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Abstract: In this paper, we discuss the dynamic behavior of the stochastic Belousov-Zhabotinskii chemical
reaction model. First, the existence and uniqueness of the stochastic model’s positive solution is proved.
Then we show the stochastic Belousov-Zhabotinskii system has ergodicity and a stationary distribution.
Finally, we present some simulations to illustrate our theoretical results. We note that the unique
equilibrium of the original ordinary differential equation model is globally asymptotically stable under
appropriate conditions of the parameter value f , while the stochastic model is ergodic regardless of the
value of f .
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1. Introduction

The theoretical analysis of repeated oscillation processes in open systems began in Lotkal [1,2]. Bak [3]
and Higgins [4] considered both closed and open systems and generalized the theory of such reactions
and Spangler and Snell [5] considered a model system. Interest in oscillating reactions was generated
by the large number of such processes observed in biological systems and these ideas were developed
by Prigogine and coworkers [6,7]. Oscillating reactions generally involve two autocatalytic reactions
that turn each other off and on and are somewhat analogous to the famous flip-flop circuit in electronics.
Field et al. [8] showed that it is possible to devise a mechanism of oscillation involving only a single
autocatalytic process.

The iodine catalyzed decomposition of hydrogen peroxide [9] was the first reaction believed to
oscillate homogenously. Belousov observed the second example of oscillating chemical reactions in
homogeneous solutions, i.e., oxidation of tetravalent-trivalent cerium ion coupled catalytic citric acid by
potassium bromate. The Belousov-Zhabotinskii reaction was found in 1950s by the former Soviet Union
biophysics Belousov and Zhabotinskii [10]. So we called the reaction as Belousov-Zhabotinskii reaction,
referred to as B-Z reaction. In 1969, Prigogine proposed the theory of dissipative structure, which clearly
explains the reason for the occurrence of oscillation reaction. This makes the B-Z reaction back to the
focus of the study. The theory of dissipative structure argues that when the system is far from equilibrium
state, that is, it is in the state of nonlinear and non-equilibrium, the disordered homogeneous state is not
necessarily stable.
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There are many explanations for the mechanism of B-Z reaction [11,12]. In one version, the total
reaction consists of two processes: A and B. The total reaction of processe A is:

BrO−3 + 5Br− + 6H+ → 3Br2 + 3H2O;

The total reaction of processe B is:

2BrO−3 + 12H+10Ce3+ → 3Br2 + 6H2O + 10Ce4+;

Process A is the ion reaction of double electron transfer, process B involves free radicals and single
electron transfer. When the concentration of Bromide ion exceeds the critical concentration process A
arises mainly, and when the concentration of Bromide ion below the critical concentration process B
arises mainly. Bromide ion is the control species here. In the process, B bromate ion not only oxidate
the metal ions, but also generate bromine. Such oscillation can sustain thousands of times in the closed
system, and the reaction process does not need to add the reactants. So this kind of reaction provides
great convenience for the study of the chemical wave. The reaction solutions appear in two colors. If the
solution is shallow, it will be similar to the phenomenon of wave interference, two kind colors of the wave
spread alternately. The wave in the same color disappeared when the contact happened, which is different
from electromagnetic wave.

In 1990, L.Gyorgy, T.Turanyi, R.J. Field [8] elaborated a skeletal reaction mechanism. The reactions
constituting the mechanism of the oscillatory B-Z reaction may be divided into an inorganic and an
organic subset. It contains eighty elementary reactions, and it is so complex that peoples put forward a
simplified mechanism of six steps, which is expressed as:

BrO−3 + Br− + 2H+ → HBrO2 + HOBr(k1);
HBrO2 + Br− + H+ → 2HOBr(k2);
BrO−3 + HBrO2 + H+ → 2BrO2 + H2O(k3);
BrO2 + Ce3+ + H+ → HBrO2 + Ce4+(k4);
2HBrO2 → BrO−3 + HOBr + H+(k5);
4Ce4+ + BrCH(COOH)2 + H2O + HOBr → 2Br− + 4Ce3+ + 3CO2 + 6H+(k6).

