
mathematics

Article

Niching Multimodal Landscapes Faster Yet
Effectively: VMO and HillVallEA Benefit Together

Ricardo Navarro * and Chyon Hae Kim

Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-0066, Japan
* Correspondence: ricardo@iwate-u.ac.jp

Received: 24 March 2020; Accepted: 20 April 2020; Published: 27 April 2020
����������
�������

Abstract: Variable Mesh Optimization with Niching (VMO-N) is a framework for multimodal
problems (those with multiple optima at several search subspaces). Its only two instances are
restricted though. Being a potent multimodal optimizer, the Hill-Valley Evolutionary Algorithm
(HillVallEA) uses large populations that prolong its execution. This study strives to revise VMO-N,
to contrast it with related approaches, to instantiate it effectively, to get HillVallEA faster, and to
indicate methods (previous or new) for practical use. We hypothesize that extra pre-niching search
in HillVallEA may reduce the overall population, and that if such a diminution is substantial, it
runs more rapidly but effective. After refining VMO-N, we bring out a new case of it, dubbed
Hill-Valley-Clustering-based VMO (HVcMO), which also extends HillVallEA. Results show it as the
first competitive variant of VMO-N, also on top of the VMO-based niching strategies. Regarding
the number of optima found, HVcMO performs statistically similar to the last HillVallEA version.
However, it comes with a pivotal benefit for HillVallEA: a severe reduction of the population, which
leads to an estimated drastic speed-up when the volume of the search space is in a certain range.

Keywords: AMaLGaM; clustering; estimation of distribution; evolutionary algorithm; framework;
heuristic; hill-valley; multimodal optimization; niching; variable mesh optimization

1. Introduction

In the arena of optimization, a heuristic algorithm seeks for solutions that are good enough (not
necessarily optimal) within a fair computation time [1]. Thus, it is crucial to keep the balance between
the quality of the approximated solutions and the time used to reach them. Beyond simple heuristics
for specific problems, metaheuristics are intelligent mechanisms that guide other heuristics through the
search process [2]. Evolutionary algorithms (EAs) are a category of metaheuristics based on biological
evolution. As global optimization methods, typical single objective EAs seek for a unique global
optimum, ignoring the possible existence of other optima. That means a serious limitation in industrial
scenarios described by multimodal optimization problems, such as those reported in [3,4]. In this
context, the term multimodality denotes the presence of optima in various regions of the search space.
Many decisions in engineering, e.g., selecting a final design, depend on the earlier optimization of
relevant aspects, i.e., cost and simplicity [5]. Hence, experts look for several optima instead of the only
best solution, so they can choose the most suitable by considering further practical aims.

In the course of the last four decades, researchers have steadily coped with that dilemma, leading to
the resultant field of evolutionary multimodal optimization [6]. The simultaneous detection of multiple
optima in the search space is a big challenge. Such a high difficulty, together with the vast range of
application domains comprised, make it a very active research field that intends the devise of niching
algorithms [6,7], which are the key methods here, and their coupling with metaheuristics. Inspired
by the dynamics of the ecosystems in nature, the paradigm of niching is the common computational
choice for multimodal optimization. Niching techniques have complemented several metaheuristic

Mathematics 2020, 8, 665; doi:10.3390/math8050665 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7037-2262
http://dx.doi.org/10.3390/math8050665
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/8/5/665?type=check_update&version=3

Mathematics 2020, 8, 665 2 of 37

approaches, e.g., Genetic Algorithms (GAs) [5–10], Particle Swarm Optimization (PSO) [11–14] and
Differential Evolution (DE) [15–18]. Because of their strong synergy, niching methods have also been
explained as the extension of EAs to multimodal scenarios [19].

The Variable Mesh Optimization (VMO) [20] metaheuristic has proved to perform competitively
in continuous landscapes. In its canonical form, it is capable to locate different optimal solutions but it
cannot maintain them over the time [21]. A few works [21–23] have augmented VMO as to make it cope
with multimodality. They include VMO-N [22], a generic VMO framework for multimodal problems,
whose only two instances are termed Niche-Clearing-based VMO (NC-VMO) [21] and Niche-based
VMO via Adaptive Species Discovery (VMO-ASD) [22]. The experimental analysis demonstrated that
VMO-N is a suitable approach for multimodal optimization. However, a final request in [22] persists as
the search for a strongly competitive variant of VMO-N, which uses a more robust niching procedure
than those in NC-VMO and VMO-ASD.

To annul that limitation, we unveil a new case of VMO-N that exploits the Hill-Valley
Clustering (HVC) niching technique [24], and the Adapted Maximum-Likelihood Gaussian
Model Iterated Density-Estimation Evolutionary Algorithm with univariate Gaussian distribution
(AMaLGaM-Univariate) [25,26]. Recently, Maree et al. [24,27] successfully used those methods together
in the HillVallEA scheme. Motivated by their relevant outcomes, we instantiate the VMO-N framework
by incorporating such a joint strategy. The ensuing HVcMO method is expressly dubbed HVcMO20a
when pointing at its primary setup. This is the first competitive version of VMO-N. To support this
claim, we compared it to remarkable metaheuristic strategies for multimodal optimization. Further
than the VMO-N’s instances, HVcMO20a overcomes the Niching VMO (NVMO) [23] method, as far as
we know, the other VMO-based approach for multimodal optimization reported in the literature.

In addition, HVcMO is not only a case of VMO-N, but also an extension of HillVallEA19,
the ultimate version of HillVallEA, a quite sophisticated metaheuristic for multimodal optimization.
HillVallEA19 [27] outperforms the algorithms presented in the last two editions (2018 and 2919) of the
Competition on Niching Methods for Multimodal Optimization, within the Genetic and Evolutionary
Computation Conference (GECCO) [28]. In spite of that, a strong weakness of HillVallEA19 is that it
tends to need very large populations. However, it is not occasional at all that an effective multimodal
optimizer suffers such a drawback, considering that many functions have a large number of optima to
be found, and that many of them involve numerous variables as well.

As expected, observed results show that the combined use of HVC and AMaLGaM-Univariate
within HVcMO make that VMO-oriented optimizer capable to approximate multimodal problems
effectively. On the other hand, the application of the search operators of VMO allows such an extended
HillVallEA mechanism to perform faster over a large set of problems among those used in this study,
which derives from an overall reduction of the population size on the problem in the test suite. This fact
evidences the mutual benefit of using both approaches together. Given new multimodal optimization
problems, apart from those seen in this study, it is then possible to recommend either HVcMO20a or
HillVallEA19 to solve such problems, according to their common characteristics with the benchmark
functions approximated by these algorithms.

Multimodal optimization is theorized in Section 2, together with some niching-related concepts.
Relevant works, including VMO-N and HillVallEA, are reviewed in Section 3, where some ideas to
deal with outlined shortcoming are exposed as the objectives of this research. The VMO-N framework
is improved in Section 4, and then instantiated as the HVcMO algorithm. Section 5 describes the
setup for the experiments to validate and analyze such a new proposal, whose results are discussed in
Section 6. Finally, Section 7 comes with the conclusions and some directions for future work.

2. Formal Notion of Multimodal Optimization and Niching Approach

For a sake of simplicity, multimodal optimization is usually defined in informal manners, mostly
by means of some descriptive cases of multimodal scenarios, like in Figure 1. Such conceptualizations
are definitely valid and assure a straightforward understanding of what multimodal optimization is.

Mathematics 2020, 8, 665 3 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 35

(a) (b) (c)

Figure 1. Examples of multimodal maximization functions, including a couple of usual benchmarks:
(a) Equal Maxima; (b) Uneven Decreasing Maxima. The last graph illustrates: (c) a case with plateaus.

However, even supported by examples of functions, a more formal viewpoint is necessary. Let
us formulate a continuous optimization problem 𝑃 as a model driven by the elements below: 𝑃 ← (𝑆, Ω, 𝑓) (1)

standing 𝑆 for a search space, an abstract construction of all the possible solutions over a finite set of
decision variables 𝑋 , with 1 ≤ 𝑗 ≤ 𝐷, where 𝐷 is the dimension of 𝑃. For each 𝑋 , the pair of lower
(𝑎) and upper (𝑏) bounds (limits) of its domain is given in 𝐵 ← 𝑎 , 𝑏 1 ≤ 𝑗 ≤ 𝐷 . Being Ω the set
of constraints between variables, 𝑃 is an unconstrained problem if Ω = ∅ . Finally, 𝑓: 𝐵 → ℜ
indicates the objective function to optimize (either minimize or maximize).

In this scenario, instantiating a variable 𝑋 means to assign a real value 𝑣 ∈ 𝑎 , 𝑏 to it, that is: 𝑋 ← 𝑣 (2)

and therefore, a solution 𝑠 ∈ 𝑆 is a complete assignation where the values given to the decision
variables satisfy the constraints in Ω. A solution 𝑠∗ signifies a global optimum for a minimization
problem 𝑃 if and only if 𝑓 reaches its lowest value at 𝑠∗, among all the solutions in 𝑆. Contrarily,
when 𝑃 is a maximization problem, 𝑠∗ is said a global optimum iif 𝑓(𝑠∗) is the largest value of the
objective function in 𝑆. Those two criteria for global optimality can be defined in a formal fashion as: ∃(𝑠∗) 𝐺𝑀𝑖𝑛(𝑠∗, 𝑃) ⟺ 𝑠∗ ∈ 𝑆 ∧ ∀(𝑠) 𝑠 ∈ 𝑆 ⟹ 𝑓(𝑠∗) ≤ 𝑓(𝑠) (3) ∃(𝑠∗) 𝐺𝑀𝑎𝑥(𝑠∗, 𝑃) ⟺ 𝑠∗ ∈ 𝑆 ∧ ∀(𝑠) 𝑠 ∈ 𝑆 ⟹ 𝑓(𝑠∗) ≥ 𝑓(𝑠) (4)

Likewise, a solution 𝑠 may be a local optimum for 𝑃, i.e., in a certain region 𝑆 ⊆ 𝑆. Since the
decision variables are real-valued, the number of subsets of 𝑆 is infinite, and seemingly the number
of local optima, but only the subspaces that represent peaks count. The set of peaks (𝑃𝑘) denotes the
partition of 𝑆 whose elements are regions where 𝑓 is quasi-convex, for a minimization task: ∃(𝑃𝑘) 𝑃𝑒𝑎𝑘𝑠(𝑃𝑘, 𝑃) ⟺ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑃𝑘, 𝑆) ∧ ∀(𝑆) 𝑆 ∈ 𝑃𝑘 ⟹ 𝑄𝑢𝑎𝑠𝑖𝑐𝑜𝑛𝑣𝑒𝑥𝐼𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑓, 𝑆) (5)

or quasi-concave, in the event of a maximization problem: ∃(𝑃𝑘) 𝑃𝑒𝑎𝑘𝑠(𝑃𝑘, 𝑃) ⟺ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑃𝑘, 𝑆) ∧ ∀(𝑆) 𝑆 ∈ 𝑃𝑘 ⟹ 𝑄𝑢𝑎𝑠𝑖𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝐼𝑛𝑅𝑒𝑔𝑖𝑜𝑛(𝑓, 𝑆) (6)

In Figure 1, each example of maximization consists of five (quasi-concave) peaks. In the
rightmost graph, the peaks indeed end in ‘plateaus’, i.e., flat regions of 𝑆 where the infinite encircled
solutions have exactly the same fitness value. Formally, the local optimality can be defined as: ∃(𝑠) 𝐿𝑀𝑖𝑛(𝑠 , 𝑃) ⟺ ∃(𝑆) 𝑆 ∈ 𝑃𝑘 ∧ 𝑠 ∈ 𝑆 ∧ ∀(𝑠) 𝑠 ∈ 𝑆 ⟹ 𝑓(𝑠) ≤ 𝑓(𝑠) (7) ∃(𝑠) 𝐿𝑀𝑎𝑥(𝑠 , 𝑃) ⟺ ∃(𝑆) 𝑆 ∈ 𝑃𝑘 ∧ 𝑠 ∈ 𝑆 ∧ ∀(𝑠) 𝑠 ∈ 𝑆 ⟹ 𝑓(𝑠) ≥ 𝑓(𝑠) (8)

While a global optimum is also a local one in the peak it belongs to, it is common to disjoint those
concepts for practical reasons. Let us 𝑆 ∗ denote the (complete) set of local optima (i.e., one optimum
per peak; infinite if a plateau), and 𝑆∗ be the set of global optima, so that 𝑆∗ ⊆ 𝑆 ∗ ⊆ 𝑆. Hereinafter,
by ‘local optima’ we refer only to the partial set of local optima (𝑆∗∗), which excludes the global ones: 𝑆∗∗ ← 𝑆 ∗ − 𝑆∗ (9)

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 1. Examples of multimodal maximization functions, including a couple of usual benchmarks:
(a) Equal Maxima; (b) Uneven Decreasing Maxima. The last graph illustrates: (c) a case with plateaus.

However, even supported by examples of functions, a more formal viewpoint is necessary. Let us
formulate a continuous optimization problem P as a model driven by the elements below:

P← (S, Ω, f) (1)

standing S for a search space, an abstract construction of all the possible solutions over a finite set of
decision variables X j, with 1 ≤ j ≤ D, where D is the dimension of P. For each X j, the pair of lower

(a j) and upper (b j) bounds (limits) of its domain is given in B←
{[

a j, b j
]∣∣∣∣1 ≤ j ≤ D

}
. Being Ω the set of

constraints between variables, P is an unconstrained problem if Ω = { }. Finally, f : B→< indicates
the objective function to optimize (either minimize or maximize).

In this scenario, instantiating a variable X j means to assign a real value v j ∈
[
a j, b j

]
to it, that is:

X j ← v j (2)

and therefore, a solution s ∈ S is a complete assignation where the values given to the decision variables
satisfy the constraints in Ω. A solution s∗ signifies a global optimum for a minimization problem P
if and only if f reaches its lowest value at s∗, among all the solutions in S. Contrarily, when P is a
maximization problem, s∗ is said a global optimum iif f (s∗) is the largest value of the objective function
in S. Those two criteria for global optimality can be defined in a formal fashion as:

∃(s∗)[GMin(s∗, P)⇔ s∗ ∈ S∧∀(s)[s ∈ S⇒ f (s∗) ≤ f (s)]] (3)

∃(s∗)[GMax(s∗, P)⇔ s∗ ∈ S∧∀(s)[s ∈ S⇒ f (s∗) ≥ f (s)]] (4)

Likewise, a solution s′ may be a local optimum for P, i.e., in a certain region S′ ⊆ S. Since the
decision variables are real-valued, the number of subsets of S is infinite, and seemingly the number
of local optima, but only the subspaces that represent peaks count. The set of peaks (Pk) denotes the
partition of S whose elements are regions where f is quasi-convex, for a minimization task:

∃(Pk)[Peaks(Pk, P)⇔ Partition(Pk, S)∧∀(S′)[S′ ∈ Pk⇒ QuasiconvexInRegion(f , S′)]] (5)

or quasi-concave, in the event of a maximization problem:

∃(Pk)[Peaks(Pk, P)⇔ Partition(Pk, S)∧∀(S′)[S′ ∈ Pk⇒ QuasiconcaveInRegion(f , S′)]] (6)

In Figure 1, each example of maximization consists of five (quasi-concave) peaks. In the rightmost
graph, the peaks indeed end in ‘plateaus’, i.e., flat regions of S where the infinite encircled solutions
have exactly the same fitness value. Formally, the local optimality can be defined as:

∃(s′)[LMin(s′, P)⇔ ∃(S′)[S′ ∈ Pk∧ s′ ∈ S′ ∧∀(s)[s ∈ S′ ⇒ f (s′) ≤ f (s)]]] (7)

∃(s′)[LMax(s′, P)⇔ ∃(S′)[S′ ∈ Pk∧ s′ ∈ S′ ∧∀(s)[s ∈ S′ ⇒ f (s′) ≥ f (s)]]] (8)

Mathematics 2020, 8, 665 4 of 37

While a global optimum is also a local one in the peak it belongs to, it is common to disjoint those
concepts for practical reasons. Let us S′∗ denote the (complete) set of local optima (i.e., one optimum
per peak; infinite if a plateau), and S∗ be the set of global optima, so that S∗ ⊆ S′∗ ⊆ S. Hereinafter,
by ‘local optima’ we refer only to the partial set of local optima (S∗∗), which excludes the global ones:

S∗∗ ← S′∗ − S∗ (9)

The global optimization approach solely accepts that S∗ = 1 and |Pk| = 1. Diametrically,
the multimodal optimization paradigm concerns the existence of multiple peaks (|Pk| ≥ 2), not only
several optima. For instance, a single-peak function ending in a flat region (infinite optima) is
weak unimodal [29]. Solving a multimodal optimization problem means locating all peaks. The standard
population-based optimizers are then modified to create stable subpopulations (known as niches) at all
peaks to discover. Actually, niching algorithms exist for that purpose. Being the best solution in a
niche referred as its master, every niche corresponds to a single peak of the multimodal problem, and
most functions are featured by peaks of distinct radii, usually unknown. Several of those problems
have been standardized as test cases for new multimodal optimizers. For some of them, the number of
local optima is known precisely; in others, it is simply huge. Thus, only the global optima located are
used for assessing the performance of new algorithms, which then might avoid efforts on finding local
optima. It does not mean any shortage as most of those algorithms can be easily adapted to pursue
global and local optima all together, when required in real-world scenarios.

3. Related Works

This section exposes key drawbacks of the multimodal optimizers. Besides, it elaborates on the
basics of VMO and HillVallEA, the direct precedents of this paper. Despite VMO-N and NVMO are
the two main augmented versions of VMO for multimodal scenarios, no study has addressed their
conceptual differences. Such a lack directly calls for comparing them from theoretical viewpoints,
which turns up as the first goal of this investigation. Some downsides of VMO-N and HillVallEA are
underlined as well, together with other consequential research objectives to mitigate such limitations.

3.1. Evolutionary Multimodal Optimizers

Because of their population-based nature, standard evolutionary algorithms can locate several
globally best solutions at the same time, instead of only one. There is no guarantee that they are kept
in the population during the next iterations though. A simple alternative is to seed all those solutions
in the population for the upcoming generation. However, it might cause some undesired effects, e.g.,
guiding the algorithm to previously explored regions of the search space and therefore delaying the
overall search process. Another option is to ‘memorize’ the set of such globally best solutions, aside
from the population. Some of them must probably belong to the same peak of the fitness landscape.
Even so, by having an updated list of such fittest solutions, some looked-for optima might appear,
eventually. While the literature reports several examples [18,20,24,30], every single EA may be adapted
in line with that strategy, as to make it able to deal with multimodality. The efficacy of such augmented
algorithms over multimodal problems will still rely on their search capability though.

On the contrary, niching methods represent the choice to turn EAs into multimodal optimizers
whose success does not rely on their search abilities. By complementing them with niching methods,
EAs are able to form different subpopulations and maintain them along the search process, in order to
identify multiple optima together. As indicated in [21,22], in spite of the numerous works completed
about multimodal optimization, it continues as a challenging research field due to various shortcomings
of the niching algorithms. Certainly, their dependence on parameters that characterize the target
functions, e.g., the radius of the niches, is the greatest weakness of multimodal optimizers. Furthermore,
most of those optimization techniques are incapable to solve multimodal problems that have a large
number of optima, which implies the necessity for more effective niching methods.

Mathematics 2020, 8, 665 5 of 37

Evolutionary multimodal optimizers are also susceptible to the dimension of the problem, i.e.,
the number of variables involved. It is said that an optimization algorithm is scalable if it continues
performing effectively when the dimension of the problem increases. Regarding this matter, Kronfeld
and Zell [31] drew attention to the lack of studies about the scalability of multimodal optimization
methods, a matter that remains. Other important drawbacks that have been poorly approached
concern the high computational complexity of such techniques, which determines the time they need
to approximate multimodal problems. This paper covers that issue, not in a generic manner but
addressing only a couple of methods relevant for this investigation, namely the inspiring HillVallEA19
and our proposed extension of it, the HVcMO20a algorithm (also a case of VMO-N).

