ΣD). The argument in the proof of Theorem 1 proves this claim.
Table 2 displays a summary of the tabular representations of the elements in B(β1), the countable soft open

base of the soft topology τ(Σ1) on X, when E = {e1, e2}.

One can also use the procedure above to produce S2C soft topologies on uncountable sets of
alternatives. For example, the Euclidean topology Σe on X = R is second-countable so with any
countable set of attributes E we can assure that τ(Σe) is a S2C soft topology on R. In fact with each
countable base for Σe, e.g., the collection βe of open intervals with rational extremes, we can associate
a countable soft open base for τ(Σe) (see the argument in the proof of Theorem 2). When E is finite,
B(βe) for τ(Σe) is another countable soft open base for τ(Σe).
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Table 2. Tabular representations of the countably many members of the soft open base B(β1) for a soft
topology on X = N in Example 3: A summary.

X e1 e2 e1 e2 e1 e2 e1 e2 . . . e1 e2 e1 e2 e1 e2

1 0 0 0 1 0 0 0 0 . . . 1 1 1 0 1 0 . . .
2 0 0 0 1 0 1 0 0 . . . 1 1 1 1 1 0 . . .
3 0 0 0 1 0 1 0 1 . . . 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

n 0 0 0 1 0 1 0 1 . . . 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

X e1 e2 e1 e2 e1 e2 e1 e2 . . .

1 0 0 0 1 0 0 0 0 . . .
2 1 0 1 1 1 1 1 0 . . .
3 1 0 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

...
... . . .

n 1 0 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

...
... . . .

6. Conclusions

This paper shows that the research about soft topological spaces is an active field, where
fundamental contributions can still be made. Consequently, it presents strictly theoretical
considerations on soft topologies.

The development of topology has been nurtured by the continuous supply of examples and classes
of topological spaces. It is, therefore, important to enlarge the list of soft topological spaces, and of
their properties and relations. We have contributed to this constituent of soft topology with some new
classes of soft topological spaces. We have produced non-trivial examples of soft second-countable
soft topologies. In fact, countable soft open bases of these soft topologies have been identified.

Relatedly, two new concepts of ‘soft separability’ have been proposed. They are implied by (but
different from) soft second-countability, and they are simple to understand and operate with. Further
technical arguments show that they can play a part in the field of soft topology.

We have reexamined a general procedure for generating soft topologies from crisp topologies,
that has been known since [11]. It has been extended in two directions. First, by allowing that
different attributes are associated with different crisp topologies. Secondly, by the recourse to the
simpler notion of a base, and again we use one base for each attribute. The first procedure preserves
separability under the sole assumption that one of the attributes is associated with a separable crisp
topology. Its behavior with respect to second-countability is still better, and an ‘if-and-only-if’ result
has been achieved. The second procedure gives rise to a commutativity diagram involving the original
procedure: if we generate a soft topology from a base for a topology, and we generate a soft topology
from the topology that the base produces, both soft topologies are the same. Thus, it may be argued
that the second procedure allows to operationalize the well-established procedure for the generation
of soft topologies in [11].

Practical applications are beyond the scope of this article. The new strategies for the production of
soft topologies may be applied in the future in the analysis of other properties, like the soft separation
axioms (soft normality, soft regularity, T0, T1, T2, T3, T4, ...) in [5,11].
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