The reaction substrates included bromate, cerium ammonium sulfate (or cerium sulfate), malonic
acid and dilute sulfuric acid, and bromate is a substrate which can not be changed. Metal ions is generally
the Ce or Mn, but can also be the complex ions formed by Fe, Ru, Co, Cu, Cr, Ag, Ni, Os. Malonic acid can
be instead of other reducer. The formation of other halogen-containing oxysalt and anion, such as chloride
ions, can interfere with the reaction. B-Z reaction usually join the adjacent ferroin as the indicator, it is the
complexes of phenanthroline and ferrous ion, which is red in the reduced state and blue in the oxidation
state. Cerium ion is yellow in oxidation state and trivalent cerium ion is colorless in the reduced state.
So the effect of synthesis is: the oxidation state green, reducing state red.

Now we will introduce the establishment of the mathematical model for the B-Z chemical reaction
and consider the concentration changes of some main reactants. First, we will explain why we have
not considered the acidity or the water concentration in this paper? It is because their variations
in the media are negligible due to the use of some tampon. Then we note X = [HBrO2]; Y = [Br−];
Z = 2[Ce4+]; A = [BrO−3 ]; P = [HOBr], Q is the concentration of waste generation. We describe the above
reactions in the following five steps: (i) Describe the transform from Y to X; (ii) Inactivating X and Y
at the same time; (iii) and (iv) autocatalytic product X; (v) Bimolecular decomposition of X; (vi) The
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comprehensive reaction change Z to Y. We express these steps as:

A + Y → X + P (k1),
X + Y → P (k2),

A + X → 2X + Z (k3,4),
2X → A + 1

2 P (k5),
Z → f Y (k6),

where f is a stoichiometric factor of an overall reaction step, and ki(i = 1, · · · , 6) is the reaction rate
constant which contains the H+ concentration effect.

From the basic principle of modelling, we get the mathematical model of the reaction which is often
referred to as B-Z reaction model:

dX
dt = k1 AY− k2XY + k3,4 AX− 2k5X2

dY
dt = −k1 AY− k2XY + f k6Z
dZ
dt = k3,4 AX− k6Z.

(1)

Note as in [13] with the dimensionless transformation

x =
k2

k1 A
X, y =

k2

k3,4 A
Y, z =

k2k6

k1k3,4 A2 Z, τ =
√

k1k3,4 At,

q =
2k1k5

k2k3,4
, s =

√
k3,4

k1
, ω =

k6

A
√

k1k3,4
,

(2)

system (1) is transformed to: 
dx
dτ = s(y− xy + x− qx2)
dy
dτ = 1

s (−y− xy + f z)
dz
dτ = ω(x− z).

(3)

Tyson et al. [14,15] studied the dynamics of model (3) and system (3) has two equilibria O(0, 0, 0) and
P(x∗, y∗, z∗), and O is unstable. Here,

z∗ = x∗, y∗ =
f x∗

1 + x∗
=

1
2
[(1 + f )− qx∗], 2qx∗ = (1− f − q) + [(1− f − q)2 + 4q(1 + f )]

1
2 .

The globally asymptotic stability of the equilibrium state can be seen and in [13,16]. The Theorem
1.10 in [13] shows that the positive equilibrium state of model (2) is globally asymptotic stable for
f ∈ (0, f1)

⋃
( f2, ∞). In [17], Tang proved that for system (3), B is a positive invariant set, and all positive

initial solution will enter into B ultimately, here

B = {(x, y, z)|1 6 x 6
1
q

, y1 6 y 6 y2, 1 6 z 6
1
q
}

and y1 = f q
1+q , y2 = f

2q .