3.2. The VMO Metaheuristic

In the Variable Mesh Optimization scheme, the candidate solutions are denoted as nodes.
Thus, the population is seen as a mesh that initially has I nodes (s1, s2, . . . , sI). Every single node

si, with 1 ≤ i ≤ I, is represented as a real-valued vector
(
vi

1, vi
2, . . . , vi

j, . . . , vi
D

)
of dimension D, i.e.,

1 ≤ j ≤ D. As described in Algorithm 1, the evolutionary search loop of VMO is controlled by four
basic parameters, namely the size (I) of the initial mesh in each generation, the maximum number (T)
of individuals in the total (expanded) mesh, the number (k) of nodes in the neighborhood of any given
node, and the stop criterion (c). Note that in this paper, every collection starts with index 1.

The search process by VMO mainly consists of two stages: the mesh expansion and the mesh
contraction, set together to keep exploration and exploitation in balance. The expansion occurs by dint
of the main ways of search in VMO, namely the F-operator, the G-operator and the H-operator [20].
They respectively deal with the creation of new nodes toward the local optima (Algorithm 1, line
11), headed for the global optimum (line 15), and from those nodes in the frontiers of the mesh (line
20). Once the mesh is expanded, the contraction stage runs an elitist selection of nodes in the current
generation to keep them in the initial mesh of the next iteration. Such a selection is previously affected
by the adaptive clearing operator.

3.3. Is the VMO’s Adaptive Clearing a Niching Method?

This technique is proved useful for VMO to deal with complex functions [32]. Despite that study
concerns global optimization only, it fairly takes multimodal problems for benchmarking because of
their high difficulty. When it comes to the research about VMO for multimodal optimization [21–23],
the adaptive clearing has shown controversial though. To analyze about that, it is beneficial to have
look at a certainly similar niching method, the classic clearing proposed by Petrowski [33]. Beyond the
common aspects, a few relevant facts make them divergent, as the descriptions in Algorithm 2 suggest.
In this context, for the sake of parity, the population handled by the Petrowski’s method is referred as
M′, which actually occurs when it is picked as the niching idea in VMO-N, like in [21].

The typical clearing depends on a parameter called niche radius that describes the peaks of the
fitness landscape, whose value is often unknown. Another parameter, the number of winners, defines
the quantity of solutions that may form a niche. After sorting all solutions by fitness in a decreasing
order, they are sequentially analyzed to split the population into niches in line with these rules: (1) if
no niche is yet created or the maximum possible distance (i.e., the radius) to the master of the current
niche is reached, the next fittest solution is marked as the master of a new niche; (2) the subsequent
solutions belong to the last created niche only if its spatial distance to its master does not exceed the
niche radius; and (3) among those individuals that belong to the same niche, only a pre-set number of
them are actually added to the niche as winners, while the remaining ones are marked by setting their
fitness to zero. The algorithm returns in full the collection of niches that eventually emerge.

Mathematics 2020, 8, 665 6 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 35

3.2. The VMO Metaheuristic

In the Variable Mesh Optimization scheme, the candidate solutions are denoted as nodes. Thus,
the population is seen as a mesh that initially has I nodes (𝑠 , 𝑠 , … , 𝑠). Every single node 𝑠 , with 1 ≤ 𝑖 ≤ 𝐼, is represented as a real-valued vector 𝑣 , 𝑣 , … , 𝑣 , … , 𝑣 of dimension 𝐷, i.e., 1 ≤ 𝑗 ≤ 𝐷.
As described in Algorithm 1, the evolutionary search loop of VMO is controlled by four basic
parameters, namely the size (𝐼) of the initial mesh in each generation, the maximum number (𝑇) of
individuals in the total (expanded) mesh, the number (𝑘) of nodes in the neighborhood of any given
node, and the stop criterion (𝑐). Note that in this paper, every collection starts with index 1.

Algorithm 1 Variable Mesh Optimization
Main phases: mesh expansion mesh contraction

Inputs: 𝐷-dimensional problem 𝑃 ← (𝑆, Ω, 𝑓) as in Section 2, including the domain bounds 𝐵, plus:

 𝐼: size of initial mesh 𝑇: size of expanded mesh
 𝑘: number of neighbors 𝑐: stop criterion

Process:
1. 𝑀 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑑𝑒𝑠(𝐼) // Initial mesh of 𝐼 nodes
2. repeat
3. 𝑠∗ ← 𝑓𝑖𝑛𝑑_𝑓𝑖𝑡𝑡𝑒𝑠𝑡(𝑀) // Globally best node
4. 𝑀 ← 𝑀 // Expanding mesh 𝑀
5. 𝜀 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐵, 𝑇𝑖𝑚𝑒) // That notion refers e.g. a certain budget
6. for 𝑖 = 1 to 𝐼 do
7. 𝐿𝑘 ← 𝑓𝑖𝑛𝑑_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑜𝑑𝑒𝑠(𝑘, 𝑠 , 𝑀) // By spatial location
8. 𝑆 ← {𝑠 } ⋃ 𝐿𝑘
9. 𝑠 ← 𝑓𝑖𝑛𝑑_𝑓𝑖𝑡𝑡𝑒𝑠𝑡(𝑆) // Best node in the vicinity 𝑆

10. if 𝑠 ≠ 𝑠 then
11. 𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑙𝑜𝑐𝑎𝑙𝑙𝑦(𝑠 , 𝑠 , 𝜀)
12. 𝑀 ← 𝑀 ⋃ 𝑠 // Local expansion
13. end if
14. if 𝑠 ≠ 𝑠∗ then
15. 𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦(𝑠 , 𝑠∗)
16. 𝑀 ← 𝑀 ⋃ 𝑠 // Global expansion
17. end if
18. end for
19. |𝐿𝑠 | ← 𝑚𝑖𝑛(𝑇 − |𝑀 |, 𝐼/2) // Count for frontier expansion

20. 𝐿𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑓𝑟𝑜𝑚_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠(|𝐿𝑠 |, 𝑀) // List of ⌊|𝐿𝑠 |/2⌋ nodes created from
// the interior frontier and ⌈|𝐿𝑠 |/2⌉
// from the exterior one

21. 𝑀 ← 𝑀 ⋃ 𝐿𝑠
22. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔_𝑠𝑜𝑟𝑡_𝑏𝑦_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑀)
23. 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔(𝑀 , 𝜀)
24. 𝑀 ← 𝑒𝑙𝑖𝑡𝑖𝑠𝑡_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐼, 𝑀) // Replace 𝑀 by the best nodes (up to 𝐼)
25. if |𝑀| < 𝐼 then
26. 𝐿𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑑𝑒𝑠(𝐼 − |𝑀|)

// Complete initial mesh for next cycle 27. 𝑀 ← 𝑀 ⋃ 𝐿𝑠
28. end if
29. until 𝑐 is reached

Output:
30. return 𝑠∗

Mathematics 2020, 8, 665 7 of 37

Algorithm 2 Clearing methods: (a) Petrowski’s clearing; (b) VMO’s adaptive clearing

Inputs: Inputs:
M′: mesh expanded in a search space S, and B: set of domain bounds of the variables (Section 2)
σ: niche radius Timenotion: an estimate of the time passed, e.g.
κ: maximum number of winners (individuals in the budget used (given maximum number

any single niche) of either iterations or fitness evaluations)
Process: Process:

1. Nh← {} 1. ε← distance_threshold(B, Timenotion)

2. descending_sort_by_ f ittest(M′) 2. descending_sort_by_ f ittest(M′)
3. for i = 1 to |M′| do 3. for i = 1 to |M′| do
4. if f itness(si) , 0 then 4. for q = i + 1 to |M′| do
5. winners = 1 5. if distance

(
si, sq

)
< ε then

6. niche← {} 6. M′ ←M′ −
{
sq

}
7. niche← niche ∪ {si} 7. q← q− 1
8. for q = i + 1 to |M′| do 8. end if
9. if f itness

(
sq

)
, 0 and 9. end for

distance
(
si, sq

)
< σ then

10. if winners < κ then
11. winners = winners + 1
12. niche← niche ∪

{
sq

}
13. else
14. f itness

(
sq

)
← 0

15. end if
16. end if
17. end for
18. Nh← Nh ∪ {niche}
19. end if
20. end for

Output: Output:
21. return Nh 10. return M′

(a) (b)

Comparable to the method described above, the adaptive clearing is an important step in VMO.
After sorting the nodes in the expanded mesh according to their fitness, the I best ones are meant to
survive. However, the worst among those nodes closer (in fitness) than a distance threshold ε are
removed. In that way, the clearing fosters diversity in the population, which is the reason it is planned
in VMO for. Such a threshold, which is also used in the local expansion, is dynamically computed at
each iteration, guaranteeing larger values at the beginning of the optimization process and smaller
values at the end. Several studies [20–23] illustrate how to determine the threshold ε, which has a
component ε j for each j-th variable of the problem. Every single ε j is computed by using the range[
a j, b j

]
that represents the domain of the of the variable X j, together with the amount of budget wasted

from total originally given. While other notions of budget are valid, the most commonly applied in
VMO is the maximum number of either iterations or evaluations of the fitness function. In any case,
ε j means a portion of the amplitud between a j and b j; the less budget remains the shorter that portion
is. The value of ε results from combining those of all its ε j components, e.g., by averaging them.

In the original VMO, the adaptive clearing assures diversity among the individuals that form
every initial mesh. Nonetheless, when used on multimodal optimization problems, such a clearing is
also responsible for the loss of several globally fittest solutions found. In other words, it provokes the
incapability of VMO to maintain the identified optima, a critical effect verified in [21]. Conversely,
in [23] Molina et al. claimed to use the adaptive clearing as a niching method within NVMO, their

Mathematics 2020, 8, 665 8 of 37

proposal for multimodal optimization, using the dynamic threshold ε as the niche radius. At this point,
it is important to clarify a few facts about it.

It is deductible from their pseudocodes that same as the Petrowski’s method, the adaptive
clearing is capable to split the population considering the distance between the individuals. However,
such division occurs in a nonconcrete way in the adaptive clearing since it does not create any explicit
niche. Instead, it keeps in the population only those solutions that survive the clearing (same as in
the typical VMO) as the masters of the abstract niches. While the typical clearing returns a collection
of niches, each of which is formed by several winner solutions, the output of the adaptive clearing
is nothing else but the contracted mesh, which consists of the masters only. That difference among
both methods is relevant only if the adaptive clearing were used in any multimodal optimizer that
takes into account not only the masters the niches in full. Even in such a hypothetical case, that issue is
indeed easy to treat by making minor algorithmic modifications to the adaptive clearing procedure.

In its plain form, the adaptive clearing of VMO can be seen as a variant of the typical clearing,
where (1) the niche radius is updated dynamically and (2) the number of winners is not taken into
account, as (3) the masters are the only kept solutions in (4) the reduced population, instead of in
explicit niches. Apart from the clearing procedure, other niching approaches that use the niche radius
parameter, such as the classical fitness sharing [34] and the species conservation method [35], have
been augmented with distinct strategies [36–38] to adapt the radius along the optimization process.
It is logical to consider that their success strongly relies on the realism of the computed radius, for
which two aspects are decisive: a good rule to modify its value and a control mechanism to stop such
an update at any convenient moment. The latter is extremely hard to plan, although it is very desired.
Irrespective of being increased or decreased, the updating value should reach the actual (unknown)
radius, eventually. Further modifications of the niche radius will make the multimodal optimizer
detect a wrongly short or large number of niches, and mayhap the recently identified ones will not
appear again. A practical compensating option is to combine those revamped niching methods with
other strategies within the multimodal optimizers, e.g., by saving aside the best solutions found, or by
conditioning the stop of the overall optimization process to the number of the new niches found.

In VMO, the value of the threshold ε decreases during the search process, as explained above.
However, the adaptive clearing does not include any strategy to attempt identifying when such a
desired value of the niche radius is apparently reached. Instead, ε continues decreasing as the search
process goes on. From the niching viewpoint, another issue is that ε is assumed the same for all
the peaks in every function, which is not rare in those methods that use a niche radius parameter,
making them inappropriate for those functions having several peaks of different radii. In addition,
the evidence reported in [21] shows that those nodes approximating certain peaks of the analyzed
benchmark problems are partially or totally ‘cleared’ from the mesh. For that reason, every time VMO
jumps to a new iteration, for some of the peaks the search starts over. That happens during the whole
optimization process, i.e., regardless of the value of ε. It is then impossible for VMO to maintain the
fittest solutions. Then, how can NVMO succeed on dealing with multimodal optimization problems?
And, what is the actual benefit of the adaptive clearing there? Section 3.4.1 answers both questions,
while approaching the essentials of such a metaheuristic scheme.

3.4. VMO Niching Strategies

As it was originally proposed for global optimization, a few algorithmic proposals appeared to
induce VMO to preserve (along the time) the multiple optima this method can find when solving
multimodal problems (see Figure 2). They can be reduced to the following two approaches: the NVMO
method and VMO-N, the generic niching framework for this metaheuristic. Those methods are
described below in an overall fashion. Besides, considering that they are the two main adaptations
of VMO to deal with multimodality, it is important to bring out a few differences between them,
completing the first objective of this investigation.

Mathematics 2020, 8, 665 9 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 35

<< i n s t a n c e o f >>

appear again. A practical compensating option is to combine those revamped niching methods with
other strategies within the multimodal optimizers, e.g., by saving aside the best solutions found, or
by conditioning the stop of the overall optimization process to the number of the new niches found.

In VMO, the value of the threshold 𝜀 decreases during the search process, as explained above.
However, the adaptive clearing does not include any strategy to attempt identifying when such a
desired value of the niche radius is apparently reached. Instead, 𝜀 continues decreasing as the search
process goes on. From the niching viewpoint, another issue is that 𝜀 is assumed the same for all the
peaks in every function, which is not rare in those methods that use a niche radius parameter, making
them inappropriate for those functions having several peaks of different radii. In addition, the
evidence reported in [21] shows that those nodes approximating certain peaks of the analyzed
benchmark problems are partially or totally ‘cleared’ from the mesh. For that reason, every time VMO
jumps to a new iteration, for some of the peaks the search starts over. That happens during the whole
optimization process, i.e., regardless of the value of 𝜀. It is then impossible for VMO to maintain the
fittest solutions. Then, how can NVMO succeed on dealing with multimodal optimization problems?
And, what is the actual benefit of the adaptive clearing there? Section 3.4.1 answers both questions,
while approaching the essentials of such a metaheuristic scheme.

3.4. VMO Niching Strategies

As it was originally proposed for global optimization, a few algorithmic proposals appeared to
induce VMO to preserve (along the time) the multiple optima this method can find when solving
multimodal problems (see Figure 2). They can be reduced to the following two approaches: the
NVMO method and VMO-N, the generic niching framework for this metaheuristic. Those methods
are described below in an overall fashion. Besides, considering that they are the two main adaptations
of VMO to deal with multimodality, it is important to bring out a few differences between them,
completing the first objective of this investigation.

multimodal VMO optimizers

NVMO VMO-N framework

 NC-VMO VMO-ASD

Figure 2. VMO for multimodal optimization.

3.4.1. Niching VMO

The details of NVMO were discussed by Molina et al. in [23], where authors highlighted the
major augmentations to the standard formulation of VMO. They can be summarized as follows:

• With reference to the creation of new nodes from a global perspective, not only the fittest one in
the population is considered for expanding the mesh. Instead, several globally best nodes are
determined as those having a fitness value very similar to the best solution. Consequently, a new
solution is created between every non-optimal node in the mesh and its nearest node (according
to the Euclidean distance) among those marked as global optima.

• In order to improve the search capability of the metaheuristic, the Solis-West local search method
[39] is run over only a certain number of nodes from the expanded mesh M . The solutions
selected are those located more distant from the globally fittest nodes found.

• The globally fittest nodes are kept in an external memory, whose update involves every 𝑠 ∈ 𝑀 .
If 𝑠 has a ‘visibly’ better (>10−6) fitness than the global optimum saved, the memory restarts
with only 𝑠 . Otherwise, 𝑠 means a candidate global optimum if it is ‘similar’ (±10−6) in fitness
to the global optimum. In that case, the memory accepts 𝑠 if its closest global optima is located
at a least distance denoted as the memory threshold (assumed in [23] as the accuracy level [40]).

Figure 2. VMO for multimodal optimization.

3.4.1. Niching VMO

The details of NVMO were discussed by Molina et al. in [23], where authors highlighted the major
augmentations to the standard formulation of VMO. They can be summarized as follows:

• With reference to the creation of new nodes from a global perspective, not only the fittest one in
the population is considered for expanding the mesh. Instead, several globally best nodes are
determined as those having a fitness value very similar to the best solution. Consequently, a new
solution is created between every non-optimal node in the mesh and its nearest node (according
to the Euclidean distance) among those marked as global optima.

• In order to improve the search capability of the metaheuristic, the Solis-West local search
method [39] is run over only a certain number of nodes from the expanded mesh M′. The solutions
selected are those located more distant from the globally fittest nodes found.

• The globally fittest nodes are kept in an external memory, whose update involves every si ∈M′.
If si has a ‘visibly’ better (>10−6) fitness than the global optimum saved, the memory restarts with
only si. Otherwise, si means a candidate global optimum if it is ‘similar’ (±10−6) in fitness to the
global optimum. In that case, the memory accepts si if its closest global optima is located at a least
distance denoted as the memory threshold (assumed in [23] as the accuracy level [40]).

NVMO does not split the population into niches; it accordingly executes the adaptive clearing over
the whole mesh. The risk of deleting several global optima from the population persists. Thus, to keep
the globally best nodes found, NVMO implements the aforementioned strategy comprising an auxiliary
memory of such fittest solutions. In fact, the indubitable capacity of NVMO to deal with multimodal
problems is due to the memory of optima, and not because of using the adaptive clearing with intention
of niching. Such a memory is equivalent to others in previous and succeeding multimodal optimizers,
e.g., the dynamic archive used in [18,30], and the elitist archive of HillVallEA.

Conforming to a common reasoning, other algorithms update the memory for the assumed global
optima after executing the niching method, using the identified masters as the candidate optima. Those
steps are run in the opposite order in NVMO, where such candidate solutions are selected from the
entire expanded mesh, according to the explained optimality criterion, and the adaptive clearing occurs
just after restructuring the memory. It means that the masters derived from that clearing procedure are
not considered as the candidate optima to be kept in the external memory, a choice that might respond
to a poor performance of the adaptive clearing as a niching method. Fostering diversity remains then
as the main benefit of the adaptive clearing in NVMO, the same as in the original VMO. In addition,
it is relevant the computational cost that the selection of the candidate optimal solutions represents
in NVMO, since every single node in the mesh is processed for that, instead of considering only the
masters of the identified niches.

As a multimodal method, NVMO does not rely on the niching step, but on the external memory.
Thus, its effectiveness deeply counts on its search ability, strengthened by the Solis-West method.
The use of local search was moved by a previous work [41] on PSO-based multimodal optimizers.
In particular, NVMO runs the Solis-West procedure over a certain number of solutions in the expanding
mesh, which is later completed with the new nodes resulting from that local search mechanism.
After that, the list (memory) of globally best discovered solutions is updated, just before conducting
the adaptive clearing over the mesh in order to prepare the population for the next generation.

Mathematics 2020, 8, 665 10 of 37

3.4.2. VMO with Niching

Given in [22], the pseudocode corresponding to VMO-N suggests the moment where the niching
method had better execute within VMO. In addition, it proposes to apply the adaptive clearing operator
of VMO to each niche found, instead of over the whole extended mesh, as it occurs in the original form
of such a metaheuristic. In that way, the efforts to assure diversity in the mesh do not affect the fittest
solution (master) of each niche, which survives as part of the population to evolve. Consequently,
VMO-N allows to maintain the discovered optima along the time. Furthermore, as a framework,
it permits to include any desired niching method in its procedural workflow. Thus, the aforementioned
instances of VMO-N are registered as NC-VMO and VMO-ASD.

The former method results from using the clearing operator by Petrowski (see Section 3.3) within
VMO-N, as a niching mechanism. Obviously, it also applies the VMO’s adaptive clearing (over every
niche) as a diversity strategy. Being its first instance ever, the greatest impact of NC-VMO is to put
VMO-N in practice. As the standard niching method of clearing depends on the value of the niche
radius, NC-VMO suffers such a drawback too, making it suitable for a short number of multimodal
problems. In response to that, VMO-ASD assimilates the Adaptive Species Discovery (ASD) niching
method by Della Cioppa et al. [42], which does not rely on any parameter that describes the target
fitness landscape. As a result, VMO-ASD empirically shows itself as a more extensive scheme than
NC-VMO. None of them is strongly competitive though, compared to outstanding algorithms in the
literature. That leads to the seek for a strong VMO-N variant, a need that is fulfilled in this study.