Note model (1) is deterministic and does not incorporate the effect of environment noise, which is
always present. In fact, chemical reaction models are affected by environmental white noise, because the
temperature and pressure varies during chemical reaction processes and is closely related to the process.
Two stochastic chemical reaction models were discussed in [18–20] where the chemical reaction model
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was considered under stochastic perturbation with the Lyapunov method.
In this paper, we introduce stochastic perturbations into the system (1) and we consider the

stochastic system: 
dX
dt = k1 AY− k2XY + k3,4 AX− 2k5X2 + δ1XẆ1(t)
dY
dt = −k1 AY− k2XY + f k6Z + δ2YẆ2(t)
dZ
dt = k3,4 AX− k6Z + δ3ZẆ3(t),

(4)

where W1(t), W2(t), W3(t) are independent Brownian motions and δ2
1 > 0, δ2

2 > 0, δ2
3 > 0 represent the

intensities of white noise. Consider the dimensionless transformation of this stochastic model and the
relation of the coefficient as in (2) except that

σi =
δi

(k1k3,4 A2)
1
4

, Bi(τ) = (k1k3,4 A2)
1
4 Wi(

τ√
k1k3,4 A2

), i = 1, 2, 3.

Then system (4) becomes:
dx = s(y− xy + x− qx2)dτ + σ1xdB1(τ)

dy = 1
s (−y− xy + f z)dτ + σ2ydB2(τ)

dz = ω(x− z)dτ + σ3zdB3(τ),

(5)

where B1(τ), B2(τ), B3(τ) are independent Brownian motions and σ2
1 > 0, σ2

2 > 0, σ2
3 > 0 represent the

intensities of white noise.
The aim of this paper is to study the dynamical behavior of system (5). In Section 2, we show the

solution of system is positive and global. In Section 3, we prove that system (5) has ergodicity and a
stationary distribution and the last section presents some simulations to illustrate our theoretical results.

2. Existence and Uniqueness of the Positive Solution

It is necessary that the solutions of the stochastic model is positive in a chemical reaction model, so we
prove the existence and uniqueness of the positive solution for model (5).

Unless otherwise specified, we let (Ω,F , {Ft}t≥0, P) be a complete probability space, with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0 contains all P-null sets)
throughout this paper. Denote

Rn
+ = {x ∈ Rn : xj > 0, f or all 1 ≤ j ≤ n}

R̄n
+ = {x ∈ Rn : xj ≥ 0, f or all 1 ≤ j ≤ n}

Sh := {x ∈ Rd : |x| ≤ h}

Generally, we consider the following d-dimensional stochastic differential equation with initial value
x(t0) = x0 ∈ Rd

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) f or t ≥ t0,

and B(t) denotes the standard d-dimensional Brownian motions defined on the above probability space.
The differential operator L associated with the upper equation is defined by

L =
∂

∂t
+ ∑ fi(x, t)

∂

∂xi
+

1
2 ∑[gT(x, t)g(x, t))]ij

∂2

∂xixj
.
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If the differential operator L acts on a function V ∈ C2,1(Sh ×R+;R+), then we have

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace[gT(x, t)Vxx(x, t)g(x, t)],

where Vt =
∂V
∂t , Vx = ( ∂V

∂x1
, . . . , ∂V

∂xd
) and Vxx = ( ∂2V

∂xixj
)d×d. If x(t) ∈ Sh, then by Itô’s formula, we can get

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t).

Theorem 1. There is a unique solution (x(τ), y(τ), z(τ)) of system (5) on τ ≥ 0 for any initial value
(x(0), y(0), z(0)) ∈ R3

+, and the unique solution of stochastic system (5) will remain in R3
+ with probability 1.

Proof. In order to illustrate the positive local solution (x(τ), y(τ), z(τ)), τ ∈ [0, τe) of stochastic B-Z system
(5) is global, we just need to prove that τe = ∞ a.s. Let m0 ≥ 0 be an enough large number such that both
x0, y0, z0 lie within the interval [ 1

m0
, m0]. Set m ≥ m0, and define the stopping time

τm = inf{τ ∈ [0, τe) : min{x(τ), y(τ), z(τ)} ≤ 1
m

or max{x(τ), y(τ), z(τ)} ≥ m},

we set inf φ = ∞ (as usual φ denotes the empty set) throughout this paper. Clearly, τm is increasing
as m → ∞. Set τ∞ = lim

m→∞
τm, where τ∞ ≤ τe a.s. If we prove τ∞ = ∞ a.s., then τe = ∞ obviously, i.e.,

(x(0), y(0), z(0)) ∈ R3
+ a.s. for all t ≥ 0. Let me put it another way, tend to complete the proof we just

need to prove that τe = ∞ a.s. If not, there are T > 0 and ε ∈ (0, 1), such that

P{τ∞ ≤ T} > ε.