Before dealing with that shortcoming about the effectiveness of specific instances, the building
blocks of VMO-N should be revised. As a framework, it should offer not only the possibility to
properly incorporate any niching mechanism of preference (it can be decided freely), but also the
chance to conduct further algorithmic strategies which might support the discovery of the niches and
their maintenance along the time. In other words, VMO-N has to become a more flexible proposal by
considering the inclusion of multiple (likely optional) procedural steps, which will also reinforce the
generalizability of the framework.

3.4.3. Divergence between VMO-N and NVMO

For a better comprehension, Table 1 summarizes the most relevant dissimilarities between both
approaches. One of the most obvious is the external memory used by NVMO to keep the set of global
optima discovered. The application of the adaptive clearing either over the whole mesh or over each
niche is a crucial difference here. However, the most significant contrast is given by the underlined
algorithmic sequences. The implication of this matter is not trivial though. In Section 4, we revise the
VMO-N framework. Consistent with that, future instantiations of it might use an external memory or
avoid the action of the adaptive clearing, etc. Regardless of the procedural choices taken, no new case
of VMO-N will ever conduct the niching process just after an external memory is updated. It does not
contradict the possible modification of such a memory, followed by the application of the adaptive
clearing but only as a strategy to sustain diversity in the population. Moreover, in that case it would
still be run over every single niche, not over the entire mesh. Among other critical individualities,
these last remarks derived from the analysis of their algorithmic constructions, sufficiently justifying
that no future variant of VMO-N will match the NVMO method.

Mathematics 2020, 8, 665 11 of 37

Table 1. Major differences between VMO-N and NVMO.

Criteria for Comparison NVMO VMO-N Framework

Algorithmic sequence (core
actions in each iteration)

expansion→ local search→memory
update→ adaptive clearing (as

niching)

expansion→ niching step→ adaptive
clearing (as for diversity)

Maintenance of the globally fittest
found solutions

An extra memory is needed to keep
such solutions

They are properly kept in the mesh
(future variants may save them apart)

Formation of niches
The adaptive clearing is taken as a
niching method but the masters are
not used for multimodal purpose

Any niching method can be
incorporated at will

Requirement of niching
parameters

The computed threshold for the
adaptive clearing is used as a dynamic

niche radius

It varies, subject to the needs of the
niching scheme, e.g., VMO-ASD is free
of such parameters but NC-VMO uses a

niche radius
Effecting of the adaptive clearing

of VMO It affects the whole mesh at once It is executed, by separate, over each
identified niche

Utilization of local search The Solis-West method is used, in
order to strengthen the search ability

No local search technique is applied
(future instances may consider it)

Applicability It can be applied to approximate a
large range of multimodal problems

For each case, it relies mainly on the
niching method, e.g., VMO-ASD is
widely applicable; NC-VMO is not

3.5. Hill-Valley Evolutionary Algorithm

This method is closely related to the new version of VMO-N, proposed in this paper. Hence,
it is important to recapitulate the fundamentals of the HillVallEA, whose main modules are the
niching technique, the core search method, and the restart scheme with an elitist (external) archive.
This subsection addresses such elements, before relating that EA from a general outlook.

3.5.1. Hill-Valley Function: A Pivotal Subject for HillVallEA

The hill-valley function (HVF) [43] is a mathematical abstraction acknowledged in the field of
multimodal optimization and thus used by several niching approaches, e.g., the aforementioned ASD.
As explained afterward, the HVF-based test is strategic in HillVallEA. The functioning of it concerns the
quasi-convexity/quasi-concavity of f in particular subspaces. Let us the points si and sq refer any pair
of solutions (i , q) in an optimization landscape, like in Figure 3. To decide if such two solutions are
not in the same niche, some test inner points are generated. If any single test point is poorer in fitness
than both si and sq, they are said to exist in different peaks of the objective function, i.e., they belong to
separate niches. Thus, s1 and s4 are admitted to go in distinct peaks since at least s2 has worse fitness
than both of them. With less fitness than only one the target solutions, the test point s3 cannot separate
them. The result is then influenced by the number of inner points and their location.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 35

Figure 3. HVF test. It finds 𝑠 and 𝑠 in distinct niches if 𝑠 (𝑖 < 𝑙 < 𝑞) has less fitness than them.

Moreover, if none of the test points is found to have a worse fitness value than both 𝑠 and 𝑠 ,
it may be supposed that they belong to the same peak, but it cannot be affirmed. That occurs if 𝑠
and 𝑠 are the test points for 𝑠 and 𝑠 , which are in the same peak; also if 𝑠 and 𝑠 are used as
test points for 𝑠 and 𝑠 , located in separate peaks. Hence, the only possible reliable conclusion by
this test is that the two target solutions are in different peaks, if any of the inner points can prove it.
Otherwise, the algorithms that split the population into niches via HVF, such as HVC, assume that
those solutions are in the same niche, on risk to fall in the false-positive case described above. Testing
a large number of inner points is a logical intent to avoid that, but this is not feasible as it also increases
the computational cost. Thus, proper mechanisms to complement the power of this test are required.

3.5.2. Hill-Valley Clustering: The Niching Method

By adopting the HVF-based test, the Hill-Valley Clustering algorithm shapes the niching plan
for HillVallEA. The strategy of HVC to benefit from the HVF-based test is disclosed in [24]. That
includes a routine to suggest the number of (equidistant) test points between two solutions, which is
directly proportional to the Euclidean distance between such them. Besides, HVC implements a
refined seek for the cluster that any given individual 𝑠 belongs to, among those already identified.
Given a selected population (𝑆𝑒𝑙) sorted by fitness, excepting the initial solution, i.e., 𝑠 , which is
directly assigned to the first cluster created, each solution 𝑠 ∈ 𝑆𝑒𝑙, with 𝑖 > 1, is contrasted with up
to 𝐷 + 1 nearest fittest individuals via the HVF test. Among the solutions that exhibit a better fitness
than 𝑠 , it is tried with the closest one, and then with the second nearest, and then with the third one,
and so on, until 𝑠 is found to belong to the same cluster that some of such tested solutions. After 𝐷 + 1 comparisons with negative result, 𝑠 initializes another cluster.

Originally, that process was repeated for a total of |𝑆𝑒𝑙| − 1 individuals, after which a resulting
collection of clusters emerged as the found niches. Later [27], the authors concluded that it is worthy
to contrast a given 𝑠 with multiple top fittest neighbors only in two specific situations, which
reduces the computation time to run the HVF-based test. The first scenario happens when 𝑠 is one
of the ⌈𝑆𝑒𝑙/2⌉ solutions with better fitness. Otherwise, 𝑠 is tested with the neighbor at hand only if
they are separated by at least the expected edge length [24], which is the theorized distance of any
pair of individuals equidistantly positioned in the search space. If it does not fall in any of those two
cases, checking several fittest neighbors for 𝑠 leads to discover accurate clusters but having a poor
quality. Subsequently ‘forgotten’ by HillVallEA, they mean a waste of both the budget allotted to
solve the problem and the computational effort. That principally concerns those problems with many
local optima of very low fitness. Such a decision can be easily reconsidered in future versions of
HillVallEA that intend to find not only the global optima, but the locally optimal solutions as well.

3.5.3. AMaLGaM-Univariate: The Core Search Method

HillVallEA is flexible about the incorporation of core search algorithms, as any can be freely
included at no risk of interfering with any other fundament of such a scheme. Among other methods
examined, AMaLGaM-Univariate performed stunningly within such a multimodal optimizer. That
election resulted in the HillVallEA-AMu algorithm [24], renamed as HillVallEA18 and then refined
as HillVallEA19, in [27]. The AMaLGaM-Univariate procedure is catalogued as an estimation of
distribution algorithm (EDA) [44], a sort of EA suitable for those optimization tasks with a lack of

s1

s2

s3

s4

s5
s6

s7

s8

s9

s10

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3. HVF test. It finds si and sq in distinct niches if sl (i < l < q) has less fitness than them.

Moreover, if none of the test points is found to have a worse fitness value than both si and sq,
it may be supposed that they belong to the same peak, but it cannot be affirmed. That occurs if s5 and
s6 are the test points for s4 and s7, which are in the same peak; also if s8 and s9 are used as test points
for s7 and s10, located in separate peaks. Hence, the only possible reliable conclusion by this test is that
the two target solutions are in different peaks, if any of the inner points can prove it. Otherwise, the
algorithms that split the population into niches via HVF, such as HVC, assume that those solutions are

Mathematics 2020, 8, 665 12 of 37

in the same niche, on risk to fall in the false-positive case described above. Testing a large number of
inner points is a logical intent to avoid that, but this is not feasible as it also increases the computational
cost. Thus, proper mechanisms to complement the power of this test are required.

3.5.2. Hill-Valley Clustering: The Niching Method

By adopting the HVF-based test, the Hill-Valley Clustering algorithm shapes the niching plan for
HillVallEA. The strategy of HVC to benefit from the HVF-based test is disclosed in [24]. That includes
a routine to suggest the number of (equidistant) test points between two solutions, which is directly
proportional to the Euclidean distance between such them. Besides, HVC implements a refined seek
for the cluster that any given individual si belongs to, among those already identified. Given a selected
population (Sel) sorted by fitness, excepting the initial solution, i.e., s1, which is directly assigned to
the first cluster created, each solution si ∈ Sel, with i > 1, is contrasted with up to D + 1 nearest fittest
individuals via the HVF test. Among the solutions that exhibit a better fitness than si, it is tried with
the closest one, and then with the second nearest, and then with the third one, and so on, until si is
found to belong to the same cluster that some of such tested solutions. After D + 1 comparisons with
negative result, si initializes another cluster.

Originally, that process was repeated for a total of |Sel| − 1 individuals, after which a resulting
collection of clusters emerged as the found niches. Later [27], the authors concluded that it is worthy
to contrast a given si with multiple top fittest neighbors only in two specific situations, which reduces
the computation time to run the HVF-based test. The first scenario happens when si is one of the
d|Sel|/2e solutions with better fitness. Otherwise, si is tested with the neighbor at hand only if they
are separated by at least the expected edge length [24], which is the theorized distance of any pair of
individuals equidistantly positioned in the search space. If it does not fall in any of those two cases,
checking several fittest neighbors for si leads to discover accurate clusters but having a poor quality.
Subsequently ‘forgotten’ by HillVallEA, they mean a waste of both the budget allotted to solve the
problem and the computational effort. That principally concerns those problems with many local
optima of very low fitness. Such a decision can be easily reconsidered in future versions of HillVallEA
that intend to find not only the global optima, but the locally optimal solutions as well.

3.5.3. AMaLGaM-Univariate: The Core Search Method

HillVallEA is flexible about the incorporation of core search algorithms, as any can be freely
included at no risk of interfering with any other fundament of such a scheme. Among other methods
examined, AMaLGaM-Univariate performed stunningly within such a multimodal optimizer. That
election resulted in the HillVallEA-AMu algorithm [24], renamed as HillVallEA18 and then refined
as HillVallEA19, in [27]. The AMaLGaM-Univariate procedure is catalogued as an estimation of
distribution algorithm (EDA) [44], a sort of EA suitable for those optimization tasks with a lack of
knowledge about the objective function [26], e.g., the multimodal problems. Earlier studies [45–47]
reported the use of EDAs to deal with multimodal optimization as well.

The EDAs seek for convergence by sampling a probability distribution updated all through the
optimization process [26,44]. Hence, the focal action in every iteration is the estimation of such a
distribution from the fittest individuals in the population. By using the distribution, a new generation
of individuals is created to replace the formers, either fully or partly, after which only the best
solutions remain in the recent population. Among the EDAs in the state-of-the-art on evolutionary
computation, Bosman et al. [25] contributed the Adapted Maximum-Likelihood Gaussian Model
Iterated Density-Estimation Evolutionary Algorithm, abbreviated first as AMaLGaM-IDEA and later
as AMaLGaM. In [26], they analyzed three versions of AMaLGaM, basically differing on the Gaussian
distribution used, being either fully multivariate, Bayesian factorized or univariately factorized.
The last one led to AMaLGaM-Univariate, the succeeding core search method in HillVallEA.

The Gaussian probability distribution is conditioned by a vector of means (µ) and a covariance
matrix (Σ). Given a cluster of solutions, that distribution is initialized in AMaLGaM-Univariate

Mathematics 2020, 8, 665 13 of 37

by taking µ as the cluster means, and Σ as the covariance matrix of such individuals respecting µ.
Then, a population with a size Nc is sampled, according to the initial distribution. In the each of
next iterations, both µ and Σ are re-estimated and the population is later re-sampled. That repetitive
procedure evolves to a success stage, after which the fittest solution is returned. Thus, the main
parameters required by AMaLGaM-Univariate are the cluster per se (from whichµ and Σ are initialized),
and Nc. The later is coined as the ‘cluster size’ although it does not refer the number of individuals
in the given cluster, but the size of the population used to optimize it. A value of tolerance is used
to terminate AMaLGaM-Univariate when it is converging either to a presumed local optimum or
towards an already assumed global optimum. The latest case is validated every five generations.
Planning future variants of HillVallEA to find both global and local optima, requires one to modify
such conditions to stop AMaLGaM-Univariate when converging again to the same optima (global or
local). Nevertheless, the core search algorithm safely stops in other situations, e.g., when either the
standard deviation of the solutions or the standard deviation of their fitness values is extremely small.

3.5.4. Elitist Archive, Restart Scheme and Overall Process

As to maintain the elites, i.e., the masters of the peaks, HillVallEA uses an archive E that in practice
works alike the external memory in NVMO. Some facts differ in the mechanisms that control such
structures though. For instance, the candidate optima (masters) to update the elitist archive are not
picked by checking the entire population exhaustively. Other particularities of the strategy to update E
towards the end of every evolutionary iteration are described below. The algorithmic details about
HillVallEA addressed in this study combine from the two fundamental works [24,27], and the source
code [48] that the authors unveiled under GNU General Public License v3.0. For their relevance to
HVcMO (part of the proposal in Section 4), such details are simplified in Algorithm 3.

The evolutionary process is repeated while the remaining budget (function evaluations) is enough
to at least generate other N individuals (Algorithm 3, line 5). In each iteration, a population of N
individuals is randomly initialized according to a uniform distribution, and by applying a rejection
strategy that came with HillVallEA19 (the latest version) to avoid re-exploring regions of the search
space (line 6). Any new solution is very likely discarded (rejection probability rp = 0.9) if its nearest
D + 1 solutions in the initial population of the prior generation were in the same cluster. Actually,
2N solutions are created with that rejection reasoning, but only N are chosen via a greedy scattered
subset selection mechanism [49], to spread the initial population as it has proved to help the performance
of EAs [27]. Once initialized, the population shrinks again, this time to a certain percentage indicated
by the selection fraction τ: out of the N individuals, the fittest ones are taken. That seeks for higher
outcomes by the overall optimization. The population is then made ready to be partitioned in niches.
It is completed with those solutions stored in the elitist archive (line 10), so that they can work as
attractors during the niching process, subsequently conducted via HVC (in line 11).

Being K the recent set of clusters, the core search method singly improves each Ki(i ≥ 1) whose
best solution (Ki,1) does not match any former elite. Hence, the best solution in each final population
by the core search method supposes a global optimum (line 15). The Cnd set of candidate optima is
checked for updating E (in line 19). If the fittest candidate optimum exceeds the best elite in the archive,
it is emptied. As well, those candidates poorer in fitness (by at least the given tolerance value) than the
globally best solution, are labeled as local optima and then discarded. The others are assumed as global
optima and included in E if they are new elites, i.e., they belong to different peaks than those already
in the archive, which is checked by using HVF with five inner points. Otherwise, the presumed global
optimum replaces the equivalent stored elite only when having a greater fitness value. In that way,
this procedure intends to avoid cloning any saved optima.

In spite of the described efforts, in some cases no novel elite is detected. Authors ascribe that
to a couple of possible reasons. The first one alludes to a population still insufficient to catch minor
niches. The other supposition is that the number of individuals used by the search core method is
inadequate to enhance complex niches. To cover both cases, the restart of the population for the next

Mathematics 2020, 8, 665 14 of 37

cycle considers a larger number N of individuals, while the core search over each niche will also use an
increased number Nc of solutions (see Algorithm 3, lines 21 and 22).

Algorithm 3 HillVallEA

Inputs: D-dimensional problem P← (S, Ω, f) as in Section 2, plus the following main parameters:
A: the core search algorithm (e.g. AMaLGaM-Univariate)
N: population size (in HillVallEA19: 64; in HillVallEA18: 16D)
Ninc: increment factor for the population size (suggested value: 2.0)
NAc : recommended population size forA (for AMaLGaM-Univariate: 10

√
D)

Nini
c : initial fraction of the population size ofA (in HillVallEA19: 0.8; in HillVallEA18: 1.0)

Ninc
c : increment factor for population size ofA (in HillVallEA19: 1.1; in HillVallEA18: 1.2)

τAc : selection fraction forA (for AMaLGaM-Univariate: 0.35)
Tol: tolerance (by default: 1.0 × 10−5; it may be set equal to the accuracy level)
MaxFE: budget expressed as the Maximum number of Function Evaluations

Process:
1. Nc ← Nini

c ∗NAc // Actual population size forA
2. τ← τAc
3. E← {} // Elitist archive
4. P0 ← {}

5. while FEtoSample(N) ≤MaxFE− FEused do // Enough FE to prepare N solutions?
6. Pop← sample_uni f orm_reject(N, D, P0)

7. P0 ← Pop // Population backup
8. descending_sort_by_ f itness(Pop)
9. Sel← truncation_selection(Pop, τ) // Portion of Pop said by τ
10. Sel← Sel ∪ E
11. K← HillValleyClustering(Sel)
12. Cnd← {} // Set of candidate global optima
13. for i = 1 to |K| do
14. if Ki,1 < E then // If the master of Ki is not a prior elite,
15. cand←A(Ki, Nc, Tol) // runA to enhance that niche; take the
16. Cnd← Cnd ∪ {cand} // fittest solution as a candidate optimum
17. end if
18. end for
19. Nu ← update_archive(E, Cnd, Tol) // Count elites either replaced or added
20. if Nu = 0 then
21. N← N ∗Ninc // If E remains unaltered, increase
22. Nc ← Nc ∗Ninc

c // both population sizes
23. end if
24. end while
Output:
25. return E

A decisive matter to solve any optimization problem by using metaheuristics is the number of
solutions required for it. Looking for multiple optima presupposes the demand for more individuals.
Besides, some objective functions can be approximated with less solutions than others. Tuning the
population size is definitely a challenge. In HillVallEA, such an amount is relatively short at first, and
increments upon analysis. Besides, the initial size of the population changed from 16D, in HillVallEA18,
to 64 individuals in HillVallEA19. That signifies a smaller number of initial solutions for all problems
with D > 4. In addition, as shown in Algorithm 3, HillVallEA19 uses lower values for both the
initial fraction Nini

c of the population of the local search method, and the factor Ninc
c that controls its

increment. In spite of that, our observations (documented in Section 6) show that this method continues
employing quite large populations to approximate well most problems at hand. This important

Mathematics 2020, 8, 665 15 of 37

drawback markedly prolongs the running time, which drafts the next research goal of this paper, i.e.,
to lower such an execution time without any serious loss of effectiveness.

Because when it comes to metaheuristics, it is key to monitor the time, our concern about it is in
consonance with a few algorithmic conceptions of HillVallEA. That includes the aforesaid adjustment
of the parameters related to the population size. As well, to effect Hill-Valley Clustering over the set
Sel of selected solutions, for each analyzed individual, the computed distances to all the solutions
better than it are stored. Such a decision makes HVC more efficient, as its complexity noticeably drops
from O

(
D|Sel|2

)
to O(|Sel|). In addition, while avoiding re-examine areas of the search space, the restart

scheme with rejection reduces time. That benefit is accentuated by using the subset selection method
referred above, among other possible techniques that become inefficient when either the dimension of
the problem or the sample size is large [27].

3.6. Research Objectives

The early declared research goal is actually attained above. Even so, just for correctness, it is
recaptured as:

(1) To compare VMO-N and NVMO from a conceptual perspective

The previous examination of both VMO-N and HillVallEA put emphasis on their shortcomings.
The main needs for research derived from those limitations determine most of the objectives of this
investigation, recapped below in a clear manner:

(2) To revise the VMO-N framework
(3) To create a competitive variant of VMO-N
(4) To decrease the running time of HillVallEA while keeping it effective

Apart from those, a last need appears from a practical perspective. By confirming which of the
relevant methods (previous and newly proposed) performs better on dissimilar test problems, it is
easier to choose between them to approximate further (likely real-world) problems, having common
features with the ones used here for benchmarking. In simple words, we pretend to answer the
following question: is there any range of multimodal optimization problems for which one or the other
analyzed method are preferred? That leads to the final research objective of this work:

(5) To find guidelines to select between past and new methods to better solve additional problems

This requirement derives from the well-known ‘no free lunch’ theorem [50], which supports that
no metaheuristic absolutely outperforms all the others. Thus, none of them can solve any particular
problem better than every remaining heuristic optimizer, irrespective of the subfield of optimization
affected. It is then useful to have evidence for selecting methods to deal with upcoming problems.

4. The Proposals

In response to the second goal projected, this section presents the VMO-N framework with several
improvements that guarantee a high flexibility. This new scheme constitutes the base for creating
future VMO multimodal optimizers, such as the HVcMO algorithm, also introduced below.

4.1. Variable Mesh Optimization with Niching: A Revised Framework

This fresh proposal preserves the essential contributions of VMO-N: (1) advising when to better
apply the niching step within VMO, and (2) applying the adaptive clearing operator over each
niche. However, it comes with a strong adaptability by reason of the multiple optional commands,
as Algorithm 4 explains. One of them is the use of an elitist archive E, a memory-based strategy
imported from the literature. It has shown helpful in many multimodal optimizers [18,23,24,30,37],
some of which were previously approached in this paper. Apart from the masters of the peaks, it might

Mathematics 2020, 8, 665 16 of 37

be helpful to store other nodes with additional purposes. Hence, it is optionally considered a second
external list, indicated as R in the framework.

The previous works about VMO-N overcame the initial shortcoming of VMO related to its
incapacity to maintain the fittest found nodes in the population along the time. Given that, memorizing
such nodes is unnecessary, unless certain circumstances apply, e.g., if they are required for implementing
any mechanism, like the ‘tabu’ list in [37], to explicitly avoid re-visiting regions of the search space.
However, this revamped VMO-N considers the possibility that the best individuals discovered are
deliberately excluded from the mesh for the next iteration, either temporarily or permanently. In that
situation, E is extremely needed.

Other optional instructions are carefully placed in the building blocks of VMO-N. Besides providing
adaptability to that multimodal optimization scheme, they make it more generalizable, which means
that its instances can deal with a vast amount of multimodal problems. A plethora of methods can be
created by instantiating this framework in future. Actually, some of those non-compulsory commands
indirectly suggest further strategies to apply. In addition, the number of parameters used and of
variables declared is as large as needed, for example, by the niching algorithm incorporated or by any
elective step conducted.

Based on the outcomes in [23,24], an important increase is the possibility of a local optimization
step (Algorithm 4, line 31). In order to enhance the search, any freely chosen optimizer is separately
run over each niche fund. It is said a local optimizer as it initializes from the individuals in a given
niche, using either some of them or all. However, it might reach solutions in other areas of the search
space, beyond the limits of the niche at hand. Following the main course of VMO-N, once it has been
improved, the adaptive clearing affects each niche (in line 33) and then, the fittest node in the niche
(indicated as Nh j,1) is considered to update the list of elites only if Nh j,1 was discovered just now.
Moreover, in case of using the second external list (R), it is updated at that moment as well.

There are a couple of alternative courses involving the update of the memories (line 34), taking into
account that it can be permuted either with line 33 or with line 35. If the order of the instructions in lines
33 and 34 are exchanged, the adaptive clearing occurs after updating the lists. In fact, that possibility
was announced in Section 3.4.3, while explaining that even in that case the algorithmic sequence of any
instance of VMO-N will differ from that of the NVMO algorithm. Such a modification has sense if,
for example, several nodes have to be saved in the second extra memory before they are removed by
the adaptive clearing operator.

On the other hand, permuting lines 34 and 35 indicates that the memory update happens at once,
after processing all niches, instead of after processing every single niche. In that case, the set

{
Nh j,1, . . .

}
contains the master of each j-th niche to update E, together with other relevant nodes to update R.
What is more, it is possible to update one of the lists (E or R) inside the for-loop, every time a niche is
processed, and the other list after that, only once. That alternative derives from the separability of both
lists, and from the permutability of line 34. Nonetheless, effecting the adaptive cleaning (line 33) is
no longer obligatory, because other mechanisms may satisfy its main function: to foster diversity in
the mesh.

The VMO-N framework also integrates the notion of what we coin as global key nodes. That implies
not only the single fittest solution but any other with global importance, for example, every node
having similar fitness than the best solution in the population. Whenever that option is taken, the global
expansion of the mesh takes into account the set Gk∗ of such key solutions. Likewise, the local expansion
is slightly adapted. Given any si node, its k neighbors are not necessarily selected from the whole mesh.
Instead, they are found among those nodes belonging to a certain universe that is specifically defined
for the i-th node, as a subset of the sampled mesh, that is U′i ⊆M.

Mathematics 2020, 8, 665 17 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 35

Algorithm 4 VMO-N framework
Main phases: mesh expansion niching, local optimization and mesh contraction

Further legend: changes over to the original VMO #.ᵒp optional line permutable lines
Inputs: 𝐷-dimensional problem 𝑃 ← (𝑆, Ω, 𝑓) as in Section 2, counting the domain bounds 𝐵, plus:

 𝐴𝑟𝑔 = {𝐼, 𝑇, 𝑘, 𝐶, 𝐴 , 𝐴 , 𝐴 } 𝑇: size of total mesh (set 3.0𝐼 ≤ 𝑇 ≤ ⌈3.5𝐼⌉ or compute it later)
 𝐼: size of initial mesh 𝐴 : set of arguments of the niching method (may be empty)
 𝑘: number of neighbors 𝐴 : set of parameters of the local optimizer (may be empty)
 𝐶: stop criteria 𝐴 : set of additional arguments (may be empty)

Process:
1.ᵒp 𝑀 ← 𝑓𝑜𝑟𝑚_𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑚𝑒𝑠ℎ(𝐼)
2.ᵒp {𝐸, 𝑅} ← { }, { } // Elitist archive 𝐸; second extra list 𝑅
3.ᵒp 𝑉𝑟𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑜𝑡ℎ𝑒𝑟_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠() // As many as needed
4.ᵒp while no condition 𝑐 ∈ 𝐶 is reached do
5.ᵒp 𝑀 ← 𝑑𝑜_𝑒𝑥𝑡𝑟𝑎(𝑀, … , 𝐴 ⊆ 𝐴) // Further actions on 𝑀, e.g. truncation
6.ᵒp 𝑠∗ ← 𝑓𝑖𝑛𝑑_𝑓𝑖𝑡𝑡𝑒𝑠𝑡(𝑀)
7.ᵒp 𝐺𝑘∗ ← 𝑢𝑝𝑑_𝑘𝑒𝑦_𝑛𝑜𝑑𝑒𝑠(𝑀, … , 𝑠∗, 𝐴 ⊆ 𝐴) // E.g. nodes ‘similar’ (in fitness) to 𝑠∗
8.ᵒp 𝑀 ← 𝑀 // Expanding mesh
9.ᵒp 𝜀 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐵, 𝑇𝑖𝑚𝑒)

10.ᵒp for 𝑖 = 1 to 𝐼 do
11.ᵒp 𝐿𝑘 ← 𝑓𝑖𝑛𝑑_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑛𝑜𝑑𝑒𝑠(𝑘, 𝑠 , 𝑈 ⊆ 𝑀) // Within universe 𝑈
12.ᵒp
 ~
17.ᵒp

𝑀 ← 𝑙𝑜𝑐𝑎𝑙_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑀 , 𝑠 , 𝐿𝑘) // As in Algorithm 1 (lines 8~13)

18.ᵒp 𝑠∗ ← 𝑠∗ or 𝑠∗ ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑘𝑒𝑦_𝑛𝑜𝑑𝑒(𝑠 , 𝐺𝑘∗) // Do the second choice iif line 7 is run
19.ᵒp if 𝑠 ≠ 𝑠∗ then
20.ᵒp 𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦(𝑠 , 𝑠∗) // Global expansion
21.ᵒp 𝑀 ← 𝑀 ⋃ 𝑠
22.ᵒp end if
23.ᵒp end for
24.ᵒp 𝑇 ← 𝑓𝑖𝑔𝑢𝑟𝑒_𝑚𝑒𝑠ℎ_𝑠𝑖𝑧𝑒(|𝑀 |, … , 𝐴 ⊆ 𝐴) // If no value is set a priori
25.ᵒp
 ~
27.ᵒp

𝑀 ← 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑀, 𝑀 , 𝑇) // As in Algorithm 1 (lines 19~21)

28.ᵒp 𝑀 ← 𝑑𝑜_𝑒𝑥𝑡𝑟𝑎(𝑀 , 𝐿𝑚, … , 𝐴 ⊆ 𝐴) // Any further process on 𝑀
29.ᵒp 𝑁ℎ ← 𝑛𝑖𝑐ℎ𝑒_𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑀 , 𝐴) // Using any desired niching method
30.ᵒp for 𝑗 = 1 to |𝑁ℎ| do
31.ᵒp 𝑁ℎ ← 𝑙𝑜𝑐𝑎𝑙_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑁ℎ , 𝐴 // On the j-th niche
32.ᵒp 𝑁ℎ ← 𝑠𝑜𝑟𝑡_𝑏𝑦_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑁ℎ
33.ᵒp 𝑁ℎ ← 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒_𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔 𝑁ℎ , 𝜀

// Update 𝐸 if master 𝑁ℎ , is new.

// If lines 34 and 35 permute, 𝑁ℎ , , …

// has the masters of all niches

34.ᵒp {𝐸, 𝑅} ← 𝑢𝑝𝑑(𝐸, 𝑅, 𝑁ℎ , , … , 𝐴 ⊆ 𝐴)

35.ᵒp end for
36.ᵒp {𝐴𝑟𝑔, 𝑉𝑟𝑠} ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝐴𝑟𝑔, … , 𝑉𝑟𝑠)

37.ᵒp 𝑀 ← 𝑓𝑜𝑟𝑚_𝑛𝑒𝑥𝑡_𝑚𝑒𝑠ℎ(𝐼, … , 𝑀 , 𝑁ℎ) // E.g. randomly, by elitist selection…
38.ᵒp if |𝑀| < 𝐼 then
39.ᵒp 𝐿𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑑𝑒𝑠(𝐼 − |𝑀|)
40.ᵒp 𝑀 ← 𝑀 ⋃ 𝐿𝑠 // Complete initial mesh for next cycle
41.ᵒp end if
42.ᵒp {𝐴𝑟𝑔, 𝑉𝑟𝑠} ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝐴𝑟𝑔, … , 𝑉𝑟𝑠)
43.ᵒp end while
Output:
44.ᵒp return 𝐸

Mathematics 2020, 8, 665 18 of 37

The annotated restriction 3.0I ≤ T ≤ d3.5Ie derives from the details of the expansion. Setting
T← 3I assures a least creation of 2I nodes, which is enough to expand locally, globally, and to some
extent, from the frontiers. Moreover, 3.0I < T ≤ d3.5Ie benefits even more the creation of solutions from
the frontiers. Actually, T← d3.5Ie is more than sufficient to treat both frontiers fully. Instead of setting
T as a parameter, now VMO-N can also compute it as needed, for example to precise the exact

∣∣∣LsH
∣∣∣

wanted. If
∣∣∣LsH

∣∣∣ is very small, T . 3.0I can be obtained. In addition, even if T is set as a parameter
together with I, they may vary along the search (either in line 36 or in line 42).

Other revisions are the operation with several termination criteria for the evolutionary process,
and the use of a while-loop rather than a for-loop to describe it. Although the latter is coherent with
our practice of VMO, it has no other impact but gaining descriptive capability for future. The altered
framework remains valid to pursue both global and local optima, whereas it allows limiting the search
to only one of those types (e.g., by means of lines 34 and 37).

4.2. Hill-Valley-Clustering-Based Variable Mesh Optimization

Algorithm 5 reveals the elementary units of HVcMO, the novel instance of VMO-N, whose
competitiveness is later confirmed in Section 6, as to accomplish the third research objective of this
study. It is also an evident extension of HillVallEA that integrates some important additions. Thus,
HVcMO is seen from the perspectives of its two parents. In this new case of the VMO-N framework:

• two external lists are used to keep the elites and those nodes for rejection, respectively,
• HVC is employed as the niching algorithm,
• the adaptive clearing is not applied,
• a local optimizer is run over each niche, and
• the mesh in the next generation is fully replaced by a new one.

Since the mesh is entirely reset (line 13), an elitist archive is required and the adaptive clearing
is needless. The pursuit for diversity recurs, now by the rejection scheme all along the restart of the
population, which follows the instructions for HillVallEA, same as the update of the archive. Besides,
before niching the expanding mesh, it is enlarged with all the already identified elites (line 39) to use
them as attractors while executing the niching method. That is equivalent to evolve a population that
consists of two consecutive segments for certain masters of the found niches and for random nodes,
respectively, so that the sorting, the truncation and the expansion affect only the latter segment.

Moreover, the search operators of VMO were implemented the same as for [20–22].
The corresponding formulations given in [20] largely apply, except for some changes that involve
mainly the local expansion. Among them, the distance threshold is based on [21,22], as:

ε←
1
D

D∑
j=1

ε j (10)

where D is the poblem dimension and each component ε j denotes a portion of the amplitude of the
domain of the j-th variable whose upper and lower bounds are respectively b j and a j. That fraction
depends on the current count of function evaluations, out of a fixed maximum number (MaxFEs):

ε j ←

(
b j − a j

)
/2, FEused < 0.15MaxFEs(

b j − a j
)
/4, 0.15MaxFEs ≤ FEused < 0.30MaxFEs(

b j − a j
)
/8, 0.30MaxFEs ≤ FEused < 0.60MaxFEs(

b j − a j
)
/16, 0.60MaxFEs ≤ FEused < 0.80MaxFEs(

b j − a j
)
/100, 0.80MaxFEs ≤ FEused

(11)

Mathematics 2020, 8, 665 19 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 18 of 35

Algorithm 5 HVcMO
Main phases: mesh expansion niching, local optimization and mesh contraction

Further legend: main extensions to HillVallEA

Inputs: 𝐷-dimensional problem 𝑃 ← (𝑆, Ω, 𝑓) as in Section 2, including the domain bounds 𝐵, plus: 𝒜: local optimizer 𝐶 = {𝑀𝑎𝑥𝐹𝐸} (budget as maximum function evaluations) {𝐼, 𝑘} as in Algorithm 1 𝐻 : amplitude rate of the frontiers together (𝐻 ≤ 0.5) 𝜏 𝒜 : selection fraction for 𝒜 𝐻 : maximum number of frontier nodes to expand 𝒩 𝒜: cluster size for 𝒜 𝒩 : initial fraction of the population size of 𝒜 𝒩 : cluster size increment factor 𝒩 : mesh size increment factor 𝑇𝑜𝑙: tolerance level

Process:
1. 𝒩 ← 𝒩 ∗ 𝒩𝒜 // Actual population size for 𝒜
2. 𝜏 ← 𝜏 𝒜
3. 𝐸 ← { } // Elitist archive
4. 𝑅 ← { } // Set of nodes used for rejection
5. 𝑚𝑖𝑛_𝐼 ← 𝐼
6. while 𝐹𝐸 ≤ 𝑀𝑎𝑥𝐹𝐸 do // If remaining budget is thought
7. if 𝐹𝐸 (𝐼) > 𝑀𝑎𝑥𝐹𝐸 − 𝐹𝐸 then // too little to expand some of the
8. 𝐼 ← 𝑠ℎ𝑟𝑖𝑛𝑘_𝑚𝑒𝑠ℎ_𝑠𝑖𝑧𝑒(𝐼, 𝑀𝑎𝑥𝐹𝐸, 𝐹𝐸) // new nodes, properly reduce 𝐼
9. if 𝐼 < 𝑚𝑖𝑛_𝐼 then

10. break while // Stop if the least size is passed
11. end if
12. end if
13. 𝑀 ← 𝑠𝑎𝑚𝑝𝑙𝑒_𝑢𝑛𝑖𝑓𝑜𝑟𝑚_𝑟𝑒𝑗𝑒𝑐𝑡(𝐼, 𝐷, 𝑅)
14. 𝑅 ← 𝑀 // Reset the rejection set
15. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔_𝑠𝑜𝑟𝑡_𝑏𝑦_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑀)
16. 𝑀 ← 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑀, 𝜏) // Select the ⌈𝐼 ∗ 𝜏⌉ nodes
17. 𝑠∗ ← 𝑓𝑖𝑛𝑑_𝑓𝑖𝑡𝑡𝑒𝑠𝑡(𝑀)
18. |𝐿𝑠 | ← 𝑚𝑖𝑛 |𝑀| ∗ 𝐻 , 𝐻

// Expand 𝑀 as in Algorithm 4
// (lines 8~27), running its line 24 as
// 𝑠𝑙24, and using 𝑡𝑜_𝑠𝑙11 to set
// 𝑈 in its line 11

19.
 ~
38.

𝑀 ← 𝑒𝑥𝑝𝑎𝑛𝑑(𝑀, 𝐵, 𝑘, 𝑠∗, |𝐿𝑠 |, 𝑡𝑜_𝑠𝑙11, 𝑠𝑙24)
where 𝑠𝑙24 is "𝑇 ← |𝑀 | + |𝐿𝑠 |" and 𝑡𝑜_𝑠𝑙11 means "𝑈 ← 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑀, 𝜏)"

39. 𝑀 ← 𝑀 ⋃ 𝐸
40. 𝑁ℎ ← 𝐻𝑖𝑙𝑙𝑉𝑎𝑙𝑙𝑒𝑦𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑀)
41. for 𝑗 = 1 to |𝑁ℎ| do
42. if 𝑁ℎ , ∉ 𝐸 then // If 𝑁ℎ , is recent, run 𝒜 to

// enhance 𝑁ℎ , and take its best
// node as a candidate optimum

43. 𝑐𝑎𝑛𝑑 ← 𝒜 𝑁ℎ , 𝒩 , 𝑇𝑜𝑙

44. 𝐶𝑛𝑑 ← 𝐶𝑛𝑑 ⋃ {𝑐𝑎𝑛𝑑}
45. end if
46. end for
47. 𝒩 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑒𝑙𝑖𝑡𝑖𝑠𝑡_𝑎𝑟𝑐ℎ𝑖𝑣𝑒(𝐸, 𝐶𝑛𝑑, 𝑇𝑜𝑙) // Count elites replaced or added
48. 𝑒∗ ← 𝑔𝑒𝑡_𝑓𝑖𝑡𝑡𝑒𝑠𝑡(𝐸)
49. 𝑅 ← 𝑅 ⋃ {𝑒∗} ⋃ {𝑒 | 𝑗𝑢𝑠𝑡_𝑎𝑑𝑑𝑒𝑑(𝑒, 𝐸), 𝑒 ≠ 𝑒∗} // Update the rejection set
50. if 𝒩 = 0 and mesh size never decreased then
51. 𝐼 ← 𝐼 ∗ 𝒩 // If 𝐸 is same, and 𝐼 has not
52. 𝒩 ← 𝒩 ∗ 𝒩 // reduced, rise population sizes
53. end if
54. end while

Output:
55. return 𝐸

Mathematics 2020, 8, 665 20 of 37

Besides, for every node si to be expanded locally by the F-operator, the list of neighbors Lki is
not determined from the entire mesh but from a certain universe U′i . In HVcMO, regardless of the
node at hand, such a universe is the fittest τ-fraction of the mesh. As for that, we use the selection
fraction defined for the truncation of the initial mesh, but they may also be set unequally. Not all the
solutions in U′i have global importance, even for relatively short values of τ. For that reason, that
universe should not be confused with a set of key nodes. The larger τ is, the more nodes with no global
relevance are included in U′i . The choice of that quasi-local F-operator is mostly moved by our concern
about the running time. Future works should evaluate the effects of other ways to decide U′i .

The formulations for the G-operator and the H-operator remains unaltered, but the size of frontiers
affected by the latter is jointly delimited by their fixed amplitude ratio Hamp. In the previous studies
about VMO, the value of T is fixed as a parameter, informing the possible largest length of the mesh
after the expansion. Thus, the extent of the creation of nodes from the frontiers, i.e.,

∣∣∣LsH
∣∣∣, is basically

figured as the difference of T and the size of the enlarging mesh (Algorithm 1, line 19). In that case,
the proportion of the mesh taken as frontiers is influenced by T. Conversely, in HVcMO,

∣∣∣LsH
∣∣∣ is

computed as the lowest value between the percentage of the initial mesh indicated by Hamp, and a
firm upper limit (Hmax) for the size of the frontiers (Algorithm 5, line 18). Next, in lines 19~38 that are
equivalent to lines 8~27 in Algorithm 4, it is marked how to calculate T. Note that it is just a formalism
to trace T from Algorithm 5 to Algorithm 4, and then from Algorithm 4 to Algorithm 1, as to figure∣∣∣LsH

∣∣∣. In practice, after calculating
∣∣∣LsH

∣∣∣, HVcMO does not utilize any T at all.
From the viewpoint of HillVallEA, the biggest augmentation in HVcMO is the effecting of the

search operators of VMO (lines 18~39) over the truncated population. As of the population is restarted
randomly, HillVallEA uses a couple of important strategies, i.e., the rejection mechanism to sparse the
solutions through unexplored areas of the search space, and the subsequent truncation to process only
the best part of the population. The adding of the expansion operators of VMO as another preparation
step before niching intends to improve the quality of the population as well. However, it provokes that
the number of nodes increases, and then also the consumption of the budget and the execution time.
That consequence applies for any specific sample size at a certain moment, but is not necessarily valid
for the entire evolutionary optimization. Our conjectures about it are delineated as:

• Hypothesis 1: Using additional search operators to enhance the population before niching may
reduce the total number of solutions throughout the optimization process by HillVallEA.

• Hypothesis 2: If the reduction of the overall number of solutions is big enough, the total execution
time of HillVallEA should also decrease, while keeping quite similar multimodal capability.

To evaluate them (in Section 6), we borrowed search procedures from VMO. Others may be
used instead, e.g., crossover mechanisms designed for GAs. Thus, a research avenue for HillVallEA
begins. Another variation by HVcMO concerns the diminution of the mesh size when the remaining
budget is insufficient to deal with a new population having the current length. This choice was indeed
contemplated by Maree et al. in [48], but discarded, as they considered fruitless to sample such small
populations at the end of the optimization process. In case of HVcMO, the size of the mesh properly
decreases (line 8) when the available budget is insufficient not only to sample a population with the
current size, but also to expand at least part of the new nodes, via VMO. Even without any deep
analysis about it, we implemented that modification based on some empirically observed benefits.
Besides, it slightly increments the overall number of solutions and thus, the running time. Therefore,
that means a practical opportunity to prove that even with a forced longer execution time (beyond
that provoked by VMO itself), HVcMO can run faster than HillVallEA. However, future works should
verify the actual advantages of keeping such a late shrinkage of the population in HVcMO.

As an aftermath, the condition to increase the size parameters (line 50) is altered. In HillVallEA,
that occurs if no new peak is detected. In HVcMO, it happens if also the size of the population was
never reduced, since it is senseless to push a larger mesh again after it was previously shortened due
to a lack of budget. On the other hand, one more extension pretends to reinforce the potential of the

Mathematics 2020, 8, 665 21 of 37

rejection while sampling the population. Not only the solutions sampled in the preceding iteration
are considered, but also each master representing a newly discovered peak (in the current iteration),
together with the best elite ever found (line 49). A closing comment clarifies about HVcMO20a, which
is nothing else but the HVcMO algorithm where AMaLGaM-Univariate performs as the local optimizer
and the parametric specifications for HillVallEA19 are widely adopted, as detailed below.

5. Experimental Setup

The general elements of the experimental analysis are explained in this section. They include
the setting of parameters for HVcMO20a, the suite of benchmark problems, the baseline methods,
the performance criteria, and the statistical tests for comparisons. This work follows the procedures
of the Competition on Niching Methods for Multimodal Optimization within GECCO [28], which
extensively embraces the instructions in [40]. For any single run, the tried algorithm stops when a
given budget is finished. Stated as a certain maximum number of functions evaluations (MaxFE), the
budget for every test problem is specified in Table 2. Every algorithm is run 50 times over each test
problem. The outputs are assessed at five levels of accuracy: 1.0× 10−1, 1.0× 10−2, 1.0× 10−3, 1.0× 10−4

and 1.0 × 10−5, and the results are averaged over a given number of runs (NR← 50) at every level
of accuracy. Such a concept of accuracy is meant only to evaluate the outputs of any multimodal
optimizer. However, methods that use certain thresholds, e.g., the tolerance in HillVallEA, may set
them by considering those values of accuracy as a reference.

Table 2. Characteristics of the test problems and budget allowance. Each value in red represents a
search space volume that is either small or large; if blue, it denotes a volume of a medium size.

Id f Name D Domain Bounds Vol #GOpt #LOpt MaxFE

1 F1(x) Five-Uneven-Peak Trap 1 x ∈ [0, 30] 30.00 2 3 5.0× 104

2 F2(x) Equal Maxima 1 x ∈ [0, 1] 1.00 5 0 5.0× 104

3 F3(x) Uneven Decreasing Maxima 1 x ∈ [0, 1] 1.00 1 4 5.0× 104

4 F4(x, y) Himmelblau 2 x, y ∈ [−6, 6] 144.00 4 0 5.0× 104

5 F5(x, y) Six-Hump Camel Back 2 x ∈ [-1.9, 1.9]; y ∈ [−1.1, 1.1] 8.36 2 5 5.0× 104

6 F6(
→
x) Shubert 2 x1, x2 ∈ [−10, 10] 4.0 × 102 18 many 2.0× 105

7 F7(
→
x) Vincent 2 x1, x2 ∈ [0.25, 10] 95.06 36 0 2.0× 105

8 F6(
→
x) Shubert 3 x1, x2, x3 ∈ [−10, 10] 8.0 × 103 81 many 4.0× 105

9 F7(
→
x) Vincent 3 x1, x2, x3 ∈ [0.25, 10] 926.86 216 0 4.0× 105

10 F8(
→
x) Modified Rastrigin 2 x1, x2 ∈ [0, 1] 1.00 12 0 2.0× 105

11 F9(
→
x) Composition Function 1 2 x1, x2 ∈ [−5, 5] 1.0 × 102 6 many 2.0× 105

12 F10(
→
x) Composition Function 2 2 x1, x2 ∈ [−5, 5] 1.0 × 102 8 many 2.0× 105

13 F11(
→
x) Composition Function 3 2 x1, x2 ∈ [−5, 5] 1.0 × 102 6 many 2.0× 105

14 F11(
→
x) Composition Function 3 3 x1, x2, x3 ∈ [−5, 5] 1.0 × 103 6 many 4.0× 105

15 F12(
→
x) Composition Function 4 3 x1, x2, x3 ∈ [-5, 5] 1.0 × 103 8 many 4.0× 105

16 F11(
→
x) Composition Function 3 5 x1, x2, . . . , x5 ∈ [-5, 5] 1.0 × 105 6 many 4.0× 105

17 F12(
→
x) Composition Function 4 5 x1, x2, . . . , x5 ∈ [-5, 5] 1.0 × 105 8 many 4.0× 105

18 F11(
→
x) Composition Function 3 10 x1, x2, . . . , x10 ∈ [-5, 5] 1.0 × 1010 6 many 4.0× 105

19 F12(
→
x) Composition Function 4 10 x1, x2, . . . , x10 ∈ [-5, 5] 1.0 × 1010 8 many 4.0× 105

20 F12(
→
x) Composition Function 4 20 x1, x2, . . . , x20 ∈ [-5, 5] 1.0 × 1020 8 many 4.0× 105

5.1. Configuration of Parameters of HVcMO20a

Equivalent to N in HillVallEA, the size of the initial mesh is set as I← 64 , setting a selection
fraction of τAc ← 0.35 The number of neighbors of each node when affected by the local expansion is
k← 3 , the same as in [20–23]. HVcMO20a takes AMaLGaM-Univariate as the local optimizer and
then, the size of the population to enhance every niche (by means of HVC) is NAc ← 10

√
D (the values

of D are shown in Table 2), and its initial fraction is Nini
c ← 0.8 . The increment factors for the length

of the overall population and the cluster size are fixed as Ninc
← 2.0 and Ninc

c ← 1.1 , respectively.

Mathematics 2020, 8, 665 22 of 37

The level of tolerance is set to 1.0× 10−5, except for the later estimate of the time ratio (see Section 6.3).
The domain bounds (B) for the variables of each problem are also given in Table 2.

Furthermore, the frontiers are jointly delimited by an amplitude rate of Hamp ← 0.05 , and the
nodes to generate from them are at most Hmax ← 50 . Hence, while in the evolutionary optimization
the length of the initial mesh grows in the range 64 ≤ I ≤ 2857, it is truncated to 23 ≤ |M| ≤ 1000 nodes
and therefore, the number of nodes to expand from the frontiers is 2 ≤

∣∣∣LsH
∣∣∣ ≤ 50. For larger initial

meshes,
∣∣∣LsH

∣∣∣ keeps at constant value of 50. This choice of effecting the H-operator over a few solutions
responds to the outcomes by previous works and some analytical observations. Despite the frontier
operator was found useful for global optimization with VMO [32,51], there is no evidence of its impact
on the VMO-based multimodal optimizers. Indeed, that represents another pending research issue,
in particular since we noticed a detriment of the performance of HVcMO in some cases when the
H-operator is applied on the large scale. We keep the usage of the frontier operator at a low rate, based
on such yet incomplete findings, and also on the outcomes unveiled in [51], where it is proved the less
influential among the search operators of VMO for global optimization.

5.2. Benchmark Multimodal Problems

A standardized test suite is used, being NF← 20 the number of problems. Table 2 summarizes
their main features, detailed in [40], plus the MaxFE specified as the budget afforded. The objective
functions are formulated in [40], as well. We add information about the volume of the box-bounded
search space; it is expressed as the product of the amplitudes of the domains of all variables:

Vol←
D∏

j=1

(
b j − a j

)
(12)

being D the dimension, and b j and a j the respective upper and lower bounds of the j-th variable. Values
are highlighted (in red or blue) according to the volume, empirically seen as small (Vol ≤ 90), medium
(90 < Vol ≤ 103) or large (103 < Vol ≤ 1020). This issue gains importance in Section 6.

5.3. Baseline Methods

As part of the experimental analysis, HVcMO20a is compared to the other VMO-based multimodal
optimizers, namely NC-VMO and VMO-ASD (the previous instances of the VMO-N framework),
and also the NVMO method. Besides, HVcMO20a is contrasted with the HillVallEA19 algorithm
and its predecessor, HillVallEA18, as well as with other remarkable metaheuristics such as NEA2+,
proposed by M. Preuss in [52], and RS-CMSA, introduced by Ahrari et al. in [53]. The other included
baselines are SDE-Ga and ANBNWI-DE, by Kushida, respectively ranked first and second in the last
two editions of the abovementioned competition, whose results are reported in [54].

5.4. Major Performance Criteria

The following description concerns the standard measures utilized for comparing HVcMO20a
with the group of baseline optimizers, while additional criteria are later used to contrast it only with
HillVallEA19, regarding their running times (Section 6.3). According to the most recent procedures
indicated for the referred competition, every method is assessed by taking into account three scenarios
defined by these scores: the peak ratio (PR), the (static) F1 measure and the dynamic F1. They are
bounded in [0, 1]; the larger, the better. Among them, the PR allows contrasting new algorithms with
a larger set of earlier multimodal optimizers, even if not recent ones, since the other two criteria were
just adopted in the last years. For any specific run, the PR is the percentage of the number of peaks
found (NPF) out of the number of known peaks (NKP), keeping in mind that such peaks represent
global optima only:

PR←
NPF
NKP

(13)

Mathematics 2020, 8, 665 23 of 37

Additionally, the well-known F1 statistic measure is re-formulated in this context as follows:

F1←
2 ∗ PR ∗ SR′

PR ∗ SR′
(14)

where given the set of output solutions (OS), i.e., the presumed global optima returned by the algorithm,
the success rate SR′ of OS tells the fraction of actual global optima found with respect to the count of
output solutions:

SR′ ←
NPF
|OS|

(15)

It is important to distinguish SR′ from the success rate (SR) of runs [40], a formerly used
measure. Furthermore, after a run is finished, the achieved OS set is entirely used to compute
the static F1, while the dynamic F1 is progressively calculated at the moments when solutions are
discovered. Thus, such a calculation considers the count of function evaluations (FEi) at the instant i,
with 1 ≤ i ≤ |OS|, which corresponds to the i-th found optima in OS. The set OS[1:i] then consists of the
first i optima located. Finally, the dynamic F1 is figured as the area under the curve divided by the
MaxFE allotted:

dynF1←

(
MaxFE− FE|OS|

)
F1(OS) +

∑|OS|
i=2 (FEi − FEi−1)F1

(
OS[1:i−1]

)
MaxFE

(16)

5.5. Statistical Validation

Regardless of the measures, the advices by Demšar [55] for comparing classifiers using
non-parametric tests turned into a universal practice to assess methods in several fields, e.g.,
evolutionary computation [56]. However, as we alerted [22], such statistical comparisons are common
in studies on global optimization, but sporadic in those about multimodal optimizers. For the validation
of the outcomes by HVcMO20a, we apply the Wilcoxon signed-ranks test to contrast pairs of algorithms,
and the Friedman test to detect significant differences between a group of methods. The non-parametric
analyses aim to reject the null-hypothesis (H0) that the compared algorithms perform similarly. If the
Friedman test does it, we use the post-hoc Nemenyi test to identify which methods differ significantly,
concerning the measure at hand. The election of this last procedure responds also to the intention of
contrasting, in unison, the earlier versions of HillVallEA with other multimodal optimizers, from a
statistical perspective. Here, we set the significance level at 5%, i.e., the confidence level is α← 0.05 .

6. Discussion of Results

The output files of HillVallEA19 that led to the statements presented in [27], are now available
online [54]. However, it was necessary to compute further rough data, e.g., the population size at the
end of each iteration of the algorithm, as to conduct the analysis given in Section 6.3. For that reason,
we executed HillVallEA19 again by using its original program [48]. Hence, for a matter of homogeneity,
we calculated the PR, F1 and dynamic F1 for the new output data in order to use their values also
in the Section 6.2, instead of the ones published in [27]. As expected, the values for those metrics in
both studies are quite similar. In view of that, if the analysis related to such measures is replicated,
assuming the numbers in [27], it will lead to equivalent ends. As Supplementary Materials, the output
files of our runs of HillVallEA19 and HVcMO20a are accessible online [57], in the required format [28],
where the times reported have no other use than checking the correct order of the output solutions
recorded; those values of time are not considered for the experiments in this study.

6.1. Outperforming NVMO and Earlier Instances of VMO-N

According to the availability of performance data, HVcMO20a is contrasted with the previous
VMO-based multimodal optimizers by means of the peak ratio only. Table 3 shows the average
assessments (at all accuracy levels) of all runs over the whole test suite, for each algorithm. In case

Mathematics 2020, 8, 665 24 of 37

of NC-VMO and VMO-ASD, the comparisons are based only on the results for 6 and 8 problems,
respectively, which are reported in [22]. On the other hand, the results considered for NVMO involve
the full validation suite of 20 problems, as published in [23]. The results by HVcMO20a over every
single benchmark function are detailed in Table A1 from Appendix A.

Table 3. Peak ratios reached by the VMO-based multimodal optimizers, averaged at all accuracy levels
over sets of 6, 8 and 20 benchmark problems.

{Problem Ids} {1, 2, 3, 4, 5, 10} {1, 2, 3, 4, 5, 7, 9, 10} {1 ~ 20}

NC-VMO HVcMO20a VMO-ASD HVcMO20a NVMO HVcMO20a

Mean PR 0.696 1.000 0.523 0.994 0.698 0.885

Although the overall PR values put HVcMO20a on top of all these methods, the application of the
Wilcoxon test over each pair of algorithms is required to deepen the analysis. Table 4 confirms that
HVcMO20a significantly outperforms both VMO-ASD and NVMO, regarding the peak ratio. About
the remaining evaluation (HVcMO20a vs. NC-VMO), it takes into account six problems; for two of
them, those methods achieve equal outputs. Thus, there are only four relevant comparisons, a sample
size that is insufficient to make a reliable computation of the Wilcoxon test. Alternatively, it is possible
to calculate it with the 6 comparisons as relevant by splitting the ranks of such two ties evenly among
the sums R+ and R−. In that variant, the R+ would be 19.5, while both R− and the W statistic would
be equal to 1.5, which is greater than 0, the critical value of the Wilcoxon test for 6 paired comparisons
at α← 0.05 , making the test unable to reject the null-hypothesis. Hence, no significance difference
between the peak ratios scored by HVcMO20a and by NC-VMO are detected with the studied data.

Table 4. Wilcoxon test regarding PR. The sum of ranks of comparisons where HVcMO20a outdoes the
other algorithm (either VMO-ASD or NVMO) is R+, and R− is the opposite sum. If the W statistic is
equal or less than the corresponding critical value, the null-hypothesis is rejected.

HVcMO20a vs. VMO-ASD HVcMO20a vs. NVMO

R+ R− W Critical Value H0 R+ R− W Critical Value H0

21 0 0 0 Rejected 118 2 2 25 Rejected

6.2. Further Baseline Comparison

Different from above, HVcMO20a is contrasted with the previous variants of HillVallEA and other
outstanding meta-heuristics by means of the PR and the two other scenarios, i.e., the static and the
dynamic F1. The mean results of our executions of HVcMO20a, HillVallEA19 and ANBNWI-DE over
the benchmark problems are shown in Table A1, in Appendix A. For ANBNWI-DE, we computed
the performance scores by using the output data available in [54], same as for the other baseline
methods: NEA2+, RS-CMSA and SDE-Ga. However, we do not report the calculations for the last
three algorithms because they match those published in [27], in relation to them.

Table 5 exhibits the average measurements for the multimodal optimizers, considering all accuracy
levels and the whole set of problems. The group of HillVallEA methods, including HVcMO20a, beat
the rest of the algorithms in every scenario. Among them, HillVallEA19 shows the best performance,
closely followed by HVcMO20a and HillVallEA18, in that order. However, is the advantage of the
HillVallEA family over the remaining algorithms significant? How about the differences within the
three variants of HillVallEA?

Mathematics 2020, 8, 665 25 of 37

Table 5. Scores averaged at all accuracy levels over the entire validation suite.

Mean NEA2+ RS-CMSA SDE-Ga ANBNWI-DE HillVallEA18 HillVallEA19 HVcMO20a

PR 0.807 0.856 0.833 0.855 0.885 0.890 0.885
F1 0.855 0.911 0.884 0.887 0.930 0.933 0.930

dynF1 0.806 0.829 0.376 0.727 0.869 0.883 0.876

The Friedman test confirms the existence of significant differences in the pool of methods at every
scenario (see Table 6). Therefore, a post-hoc examination should determine which algorithms perform
significantly distinct. That is clarified in Figures 4–6, the graphical representations of the implication of
the Nemenyi test for the scenarios of PR, F1 and dynamic F1, respectively.

Table 6. Friedman test. Since p-value < 0.05 (α), each null-hypothesis is rejected.

Scenario p-Value H0

PR 3.674× 10−6 Rejected
F1 1.907× 10−7 Rejected

dynF1 4.749× 10−11 Rejected

Mathematics 2020, 8, x FOR PEER REVIEW 24 of 35

Table 6. Friedman test. Since p-value < 0.05 (α), each null-hypothesis is rejected.

Scenario p-Value H0
PR 3.674 x 10 Rejected
F1 1.907 x 10 Rejected

dynF1 4.749 x 10 Rejected

For seven algorithms and 20 comparisons (benchmark problems), the critical difference (CD) for
the Nemenyi procedure at 𝛼 ← 0.05 is 2.015. Any two algorithms perform significantly distinct if the
distance between their average ranks is at least CD. Although HillVallEA19, HVcMO20a and
HillVallEA18 confirm to rank before all the other methods, there is no significant difference between
the three of them at any scenario. Thus, the performances of such three algorithms are statistically
equivalent. Regarding the peak ratio, HillVallEA19 significantly outdoes RS-CMSA, ANBNWI-DE
and NEA2+. Both HVcMO20a and HillVallEA18 are significantly better than NEA2+.

Figure 4. Nemenyi test regarding PR. Connected optimizers are not statistically different.

With respect to the 𝐹1 measure, HillVallEA19 statistically beats again RS-CMSA, ANBNWI-DE
and NEA2+. The outcomes by the HVcMO20a and the HillVallEA18 algorithms are statistically better
than those achieved by ANBNWI-DE and by NEA2+. Moreover, in the scenario of the dynamic 𝐹1,
HillVallEA19 is significantly better than NEA2+, RS-CMSA, ANBNWI-DE and SDE-Ga, while the
superiorities of HVcMO20a and HillVallEA18 over both ANBNWI-DE and SDE-Ga are significant.

Figure 5. Nemenyi test regarding F1. Connected optimizers are not statistically different.

Besides being the best VMO-based multimodal optimizer, these results confirm that HVcMO20a
beats several prominent algorithms from the state-of-the-art, significantly in some cases. In so doing,
the third research objective (the pursue of a competitive variant of VMO-N) is accomplished.

NEA2+
5.750

ANBNWI-DE
4.875

RS-CMSA
4.650 SDE-Ga

4.125

HillVallEA18
3.050

HVcMO20a
2.975

HillVallEA19
2.575

1234567

CD: 2.015

NEA2+
5.725

ANBNWI-DE
5.175

RS-CMSA
4.800 SDE-Ga

4.050

HillVallEA18
2.900

HVcMO20a
2.850

HillVallEA19
2.500

1234567

CD: 2.015

Figure 4. Nemenyi test regarding PR. Connected optimizers are not statistically different.

Mathematics 2020, 8, x FOR PEER REVIEW 24 of 35

Table 6. Friedman test. Since p-value < 0.05 (α), each null-hypothesis is rejected.

Scenario p-Value H0
PR 3.674 x 10 Rejected
F1 1.907 x 10 Rejected

dynF1 4.749 x 10 Rejected

For seven algorithms and 20 comparisons (benchmark problems), the critical difference (CD) for
the Nemenyi procedure at 𝛼 ← 0.05 is 2.015. Any two algorithms perform significantly distinct if the
distance between their average ranks is at least CD. Although HillVallEA19, HVcMO20a and
HillVallEA18 confirm to rank before all the other methods, there is no significant difference between
the three of them at any scenario. Thus, the performances of such three algorithms are statistically
equivalent. Regarding the peak ratio, HillVallEA19 significantly outdoes RS-CMSA, ANBNWI-DE
and NEA2+. Both HVcMO20a and HillVallEA18 are significantly better than NEA2+.

Figure 4. Nemenyi test regarding PR. Connected optimizers are not statistically different.

With respect to the 𝐹1 measure, HillVallEA19 statistically beats again RS-CMSA, ANBNWI-DE
and NEA2+. The outcomes by the HVcMO20a and the HillVallEA18 algorithms are statistically better
than those achieved by ANBNWI-DE and by NEA2+. Moreover, in the scenario of the dynamic 𝐹1,
HillVallEA19 is significantly better than NEA2+, RS-CMSA, ANBNWI-DE and SDE-Ga, while the
superiorities of HVcMO20a and HillVallEA18 over both ANBNWI-DE and SDE-Ga are significant.

Figure 5. Nemenyi test regarding F1. Connected optimizers are not statistically different.

Besides being the best VMO-based multimodal optimizer, these results confirm that HVcMO20a
beats several prominent algorithms from the state-of-the-art, significantly in some cases. In so doing,
the third research objective (the pursue of a competitive variant of VMO-N) is accomplished.

NEA2+
5.750

ANBNWI-DE
4.875

RS-CMSA
4.650 SDE-Ga

4.125

HillVallEA18
3.050

HVcMO20a
2.975

HillVallEA19
2.575

1234567

CD: 2.015

NEA2+
5.725

ANBNWI-DE
5.175

RS-CMSA
4.800 SDE-Ga

4.050

HillVallEA18
2.900

HVcMO20a
2.850

HillVallEA19
2.500

1234567

CD: 2.015

Figure 5. Nemenyi test regarding F1. Connected optimizers are not statistically different.

For seven algorithms and 20 comparisons (benchmark problems), the critical difference (CD)
for the Nemenyi procedure at α← 0.05 is 2.015. Any two algorithms perform significantly distinct
if the distance between their average ranks is at least CD. Although HillVallEA19, HVcMO20a and
HillVallEA18 confirm to rank before all the other methods, there is no significant difference between

Mathematics 2020, 8, 665 26 of 37

the three of them at any scenario. Thus, the performances of such three algorithms are statistically
equivalent. Regarding the peak ratio, HillVallEA19 significantly outdoes RS-CMSA, ANBNWI-DE and
NEA2+. Both HVcMO20a and HillVallEA18 are significantly better than NEA2+.Mathematics 2020, 8, x FOR PEER REVIEW 25 of 35

Figure 6. Nemenyi test regarding dynamic F1. Connected optimizers are not statistically different.

The application of statistical comparisons keeps as a research debt in the arena of multimodal
optimization. The utility of the non-parametric procedures goes beyond the discovery of significant
contrasts between the performances of the methods. For instance, giving the mean scores in Table 5,
HVcMO20a and HillVallEA18 are equal in terms of 𝑃𝑅 and 𝐹1, while ANBNWI-DE is better than
SDE-Ga in such scenarios. However, Figures 4 and 5 clarify that indeed HVcMO20a is rated before
HillVallEA18, and SDE-Ga is better placed than ANBNWI-DE, in view of the individual ranks of their
values for every test problem, instead of the average achievements.

6.3. HVcMO20a or HillVallEA19? When to Apply Each?

It is evident now the gain of putting the formulations of HillVallEA on the VMO-N framework,
resulting in the effective HVcMO20a algorithm. The benefit of using the search operators of VMO in
HillVallEA is not yet clear though. Summarily, that contribution comes in terms of the execution time.

6.3.1. When Counting Function Evaluations Is Not Enough

The convergence speed of an optimizer is a common way to get an idea of its rapidness.
However, making a suitable formulation of that measure is more difficult in multimodal optimization
than in global optimization. In [40], it is defined as the average number of function evaluations (𝐹𝐸)
needed to locate all global optima. If the optimizer cannot find all the desired optima, 𝑀𝑎𝑥𝐹𝐸 (the
budget) is assumed as the 𝐹𝐸 for that run. However, there are various situations in which it gives a
wrong notion, e.g., it considers the count of optima only if all of them are located. For example, if any
pair of multimodal optimizers reach the fixed budget (and stop), after respectively finding the 30%
and the 60% of the wanted optima, the convergence speed for both of them is interpreted the same
(𝑀𝑎𝑥𝐹𝐸). However, one of them seems able to converge (to all optima) first, if the budget were larger.
Yet hard, an alternative for this is to substantially increase the budget for a better convergence
analysis, like in [24]. In addition, what does one function evaluation represents in terms of time? Is it
possible that a certain optimizer burns the same budget than another, but converges more rapidly to
the same optima?

Table 7 shows the mean numbers of function evaluations by both HillVallEA19 and HVcMO20a
over the entire test suite, and over problems grouped by the search space volume. HillVallEA19 uses
less budget than HVcMO20a, but the average count of iterations when HillVallEA19 runs is larger.
Besides, HillVallEA19 fails (no new elite is found) in more iterations than HVcMO20a. Thus,
HillVallEA19 increases the population more often and what is more relevant, to a larger extent. At
the start, they both use 64 individuals; if the current iteration fails, they become 128, then 256, and so
on. Adding 703 solutions (in average) to the population in HillVallEA19 whenever it fails, but only
497 in HVcMO20a, indicates that smaller unsuccessful populations are doubled in HVcMO20a, i.e.,
at earlier moments. How many solutions do they handle in total? How much does it delay them?

SDE-Ga
7.000

ANBNWI-DE
5.500

RS-CMSA
4.450 NEA2+

4.275

HillVallEA18
3.025

HVcMO20a
2.575

HillVallEA19
1.175

1234567

CD: 2.015

Figure 6. Nemenyi test regarding dynamic F1. Connected optimizers are not statistically different.

With respect to the F1 measure, HillVallEA19 statistically beats again RS-CMSA, ANBNWI-DE
and NEA2+. The outcomes by the HVcMO20a and the HillVallEA18 algorithms are statistically better
than those achieved by ANBNWI-DE and by NEA2+. Moreover, in the scenario of the dynamic F1,
HillVallEA19 is significantly better than NEA2+, RS-CMSA, ANBNWI-DE and SDE-Ga, while the
superiorities of HVcMO20a and HillVallEA18 over both ANBNWI-DE and SDE-Ga are significant.

Besides being the best VMO-based multimodal optimizer, these results confirm that HVcMO20a
beats several prominent algorithms from the state-of-the-art, significantly in some cases. In so doing,
the third research objective (the pursue of a competitive variant of VMO-N) is accomplished.

The application of statistical comparisons keeps as a research debt in the arena of multimodal
optimization. The utility of the non-parametric procedures goes beyond the discovery of significant
contrasts between the performances of the methods. For instance, giving the mean scores in Table 5,
HVcMO20a and HillVallEA18 are equal in terms of PR and F1, while ANBNWI-DE is better than
SDE-Ga in such scenarios. However, Figures 4 and 5 clarify that indeed HVcMO20a is rated before
HillVallEA18, and SDE-Ga is better placed than ANBNWI-DE, in view of the individual ranks of their
values for every test problem, instead of the average achievements.

6.3. HVcMO20a or HillVallEA19? When to Apply Each?

It is evident now the gain of putting the formulations of HillVallEA on the VMO-N framework,
resulting in the effective HVcMO20a algorithm. The benefit of using the search operators of VMO in
HillVallEA is not yet clear though. Summarily, that contribution comes in terms of the execution time.

6.3.1. When Counting Function Evaluations Is Not Enough

The convergence speed of an optimizer is a common way to get an idea of its rapidness. However,
making a suitable formulation of that measure is more difficult in multimodal optimization than in
global optimization. In [40], it is defined as the average number of function evaluations (FE) needed
to locate all global optima. If the optimizer cannot find all the desired optima, MaxFE (the budget)
is assumed as the FE for that run. However, there are various situations in which it gives a wrong
notion, e.g., it considers the count of optima only if all of them are located. For example, if any pair of
multimodal optimizers reach the fixed budget (and stop), after respectively finding the 30% and the
60% of the wanted optima, the convergence speed for both of them is interpreted the same (MaxFE).
However, one of them seems able to converge (to all optima) first, if the budget were larger. Yet hard,
an alternative for this is to substantially increase the budget for a better convergence analysis, like in [24].

Mathematics 2020, 8, 665 27 of 37

In addition, what does one function evaluation represents in terms of time? Is it possible that a certain
optimizer burns the same budget than another, but converges more rapidly to the same optima?

Table 7 shows the mean numbers of function evaluations by both HillVallEA19 and HVcMO20a
over the entire test suite, and over problems grouped by the search space volume. HillVallEA19
uses less budget than HVcMO20a, but the average count of iterations when HillVallEA19 runs is
larger. Besides, HillVallEA19 fails (no new elite is found) in more iterations than HVcMO20a. Thus,
HillVallEA19 increases the population more often and what is more relevant, to a larger extent. At the
start, they both use 64 individuals; if the current iteration fails, they become 128, then 256, and so on.
Adding 703 solutions (in average) to the population in HillVallEA19 whenever it fails, but only 497 in
HVcMO20a, indicates that smaller unsuccessful populations are doubled in HVcMO20a, i.e., at earlier
moments. How many solutions do they handle in total? How much does it delay them?

Table 7. Mean values of budget usage, failed iterations and population increase after failure.

Volume of Search Space
Function Evaluations Iterations (Failed Iterations) Population Increase

HillVallEA19 HVcMO20a HillVallEA19 HVcMO20a HillVallEA19 HVcMO20a

medium 114,080 116,480 19.11 (4.49) 17.32 (3.70) 684 401
small + large 51,805 53,751 6.84 (3.58) 6.63 (3.38) 723 593

all sizes 82,942 85,115 12.98 (4.03) 11.98 (3.54) 703 497

The convergence speed cannot answer such interrogations. The alternative to follow depends on
the situation. In case of HillVallEA19 and HVcMO20a, it is possible to move forward by analyzing the
time complexity, that can be preliminary understood as O

(
n2

)
, where n represents N for HillVallEA19

and I for HVcMO20a. Beyond such a brief statement, comparing the execution times of such algorithms
requires to study exhaustively their time functions, which have to be carefully defined. Since both
functions are in the order of n2, ascertaining their dominant coefficients is the key to compare the
algorithms with respect to the running time. Otherwise, that can be done through a vast empirical
analysis of the times consumed by the programs that implement HVcMO20a and HillVallEA19, which
is the way followed in this paper. Regardless of the choice taken, the primary aim is to estimate the
ratio of tHVcMO20a(n) to tHillVallEA19(n), which respectively indicates the execution time by HVcMO20a,
and the running time by HillVallEA19. Formally, the time ratio is:

tratio ←
tHVcMO20a(n)
tHillVallEA19(n)

(17)

From the empirical viewpoint, it is needed a vast number of paired time comparisons that should
also be diverse, e.g., involving several test functions and varying parameters (tolerance, populations
size, etc.). The more contrasting cases are considered, the more reliable the estimation of the ratio is.
Since a full harmonization is impossible, a range of actions should be done to track and to examine
sufficient rough running times of the programs in a fair manner. In our analysis, that is intended by:

• executing single iterations of them, instead of the whole evolutionary process,

• conducting the experiment over populations of certain sizes, to be exact n ∈
{
26, 27, 28, 29, 210

}
,

• generating 50 distinct populations for every single sample size,
• running the programs over each of the 20 benchmark problems using the same populations,
• replicating the process for five levels of tolerance set equal to the accuracy levels, for a total of

25,000 runs per program (the tolerance influences AMaLGaM-Univariate and thus, the overall
process),

• effecting the 50,000 runs in turn and on the same computer, i.e., using the same specifications of
hardware and software,

• operating no other computational process, apart from those controlled by the system,

Mathematics 2020, 8, 665 28 of 37

• reusing much of the source code of HillVallEA19 to program the common aspects in HVcMO20a,
to reduce the influence that the skills of the programmer have over the execution time, and by

• estimating the ratio based not only on mean calculations but also on every single paired contrast,
• excluding the outliers during the examination of the resultant measurements.

6.3.2. The Time Ratio

The first attempt to decide the proportion of the time by HVcMO20a with respect to the time by
HillVallEA19 concerns the ratio of means (RoM) and the mean of ratios (MoR) metrics. In this study,
they can be defined as follows, in a wide manner:

RoM←

∑upperExp
exp=lowerExp

∑upperId
pId=lowerId

∑NR
run=1 tHVcMO20a(2exp)pId,run∑upperExp

exp=lowerExp
∑upperId

pId=lowerId
∑NR

run=1 tHillVallEA19(2exp)pId,run

(18)

MoR←

∑upperExp
exp=lowerExp

∑upperId
pId=lowerId

∑NR
run=1

tHVcMO20a(2exp)pId,run

tHillVallEA19(2exp)pId,run

(upperExp− lowerExp + 1) ∗ (upperId− lowerId + 1) ∗NR
(19)

where lowerExp, upperExp ∈ {6, 7, 8, 9, 10}, with upperExp ≥ lowerExp. Thus, it can be figured with
respect to only one specific population size, or regarding several (all) sizes. Besides, pId denotes the
test problem, with lowerId, upperId ∈ {1, 2, · · · , 19, 20} and upperId ≥ lowerId, so that the times for either
only one benchmark problem or the overall test suite can be taken. Finally, NR represents the number
of runs for which the checked running times are considered.

Table A2 (Appendix B) reveals the values of MoR and RoM for each test problem, seeing the
population sizes by separate, and all together. They consider the times for all the runs at every
level of tolerance (NR← 250), and also for those runs of the programs adopting a tolerance of
1.0 × 10−5 (NR← 50). The observations for 50 and for 250 runs coincide, evidencing the reliability
of the experiment. Such a match suggests that in terms of time both programs respond stably in the
same way to the variation of the tolerance, as long as the processed populations and the parametric
setups (including the adjusted tolerance) are the same. The highest values of MoR and RoM for
every population size are reported in Table 8, together with their overall rates, i.e., considering all the
problems. We skip the least values as they might represent outliers. Preliminary, 1.30 < tratio ≤ 1.65,
but since these are mean rates, deciding the ratio in that range might lead to an undesired favoritism
for HVcMO20.

Table 8. General values of ratio of means (RoM) and mean of ratios (RoM).

Pop Size: 2ˆ6 Pop Size: 2ˆ7 Pop Size: 2ˆ8 Pop Size: 2ˆ9 Pop Size: 2ˆ10 All Pop Sizes

RoM MoR RoM MoR RoM MoR RoM MoR RoM MoR RoM MoR

Considering 50 Runs per Function for Every Population Size, Using a Tolerance of 1.0 × 10−5

Max 1.616 1.635 1.536 1.562 1.488 1.489 1.486 1.487 1.388 1.391 1.412 1.468
Overall 1.091 1.299 1.088 1.324 1.188 1.328 1.291 1.353 1.301 1.319 1.268 1.325

Considering 250 Runs per Function: 50 Runs for Each Population Size, Using the 5 Levels of Tolerance

Max 1.609 1.626 1.498 1.523 1.495 1.503 1.464 1.465 1.407 1.409 1.424 1.457
Overall 1.065 1.305 1.297 1.314 1.345 1.352 1.334 1.337 1.314 1.335 1.273 1.329

For every single pair of runs, we find the interval its ratio belongs to, among nine possible ranges
whose amplitudes were decided in the experimental phase (see Table A3, Appendix B). It shows that
over the 60.80% of the ratios are in the range (1.30, 1.65], confirming the previous analysis of the mean
rates. What is more, setting tratio equal to 1.65 covers over the 94.80% of the runs (see Table 9). In spite
of the range (1.65, 2.00] contains only about the 4.20%, which could be interpreted as outliers too,
we finally adopt tratio ← 2.00 , covering the 99.06% of runs. Such an election does not favor HVcMO20a

Mathematics 2020, 8, 665 29 of 37

at all, quite the opposite. That fact supports the soundness of the later estimation of the times needed by
HVcMO20a and by HillVallEA19a to execute the entire evolutionary optimization, not only particular
iterations, as thus far. At that moment, the actual coefficients of the time functions of the algorithms
are not relevant, but the tratio. Hence, for an input of n solutions they are assumed as:

tHillVallEA19(n)← n2 (20)

tHVcMO20a(n)← 2n2 (21)

Table 9. Number and percentage of runs covered by possible ratios of time, considering 5000 and
25,000 runs: 50 per each of 20 functions with populations of 5 sizes, at 5 levels of tolerance.

Using a Tolerance of 1.0 × 10−5 Using All Levels of Tolerance

tratio Runs Covered % Covered Runs Covered % Covered

1.00 327 6.54 1576 6.30
1.40 3714 74.28 18,293 73.17
1.65 4745 94.90 23,714 94.86
1.75 4852 97.04 24,231 96.92
2.00 4953 99.06 24,765 99.06
2.50 4993 99.86 24,982 99.93
4.00 5000 100.00 25,000 100.00

6.3.3. Population Size and Execution Time

In Appendix B, Table A4 discloses the new analytical data about HVcMO20a and HillHallEA19,
averaged over the same 50 runs per algorithm for each test problem, using tolerance 1.0× 10−5, whose
results were studied in Sections 6.1 and 6.2. The first of those extra metrics is the final population size,
which indicates the biggest population sampled, i.e., that of the last iteration. In addition, the total
population size is the sum of the sizes (n) of all the sampled populations:

TotalPopSize←

∑50
run=1

∑#Iterationsrun
i=1 ni

50
(22)

Lastly, adhering Equations (20) and (21), the overall execution time units are estimated as:

TimeHillVallEA19 ←

∑50
run=1

∑#Iterationsrun
i=1 ni

2

50
(23)

TimeHVcMO20a ←

∑50
run=1

∑#Iterationsrun
i=1 2ni

2

50
(24)

The inspection of these scores leads to an important discovery: HillVallEA19 is faster than
HVcMO20a, in 9 of the 10 problems with search space volumes either small or large (marked in red, in
Table 2), while HVcMO20a performs faster than HillVallEA19, in 9 out of 10 problems with medium
volumes (indicated in blue). Such a volume seems to be key for the time demanded to approximate the
problems. Figure 7 offers a graphical notion of this, considering average values.

This information is completed with the Wilcoxon test (see Table 10). The populations processed
by HVcMO20a are significantly shorter than those handled by HillVallEA19. That confirms the first
hypothesis in Section 4.2, that extra pre-niching search operators (like those of VMO) may reduce the
total population in HillVallEA. A direct interpretation is that in HVcMO20a, the size of the sampled
population increases less often than in HillVallEA19. The reduction of the number of solutions is
more drastic with respect to the problems with a medium volume of the box-bounded search space.
In consequence, HVcMO20a is estimated to run statistically faster than HillVallEA19, in that case.

Mathematics 2020, 8, 665 30 of 37

Mathematics 2020, 8, x FOR PEER REVIEW 28 of 35

6.3.3. Population Size and Execution Time

In Appendix B, Table A4 discloses the new analytical data about HVcMO20a and HillHallEA19,
averaged over the same 50 runs per algorithm for each test problem, using tolerance 1.0 x 10 ,
whose results were studied in Sections 6.1 and 6.2. The first of those extra metrics is the final
population size, which indicates the biggest population sampled, i.e., that of the last iteration. In
addition, the total population size is the sum of the sizes (𝑛) of all the sampled populations:

𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑝𝑆𝑖𝑧𝑒 ← ∑ ∑ 𝑛# 50 (22)

Lastly, adhering Equations (20) and (21), the overall execution time units are estimated as:

𝑇𝑖𝑚𝑒𝐻𝑖𝑙𝑙𝑉𝑎𝑙𝑙𝐸𝐴19 ← ∑ ∑ 𝑛# 50 (23)

𝑇𝑖𝑚𝑒𝐻𝑉𝑐𝑀𝑂20𝑎 ← ∑ ∑ 2𝑛# 50 (24)

The inspection of these scores leads to an important discovery: HillVallEA19 is faster than
HVcMO20a, in 9 of the 10 problems with search space volumes either small or large (marked in red,
in Table 2), while HVcMO20a performs faster than HillVallEA19, in 9 out of 10 problems with
medium volumes (indicated in blue). Such a volume seems to be key for the time demanded to
approximate the problems. Figure 7 offers a graphical notion of this, considering average values.

 On problems with medium-size volume of the box-bounded search space
On problems with search space volume either small or large
Considering all the problems together

HVcMO20a
HillVallEA19

HVcMO20a
HillVallEA19

HVcMO20a
HillVallEA19

 Final population size Total population size Execution time units
 (a) (b) (c)

Figure 7. Mean results over the problems grouped by the size of the search space volume: (a) Final
size of the population (actual); (b) Total size of the population (actual); (c) Execution time (estimate).

This information is completed with the Wilcoxon test (see Table 10). The populations processed
by HVcMO20a are significantly shorter than those handled by HillVallEA19. That confirms the first
hypothesis in Section 4.2, that extra pre-niching search operators (like those of VMO) may reduce the
total population in HillVallEA. A direct interpretation is that in HVcMO20a, the size of the sampled
population increases less often than in HillVallEA19. The reduction of the number of solutions is
more drastic with respect to the problems with a medium volume of the box-bounded search space.
In consequence, HVcMO20a is estimated to run statistically faster than HillVallEA19, in that case.

Moreover, considering the validation suite entirely, HVcMO20a also executes more rapidly than
HillVallEA19, not significantly though. That fact is influenced by the difference between populations,
when it comes to problems with either small or large search space volume. The total number of solutions
in HVcMO20a is significantly smaller than in HillVallEA19. In spite of that, such a reduction is not large
enough to decrease properly the overall running time by HVcMO20a. Thus, HillVallEA19 is indeed
estimated to execute significantly faster than HVcMO20a over that group of methods.

0 2500 5000 0 12500 25000 0.0E+00 9.0E+07 1.8E+08

Figure 7. Mean results over the problems grouped by the size of the search space volume: (a) Final size
of the population (actual); (b) Total size of the population (actual); (c) Execution time (estimate).

Table 10. Wilcoxon test as regards (final and total) population sizes and execution time. R− is the sum
of ranks of comparisons where HVcMO20a outdoes HillVallEA19, and R+ is the opposite sum. If the W
statistic is equal or less than the critical value, the null-hypothesis is rejected.

Volume of
Search Space

Final Pop Size Total Population Size Execution Time Units

R+ R− W Critical
Value H0 R+ R− W Critical

Value H0 R+ R− W Critical
Value H0

medium 0 55 0 8 Rejected 0 55 0 8 Rejected 1 54 1 8 Rejected
small + large 1 27 1 2 Rejected 3 42 3 6 Rejected 47 8 8 8 Rejected

all sizes 1 152 1 35 Rejected 3 187 3 46 Rejected 85 125 85 52 Accepted

Moreover, considering the validation suite entirely, HVcMO20a also executes more rapidly than
HillVallEA19, not significantly though. That fact is influenced by the difference between populations,
when it comes to problems with either small or large search space volume. The total number of
solutions in HVcMO20a is significantly smaller than in HillVallEA19. In spite of that, such a reduction
is not large enough to decrease properly the overall running time by HVcMO20a. Thus, HillVallEA19
is indeed estimated to execute significantly faster than HVcMO20a over that group of methods.

The second hypothesis stated in Section 4.2 is then partially verified as well, since the core part of
it guesses that when the decrease of the total population size is sufficiently big, the overall running
time of HillVallEA lessens. The remain of the hypothesis claims that the multimodal power of the
algorithm keeps similar in those cases. As examined, that happens both over the whole test suite and
over the problems having medium search space volumes only. With the comparison of HVcMO20a
and HillVallEA19 in Section 6.2, it was already demonstrated that the performance of HillVallEA
remains quite the same after incorporating the VMO search mechanisms, considering all the benchmark
problems. It is proved below for those with medium-volume search space.

The fourth research objective of this paper is then accomplished, once HVcMO20a is a yet effective
version of HillVallEA, also faster in several cases. The last goal of this investigation concerns the
need for some criterion to select either HVcMO20a or HillVallEA19 to deal with new multimodal
problems in future. If the box-bounded search space of the target problem has a medium-size volume,
we recommend to use HVcMO20a; otherwise, HillVallEA19 is preferred. Our suggestions take into
account the analyses on the execution time and about the main performance measures, which is
completed (in Table 11) by verifying that in both situations, the algorithms are similarly effective.

Mathematics 2020, 8, 665 31 of 37

Table 11. Scores averaged at all accuracy levels on problems grouped by the search space volume.

Volumes of Medium Size Volumes Small or Large

Mean HillVallEA19 HVcMO20a HillVallEA19 HVcMO20a

PR 0.962 0.952 0.819 0.818
F1 0.979 0.973 0.887 0.887

dynF1 0.915 0.906 0.850 0.847

7. Conclusions and Future Work

The VMO-N framework, with its corresponding instances, and the NVMO algorithm, constitute
the state-of-the-art regarding the multimodal optimization approaches for the VMO metaheuristic.
The contrasts between them are examined in this study, and VMO-N is revised, turning into a very
flexible scheme that can be vastly instantiated by incorporating any niching technique and further
search strategies. Actually, its first competitive version is presented as HVcMO, specifically referred as
HVcMO20a in the current setup. This newly launched algorithm outperforms not only the former
instances of VMO-N, but also the NVMO method and several prominent multimodal optimizers, in
some cases, in a statistically significant way.

At the same time, HVcMO20a is an extension of HillVallEA19, the ultimate version of the
successful HillVallEA multimodal optimizer, whose main drawback concerns the use of very large
populations. That limitation is tackled in this paper, since HVcMO20a reduces the number of solutions
needed to approximate the studied benchmark problems (compared to HillVallEA19), which signifies
a decrease of the overall execution time when the reduction of the population is sufficiently big.
The experiments confirmed the mutual benefit of VMO and HillVallEA. The recent HVcMO borrows
mainly the HVC niching method and the AMaLGaM-Univariate local optimizer from HillVallEA,
resulting in a competitive algorithm for multimodal optimization. Additionally, the application of
the search operators of VMO within HillVallEA makes it work significantly more express over certain
problems. A practical advice derives for problems whose box-bounded search spaces are not larger
than 1020. If that volume is medium-size, i.e., in (90, 103], it is recommended to employ HVcMO20a.
Conversely, HillVallEA19 should be applied if the box-bounded search space is any small or large, i.e.,
if its volume is either in (0, 90], or in (103, 1020].

This study provides multiple statistical evidences for the empirical comparison of the methods.
Because such a practice is frequent in other areas of artificial intelligence but not in multimodal
optimization, that is also an attempt to throw light on the utility of the non-parametric analysis for
the research on this field. Besides, this investigation opens new research avenues for both HillVallEA
and the VMO-N framework, as several interrogations remain unresolved. Beyond those of VMO,
what advantage may other evolutionary search operators bring for HillVallEA? How beneficial is the
late shrinkage of the population in HVcMO? When it comes to the local expansion within HVcMO,
may other alternatives to decide the universe cause better effects? What is the impact of the frontier
operator on the performance of such a new VMO-based multimodal optimizer? How can HVcMO and
HillVallEA develop into more efficient and more effective algorithms? How well do they perform in
real-world scenarios, and how well on problems with search spaces larger than those in this study?
These questions determine some of the directions of forthcoming research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/5/665/s1,
The source code of HVcMO20a that extends HillVallEA19 is available online [57], together with their 2000 output
files (50 runs × 20 test problems × 2 algorithms), in the format requested in [28].

Author Contributions: Conceptualization, R.N. and C.H.K.; methodology, R.N. and C.H.K.; software, R.N.;
validation, R.N. and C.H.K.; formal analysis, R.N.; investigation, R.N.; resources, C.H.K.; data curation, R.N.;
writing—original draft preparation, R.N.; writing—review and editing, R.N. and C.H.K.; visualization, R.N.;
supervision, C.H.K.; project administration, C.H.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

http://www.mdpi.com/2227-7390/8/5/665/s1

Mathematics 2020, 8, 665 32 of 37

Acknowledgments: This work was in part supported by the Japanese Government (MEXT).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. PR, F1 and dynF1

Table A1. Mean values measured over 50 runs by ANBNWI-DE, HillVallEA19 and HVcMO20a for
each test problem, assessed at all levels of accuracy.

Problem ANBNWI-DE HillVallEA19 HVcMO20a

Id PR F1 dynF1 PR F1 dynF1 PR F1 dynF1

1 1.000 1.000 0.974 1.000 1.000 0.995 1.000 1.000 0.993
2 0.998 0.998 0.972 1.000 1.000 0.989 1.000 1.000 0.986
3 1.000 0.667 0.650 1.000 1.000 0.994 1.000 1.000 0.991
4 0.996 0.996 0.952 1.000 1.000 0.976 1.000 1.000 0.973
5 1.000 1.000 0.968 1.000 1.000 0.984 1.000 1.000 0.983
6 1.000 1.000 0.625 1.000 1.000 0.967 1.000 1.000 0.956
7 0.965 0.977 0.871 1.000 1.000 0.966 1.000 1.000 0.963
8 0.925 0.960 0.587 0.979 0.989 0.806 0.974 0.986 0.797
9 0.692 0.812 0.555 0.968 0.984 0.810 0.951 0.975 0.803
10 0.999 0.999 0.981 1.000 1.000 0.982 1.000 1.000 0.980
11 0.995 0.968 0.885 1.000 1.000 0.983 1.000 1.000 0.981
12 0.925 0.947 0.649 1.000 1.000 0.964 1.000 1.000 0.958
13 1.000 0.986 0.866 1.000 1.000 0.963 1.000 1.000 0.948
14 0.889 0.922 0.787 0.923 0.958 0.881 0.847 0.913 0.851
15 0.738 0.848 0.623 0.750 0.857 0.837 0.750 0.857 0.829
16 0.683 0.804 0.662 0.694 0.817 0.791 0.667 0.800 0.783
17 0.666 0.797 0.486 0.750 0.857 0.815 0.750 0.857 0.803
18 0.667 0.800 0.633 0.667 0.800 0.765 0.667 0.800 0.762
19 0.550 0.708 0.464 0.595 0.743 0.660 0.608 0.753 0.659
20 0.402 0.555 0.347 0.483 0.650 0.529 0.488 0.655 0.528

Mathematics 2020, 8, 665 33 of 37

Appendix B. Ratio of Time and Population Size

Table A2. Individual values of ratio of means (RoM) and mean of ratios (RoM), for 50 runs and 250
runs of HVcMO20a and HillVallEA19 over each test problem with populations of different sizes.

n←26 n←27 n←28 n←29 n←210 All Pop Sizes

Problem RoM MoR RoM MoR RoM MoR RoM MoR RoM MoR RoM MoR

Id Considering 50 Runs per Function Using a Tolerance of 1.0 × 10−5

1 1.343 1.354 1.346 1.351 1.330 1.330 1.342 1.342 1.321 1.321 1.325 1.340
2 1.250 1.281 1.363 1.369 1.301 1.304 1.334 1.342 1.319 1.319 1.321 1.323
3 1.305 1.327 1.375 1.382 1.324 1.324 1.354 1.354 1.316 1.316 1.324 1.341
4 1.166 1.189 1.287 1.293 1.282 1.283 1.340 1.340 1.311 1.311 1.314 1.283
5 1.196 1.221 1.309 1.315 1.294 1.296 1.350 1.350 1.313 1.313 1.318 1.299
6 1.362 1.382 1.440 1.451 1.459 1.460 1.373 1.373 1.312 1.312 1.335 1.396
7 1.311 1.330 1.333 1.344 1.339 1.340 1.332 1.332 1.308 1.309 1.315 1.331
8 1.480 1.525 1.427 1.442 1.488 1.489 1.430 1.431 1.372 1.372 1.393 1.452
9 1.616 1.635 1.454 1.460 1.417 1.419 1.356 1.357 1.296 1.300 1.325 1.434

10 1.093 1.108 1.211 1.215 1.260 1.260 1.334 1.334 1.319 1.319 1.314 1.247
11 1.124 1.141 1.233 1.238 1.276 1.278 1.355 1.356 1.326 1.326 1.322 1.268
12 1.406 1.431 1.451 1.471 1.404 1.406 1.380 1.380 1.315 1.315 1.339 1.401
13 1.265 1.304 1.390 1.397 1.358 1.359 1.397 1.397 1.341 1.341 1.353 1.360
14 1.296 1.313 1.389 1.398 1.438 1.444 1.486 1.487 1.380 1.381 1.403 1.405
15 1.372 1.443 1.536 1.562 1.465 1.475 1.468 1.469 1.386 1.391 1.412 1.468
16 1.266 1.316 1.256 1.288 1.341 1.350 1.418 1.420 1.386 1.386 1.378 1.352
17 1.265 1.309 1.306 1.338 1.439 1.455 1.443 1.446 1.388 1.389 1.396 1.387
18 1.049 1.126 1.020 1.068 1.083 1.098 1.200 1.208 1.233 1.236 1.185 1.147
19 1.094 1.141 1.073 1.114 1.131 1.147 1.201 1.211 1.237 1.240 1.194 1.171
20 1.010 1.112 0.939 0.991 1.000 1.036 1.097 1.123 1.182 1.186 1.088 1.090

Id Considering 250 Runs per Function: 50 Runs for Every Mesh Size Using the 5 Levels of Tolerance

1 1.370 1.387 1.347 1.352 1.360 1.360 1.343 1.343 1.333 1.334 1.336 1.355
2 1.318 1.342 1.351 1.355 1.339 1.342 1.332 1.338 1.341 1.341 1.339 1.344
3 1.371 1.394 1.336 1.343 1.362 1.363 1.331 1.332 1.342 1.342 1.341 1.355
4 1.236 1.254 1.287 1.291 1.329 1.331 1.328 1.328 1.337 1.337 1.333 1.308
5 1.202 1.229 1.311 1.316 1.331 1.335 1.337 1.337 1.328 1.328 1.329 1.309
6 1.394 1.422 1.438 1.448 1.470 1.472 1.364 1.364 1.335 1.336 1.350 1.408
7 1.358 1.378 1.344 1.352 1.344 1.345 1.310 1.312 1.324 1.326 1.323 1.343
8 1.480 1.527 1.451 1.465 1.492 1.494 1.414 1.415 1.385 1.385 1.400 1.457
9 1.609 1.626 1.450 1.457 1.432 1.434 1.342 1.343 1.317 1.318 1.338 1.436

10 1.142 1.156 1.200 1.204 1.287 1.290 1.316 1.317 1.331 1.331 1.321 1.259
11 1.137 1.158 1.211 1.217 1.309 1.311 1.337 1.338 1.344 1.344 1.334 1.273
12 1.408 1.437 1.445 1.464 1.446 1.449 1.360 1.360 1.343 1.343 1.356 1.411
13 1.270 1.308 1.368 1.374 1.392 1.394 1.373 1.375 1.355 1.356 1.360 1.361
14 1.269 1.288 1.389 1.399 1.474 1.479 1.464 1.465 1.395 1.397 1.411 1.405
15 1.340 1.392 1.498 1.523 1.495 1.503 1.453 1.454 1.407 1.409 1.424 1.456
16 1.254 1.301 1.249 1.274 1.355 1.367 1.399 1.401 1.388 1.389 1.376 1.346
17 1.263 1.308 1.274 1.301 1.425 1.443 1.414 1.418 1.402 1.402 1.396 1.374
18 0.956 1.047 1.029 1.098 1.103 1.120 1.198 1.206 1.232 1.235 1.182 1.141
19 1.022 1.051 1.011 1.049 1.134 1.150 1.185 1.195 1.248 1.250 1.187 1.139
20 1.002 1.100 0.945 0.993 1.023 1.064 1.079 1.104 1.187 1.192 1.089 1.091

Mathematics 2020, 8, 665 34 of 37

Table A3. Number and percentage of runs covered by different ranges of time ratio.

n←26 n←27 n←28 n←29 n←210 All Sizes Percentage Covered

tratio ∈ For Every Population Size: 50 Runs per Each of 20 Functions for Tolerance 1.0 × 10−5

(0.00, 1.00] 161 89 53 21 3 327 6.54%
(1.00, 1.20] 237 162 80 66 63 608 12.16% } 27.52%(1.20, 1.30] 150 183 243 55 137 768 15.36%
(1.30, 1.40] 113 223 352 601 722 2011 40.22% } 60.84%(1.40, 1.65] 206 258 243 251 73 1031 20.62%
(1.65, 1.75] 44 44 13 6 0 107 2.14% } 4.16%(1.75, 2.00] 57 29 13 0 2 101 2.02%
(2.00, 2.50] 26 11 3 0 0 40 0.80% } 0.94%(2.50, 4.00] 6 1 0 0 0 7 0.14%

#Runs 1000 1000 1000 1000 1000 5000

tratio ∈ For Every Population Size: 50 per Each of 20 Functions Using the 5 Levels of Tolerance

(0.00, 1.00] 777 435 244 104 16 1576 6.30%
(1.00, 1.20] 1185 882 386 354 273 3080 12.32% } 26.43%(1.20, 1.30] 686 942 710 591 598 3527 14.11%
(1.30, 1.40] 631 1140 1958 2881 3500 10,110 40.44% } 62.12%(1.40, 1.65] 1035 1231 1512 1038 605 5421 21.68%
(1.65, 1.75] 209 179 105 24 0 517 2.07% } 4.21%(1.75, 2.00] 313 140 68 7 6 534 2.14%
(2.00, 2.50] 150 47 17 1 2 217 0.87% } 0.94%(2.50, 4.00] 14 4 0 0 0 18 0.07%

#Runs 5000 5000 5000 5000 5000 25,000

Table A4. Mean population size and running time over 50 runs with tolerance of 1.0 × 10−5.

Problem Final Pop Size (Actual) Total Pop Size (Actual) Time Units (Estimated)

Id HVcMO20a HillVallEA19 HVcMO20a HillVallEA19 HVcMO20a HillVallEA19

1 65 64 137 128 18,186 8192
2 64 64 131 134 16,712 8602
3 64 64 128 128 16,384 8192
4 68 77 159 197 22,282 15,892
5 64 64 129 132 16,548 8438
6 302 461 1437 2198 777,748 883,671
7 1546 2929 7350 13,545 18,752,143 32,556,974
8 901 2191 7578 16,497 6,688,968 16,971,203
9 7946 19,988 85,183 165,129 700,629,722 1,529,669,468

10 68 70 187 223 25,887 15,892
11 252 358 868 1179 493,158 539,935
12 316 637 1230 2388 811,500 1,642,824
13 1341 1920 4429 6348 12,453,151 13,276,692
14 5714 9380 13,559 24,901 114,926,086 179,571,917
15 4096 8192 8893 17,299 45,454,131 90,031,473
16 6636 8192 13,509 16,721 128,647,938 90,269,860
17 4096 8192 8995 17,318 45,485,425 89,991,086
18 4096 4588 8504 9468 44,906,250 30,494,802
19 8028 8684 18,258 19,988 185,760,922 115,860,931
20 19,005 24,576 50,104 59,748 1,294,673,004 1,010,064,589

References

1. Reeves, C.R. Modern Heuristic Techniques. In Modern heuristic search methods; Rayward-Smith, V.J.,
Osman, I.H., Reeves, C.R., Smith, G.D., Eds.; John Wiley & Sons: New York, NY, USA, 1996; pp. 1–25.

2. Sörensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics. In Handbook of Heuristics; Martí, R.,
Pardalos, P.M., Resende, M.G., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–18. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-07153-4_4-1

Mathematics 2020, 8, 665 35 of 37

3. Chica, M.; Barranquero, J.; Kajdanowicz, T.; Damas, S.; Cordón, Ó. Multimodal optimization: An effective
framework for model calibration. Inf. Sci. 2017, 375, 79–97. [CrossRef]

4. Woo, D.-K.; Choi, J.-H.; Ali, M.; Jung, H.-K. A Novel Multimodal Optimization Algorithm Applied to
Electromagnetic Optimization. IEEE Trans. Magn. 2011, 47, 1667–1673. [CrossRef]

5. Dilettoso, E.; Salerno, N. A Self-Adaptive Niching Genetic Algorithm for Multimodal Optimization of
Electromagnetic Devices. IEEE Trans. Magn. 2006, 42, 1203–1206. [CrossRef]

6. Das, S.; Maity, S.; Qu, B.-Y.; Suganthan, P.N. Real-Parameter Evolutionary Multimodal Optimization-A
Survey of the State-of-the-Art. Swarm Evol. Comput. 2011, 2, 71–88. [CrossRef]

7. Della Cioppa, A.; De Stefano, C.; Marcelli, A. Where Are the Niches? Dynamic Fitness Sharing. IEEE Trans.
Evol. Comput. 2007, 11, 453–465. [CrossRef]

8. Kamyab, S.; Eftekhari, M. Using a Self-Adaptive Neighborhood Scheme with Crowding Replacement
Memory in Genetic Algorithm for Multimodal Optimization. Swarm Evol. Comput. 2013, 12, 1–17. [CrossRef]

9. Sopov, E. Self-Configuring Ensemble of Multimodal Genetic Algorithms. In Computational Intelligence.
IJCCI 2015. Studies in Computational Intelligence, Vol 669; Merelo, J.J., Rosa, A., Cadenas, J.M., Correia, A.D.,
Madani, K., Ruano, A., Filipe, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 56–74. [CrossRef]

10. De Magalhães, C.S.; Almeida, D.M.; Barbosa, H.J.C.; Dardenne, L.E. A Dynamic Niching Genetic Algorithm
Strategy for Docking Highly Flexible Ligands. Inf. Sci. 2014, 289, 206–224. [CrossRef]

11. Li, X. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Trans.
Evol. Comput. 2010, 14, 150–169. [CrossRef]

12. Nápoles, G.; Grau, I.; Bello, R.; Falcon, R.; Abraham, A. Self-Adaptive Differential Particle Swarm Using
a Ring Topology for Multimodal Optimization. In Proceedings of the 13th International Conference on
Intelligent Systems Design and Applications (ISDA’13), Bangi, Malaysia, 8–10 December 2013; pp. 35–40.
[CrossRef]

13. Fieldsend, J.E. Running Up Those Hills: Multi-Modal Search with the Niching Migratory Multi-Swarm
Optimiser. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC’14), Beijing, China,
6–11 July 2014; pp. 2593–2600. [CrossRef]

14. Li, X. Developing Niching Algorithms in Particle Swarm Optimization. In Handbook of Swarm Intelligence.
Adaptation, Learning, and Optimization; Panigrahi, B.K., Shi, Y., Lim, M.-H., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 8, pp. 67–88. [CrossRef]

15. Qu, B.Y.; Suganthan, P.N. Novel Multimodal Problems and Differential Evolution with Ensemble of Restricted
Tournament Selection. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC’10),
Barcelona, Spain, 18–23 July 2010; pp. 1–7. [CrossRef]

16. Epitropakis, M.G.; Plagianakos, V.P.; Vrahatis, M.N. Finding Multiple Global Optima Exploiting Differential
Evolution’s Niching Capability. In Proceedings of the 2011 IEEE Symposium on Differential Evolution
(SDE’11), Paris, France, 11–15 April 2011; pp. 1–8. [CrossRef]

17. Thomsen, R. Multimodal Optimization Using Crowding-Based Differential Evolution. In Proceedings of the
2004 IEEE Congress on Evolutionary Computation (CEC’04), Portland, OR, USA, 19–23 June 2004; Volume 2,
pp. 1382–1389. [CrossRef]

18. Epitropakis, M.G.; Li, X.; Burke, E.K. A Dynamic Archive Niching Differential Evolution Algorithm for
Multimodal Optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC’13),
Cancún, Mexico, 20–23 June 2013; pp. 79–86. [CrossRef]

19. Shir, O.M. Niching in Evolutionary Algorithms. In Handbook of Natural Computing; Rozenberg, G., Bäck, T.,
Kok, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1035–1069. [CrossRef]

20. Puris, A.; Bello, R.; Molina, D.; Herrera, F. Variable Mesh Optimization for Continuous Optimization
Problems. Soft Comput. 2012, 16, 511–525. [CrossRef]

21. Navarro, R.; Falcon, R.; Bello, R.; Abraham, A. Niche-Clearing-Based Variable Mesh Optimization for
Multimodal Problems. In Proceedings of the 2013 World Congress on Nature and Biologically Inspired
Computing (NaBIC’13), Fargo, ND, USA, 12–14 August 2013; pp. 161–168. [CrossRef]

22. Navarro, R.; Murata, T.; Falcon, R.; Kim, C.H. A Generic Niching Framework for Variable Mesh Optimization.
In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC’15), Sendai, Japan,
25–28 May 2015; pp. 1994–2001. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2016.09.048
http://dx.doi.org/10.1109/TMAG.2011.2106218
http://dx.doi.org/10.1109/TMAG.2006.871672
http://dx.doi.org/10.1016/j.swevo.2011.05.005
http://dx.doi.org/10.1109/TEVC.2006.882433
http://dx.doi.org/10.1016/j.swevo.2013.05.002
http://dx.doi.org/10.1007/978-3-319-48506-5_4
http://dx.doi.org/10.1016/j.ins.2014.08.002
http://dx.doi.org/10.1109/TEVC.2010.2050024
http://dx.doi.org/10.1109/ISDA.2013.6920430
http://dx.doi.org/10.1109/CEC.2014.6900309
http://dx.doi.org/10.1007/978-3-642-17390-5_3
http://dx.doi.org/10.1109/CEC.2010.5586341
http://dx.doi.org/10.1109/SDE.2011.5952058
http://dx.doi.org/10.1109/cec.2004.1331058
http://dx.doi.org/10.1109/CEC.2013.6557556
http://dx.doi.org/10.1007/978-3-540-92910-9_32
http://dx.doi.org/10.1007/s00500-011-0753-9
http://dx.doi.org/10.1109/NaBIC.2013.6617855
http://dx.doi.org/10.1109/CEC.2015.7257130

Mathematics 2020, 8, 665 36 of 37

23. Molina, D.; Puris, A.; Bello, R.; Herrera, F. Variable Mesh Optimization for the 2013 CEC Special Session
Niching Methods for Multimodal Optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary
Computation (CEC’13), Cancún, Mexico, 20–23 June 2013; pp. 87–94. [CrossRef]

24. Maree, S.C.; Thierens, D.; Alderliesten, T.; Bosman, P.A.N. Real-Valued Evolutionary Multi-Modal
Optimization Driven by Hill-Valley Clustering. In Proceedings of the 2018 Genetic and Evolutionary
Computation Conference (GECCO’18), Kyoto, Japan, 15–19 July 2018; pp. 857–864. [CrossRef]

25. Bosman, P.A.N.; Grahl, J.; Thierens, D. Enhancing the Performance of Maximum–Likelihood Gaussian EDAs
Using Anticipated Mean Shift. In Parallel Problem Solving from Nature—PPSN X. PPSN 2008; Lecture Notes in
Computer Science; Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 5199, pp. 133–143. [CrossRef]

26. Bosman, P.A.N.; Grahl, J.; Thierens, D. Benchmarking Parameter-Free AMaLGaM on Functions With and
Without Noise. Evol. Comput. 2013, 21, 445–469. [CrossRef] [PubMed]

27. Maree, S.C.; Alderliesten, T.; Bosman, P.A.N. Benchmarking HillVallEA for the GECCO 2019 Competition
on Multimodal Optimization. Available online: https://arxiv.org/abs/1907.10988v1 (accessed on 25 October
2019).

28. Competition on Niching Methods for Multimodal Optimization. Available online: http://www.epitropakis.
co.uk/gecco2019/ (accessed on 23 October 2019).

29. Kanemitsu, H.; Imai, H.; Miyaskoshi, M. Definitions and Properties of (Local) Minima and Multimodal
Functions using Level Set for Continuous Optimization Problems. In Proceedings of the 2013 International
Symposium on Nonlinear Theory and its Applications (NOLTA2013), Santa Fe, NM, USA, 8–11 September
2013; pp. 94–97. [CrossRef]

30. Zhai, Z.; Li, X. A Dynamic Archive Based Niching Particle Swarm Optimizer Using a Small Population Size.
In Proceedings of the This paper appeared at the Thirty-Fourth Australasian Computer Science Conference
(ACSC2011), Perth, Australia, 17 January 2011; Reynolds, M., Ed.; Conferences in Research and Practice in
Information Technology (CRPIT), Australian, Computer Society, Inc.: Perth, Australia, 2011; Volume 113.

31. Kronfeld, M.; Zell, A. Towards Scalability in Niching Methods. In Proceedings of the 2010 IEEE Congress on
Evolutionary Computation (CEC’10), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [CrossRef]

32. Puris, A.; Bello, R.; Molina, D.; Herrera, F. Optimising Real Parameters Using the Information of a Mesh
of Solutions: VMO Algorithm. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation
(CEC’12), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–7. [CrossRef]

33. Pétrowski, A. Clearing Procedure as a Niching Method for Genetic Algorithms. In Proceedings of the IEEE
Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 798–803. [CrossRef]

34. Sareni, B.; Krähenbühl, L. Fitness Sharing and Niching Methods Revisited. IEEE Trans. Evol. Comput. 1998, 2,
97–106. [CrossRef]

35. Li, J.P.; Balazs, M.E.; Parks, G.T.; Clarkson, P.J. A Species Conserving Genetic Algorithm for Multimodal
Function Optimization. Evol. Comput. 2002, 10, 207–234. [CrossRef] [PubMed]

36. Gan, J.; Warwick, K. Dynamic Niche Clustering: A Fuzzy Variable Radius Niching Technique for Multimodal
Optimisation in GAs. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), Seoul, Korea, 27–30 May 2001; Volume 1, pp. 215–222. [CrossRef]

37. Brown, M.S. A Species-Conserving Genetic Algorithm for Multimodal Optimization; Nova Southeastern University:
Fort Lauderdale, FL, USA, 2010.

38. Iwase, T.; Takano, R.; Uwano, F.; Sato, H.; Takadama, K. The Bat Algorithm with Dynamic Niche Radius for
Multimodal Optimization. In Proceedings of the 2019 3rd International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence, Malé, Maldives, 24 March 2019; pp. 8–13. [CrossRef]

39. Solis, F.J.; Wets, R.J.B. Minimization by Random Search Techniques. Math. Oper. Res. 1981, 6, 19–30.
[CrossRef]

40. Li, X.; Engelbrecht, A.; Epitropakis, M.G. Benchmark Functions for CEC’2013 Special Session and Competition
on Niching Methods for Multimodal Function Optimization. Technical Report. Evolutionary Computation and
Machine Learning Group, RMIT University: Australia, 2013. Available online: https://titan.csit.rmit.edu.au/

~e46507/cec13-niching/competition/cec2013-niching-benchmark-tech-report.pdf (accessed on 23 October 2019).
41. Qu, B.Y.; Liang, J.J.; Suganthan, P.N. Niching Particle Swarm Optimization with Local Search for Multi-Modal

Optimization. Inf. Sci. 2012, 197, 131–143. [CrossRef]

http://dx.doi.org/10.1109/CEC.2013.6557557
http://dx.doi.org/10.1145/3205455.3205477
http://dx.doi.org/10.1007/978-3-540-87700-4_14
http://dx.doi.org/10.1162/EVCO_a_00094
http://www.ncbi.nlm.nih.gov/pubmed/23030365
https://arxiv.org/abs/1907.10988v1
http://www.epitropakis.co.uk/gecco2019/
http://www.epitropakis.co.uk/gecco2019/
http://dx.doi.org/10.15248/proc.2.94
http://dx.doi.org/10.1109/CEC.2010.5585916
http://dx.doi.org/10.1109/CEC.2012.6252873
http://dx.doi.org/10.1109/ICEC.1996.542703
http://dx.doi.org/10.1109/4235.735432
http://dx.doi.org/10.1162/106365602760234081
http://www.ncbi.nlm.nih.gov/pubmed/12227994
http://dx.doi.org/10.1109/cec.2001.934392
http://dx.doi.org/10.1145/3325773.3325776
http://dx.doi.org/10.1287/moor.6.1.19
https://titan.csit.rmit.edu.au/~e46507/cec13-niching/competition/cec2013-niching-benchmark-tech-report.pdf
https://titan.csit.rmit.edu.au/~e46507/cec13-niching/competition/cec2013-niching-benchmark-tech-report.pdf
http://dx.doi.org/10.1016/j.ins.2012.02.011

Mathematics 2020, 8, 665 37 of 37

42. Della Cioppa, A.; Marcelli, A.; Napoli, P. Speciation in Evolutionary Algorithms: Adaptive Species Discovery.
In Proceedings of the 2011 Genetic and Evolutionary Computation Conference (GECCO’11), Dublin, Ireland,
12 July 2011; pp. 1053–1060. [CrossRef]

43. Ursem, R.K. Multinational Evolutionary Algorithms. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1633–1640.
[CrossRef]

44. Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing; Lozano, J.A.; Larrañaga, P.;
Inza, I.; Bengoetxea, E. (Eds.) Springer: Berlin/Heidelberg, Germany, 2006; Volume 192. [CrossRef]

45. Dong, W.; Yao, X. NichingEDA: Utilizing the Diversity inside a Population of EDAs for Continuous
Optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC’08), Hong Kong,
China, 1–6 June 2008; pp. 1260–1267. [CrossRef]

46. Chen, B.; Hu, J. An Adaptive Niching EDA Based on Clustering Analysis. In Proceedings of the 2010 IEEE
Congress on Evolutionary Computation (CEC’10), Barcelona, Spain, 18–23 July 2010; pp. 1–7. [CrossRef]

47. Yang, P.; Tang, K.; Lu, X. Improving Estimation of Distribution Algorithm on Multimodal Problems by
Detecting Promising Areas. IEEE Trans. Cybern. 2015, 45, 1438–1449. [CrossRef] [PubMed]

48. HillVallEA. Available online: https://github.com/scmaree/HillVallEA (accessed on 28 October 2019).
49. Rodrigues, S.; Bauer, P.; Bosman, P.A.N. A Novel Population-Based Multi-Objective CMA-ES and the

Impact of Different Constraint Handling Techniques. In Proceedings of the 2014 Genetic and Evolutionary
Computation Conference (GECCO’14), Vancouver, BC, Canada, 12–16 July 2014; pp. 991–998. [CrossRef]

50. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997,
1, 67–82. [CrossRef]

51. Navarro, R. Optimización Basada En Mallas Variables Con Operador de Fronteras Basado En Búsqueda Genética
(Variable Mesh Optimization with Frontiers Operator Based on Genetic Search); Universidad de Holguín: Piedra
Blanca, Holguín, Cuba, 2012; Available online: https://repositorio.uho.edu.cu/jspui/handle/uho/444 (accessed
on 10 March 2020).

52. Preuss, M. Improved Topological Niching for Real-Valued Global Optimization. In Applications of Evolutionary
Computation. EvoApplications 2012. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2012; Volume 7248. [CrossRef]

53. Ahrari, A.; Deb, K.; Preuss, M. Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution
Strategy with Repelling Subpopulations. Evol. Comput. 2017, 25, 439–471. [CrossRef] [PubMed]

54. CEC2013. Available online: https://github.com/mikeagn/CEC2013 (accessed on 15 January 2020).
55. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
56. Derrac, J.; García, S.; Molina, D.; Herrera, F. A Practical Tutorial on the Use of Nonparametric Statistical Tests

as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

57. HVcMO. Available online: https://github.com/ricardonrcu/HVcMO (accessed on 24 March 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2001576.2001719
http://dx.doi.org/10.1109/CEC.1999.785470
http://dx.doi.org/10.1007/11007937
http://dx.doi.org/10.1109/CEC.2008.4630958
http://dx.doi.org/10.1109/CEC.2010.5586387
http://dx.doi.org/10.1109/TCYB.2014.2352411
http://www.ncbi.nlm.nih.gov/pubmed/25248207
https://github.com/scmaree/HillVallEA
http://dx.doi.org/10.1145/2576768.2598329
http://dx.doi.org/10.1109/4235.585893
https://repositorio.uho.edu.cu/jspui/handle/uho/444
http://dx.doi.org/10.1007/978-3-642-29178-4_39
http://dx.doi.org/10.1162/evco_a_00182
http://www.ncbi.nlm.nih.gov/pubmed/27070282
https://github.com/mikeagn/CEC2013
http://dx.doi.org/10.1016/j.swevo.2011.02.002
https://github.com/ricardonrcu/HVcMO
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Formal Notion of Multimodal Optimization and Niching Approach
	Related Works
	Evolutionary Multimodal Optimizers
	The VMO Metaheuristic
	Is the VMO’s Adaptive Clearing a Niching Method?
	VMO Niching Strategies
	Niching VMO
	VMO with Niching
	Divergence between VMO-N and NVMO

	Hill-Valley Evolutionary Algorithm
	Hill-Valley Function: A Pivotal Subject for HillVallEA
	Hill-Valley Clustering: The Niching Method
	AMaLGaM-Univariate: The Core Search Method
	Elitist Archive, Restart Scheme and Overall Process

	Research Objectives

	The Proposals
	Variable Mesh Optimization with Niching: A Revised Framework
	Hill-Valley-Clustering-Based Variable Mesh Optimization

	Experimental Setup
	Configuration of Parameters of HVcMO20a
	Benchmark Multimodal Problems
	Baseline Methods
	Major Performance Criteria
	Statistical Validation

	Discussion of Results
	Outperforming NVMO and Earlier Instances of VMO-N
	Further Baseline Comparison
	HVcMO20a or HillVallEA19? When to Apply Each?
	When Counting Function Evaluations Is Not Enough
	The Time Ratio
	Population Size and Execution Time

	Conclusions and Future Work
	PR, F1 and dynF1
	Ratio of Time and Population Size
	References