Therefore, there exists an integer m1 ≥ m0 bring that{
P{τm ≤ T} > ε f or all m ≥ m1. (6)

A C2-function V : R3
+ → R+ is defined by

V(x, y, z) = x− 1− log x + k1(y− 1− log y) + k2(z− 1− log z),

where
k1 = 2s2, k2 =

2s f
ω

(7)

are two positive constants. The non-negativity of the C2−function V can be seen from u− 1− log u ≥ 0,
for all u > 0. Applying Itô’s formula, we can derive that

dV = [s(1− 1
x )(y− xy + x− qx2) + k1

s (1−
1
y )(−y− xy + f z) + k2ω(1− 1

z )(x− z) + σ2
1
2 + k1

2 σ2
2 + k2

2 σ2
3 ]dτ

+ σ1(x− 1)dB1(τ) + k1σ2(y− 1)dB2(τ) + k2σ3(z− 1)dB3(τ)

= LVdτ + σ1(x− 1)dB1(τ) + k1σ2(y− 1)dB2(τ) + k2σ3(z− 1)dB3(τ).

Note

LV = s(1− 1
x )(y− xy + x− qx2) + k1

s (1−
1
y )(−y− xy + f z) + k2ω(1− 1

z )(x− z) + σ2
1
2 + k1

2 σ2
2 + k2

2 σ2
3

≤ −qsx2 + (s + qs + k1
s + k2ω)x + (2s− k1

s )y + ( k1 f
s − k2ω)z− s + k1

s + k2ω + 1
2 σ2

1 + k1
2 σ2

2 + k1
2 σ2

3 .
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Choosing the value of k1, k2 as in (7), then

LV ≤ −qsx2 + s(3 + q + 2 f )x + s + 2 f s +
1
2

σ2
1 + s2σ2

2 +
s f
ω

σ2
3 ≤ K

where K is a positive constant. Furthermore, we have∫ τm∧T
0 dV(x(τ), y(τ), z(τ)) ≤

∫ τm∧T
0 Kdτ +

∫ τm∧T
0 σ1(x− 1)dB1(τ) +

∫ τm∧T
0 k1σ2(y− 1)dB2(τ)

+
∫ τm∧T

0 k2σ3(z− 1)dB3(τ).

Taking expectations yields

E[V(x(τm ∧ T), y(τm ∧ T), z(τm ∧ T))] ≤ V(x(0), y(0), z(0)) + E
∫ τm∧T

0
Kdτ

≤ V(x(0), y(0), z(0)) + KT.
(8)

For m ≥ m1, set Ωm = {Tm ≤ T}, and by formula (6) we know that P(Ωm) ≥ ε. Notice that
there exists at least one of the x(τm, ω), y(τm, ω), z(τm, ω) equal to m or 1

m for every ω ∈ Ωm. Consequently,

V(x(τm), y(τm), z(τm))

≥ (m− 1− log m) ∧ ( 1
m − 1− log 1

m ) ∧ [k1(m− 1− log m)] ∧ [k1(
1
m − log 1

m )]

∧ [k2(m− 1− log m)] ∧ [k2(
1
m − 1− log 1

m )] := f (m).

Then by formula (6) and (8) we have

V(x(0), y(0), z(0)) + KT ≥ E[IΩm(ω)V(x(τm), y(τm), z(τm))] ≥ ε f (m),

where IΩm(ω) is the indicator function of Ωm. If we let m → ∞, it results in the contradiction ∞ >

V(x(0), y(0), z(0) + KT = ∞. Thus we behoove have τ∞ = ∞ a.s.

3. Ergodicity

Before we start to prove the ergodicity of stochastic B-Z reaction model, a result which can be found
in [21] (we also refer the reader to [22]) will be present.

Let X(t) be a homogeneous Markov Process, which have been described by the stochastic equation in
El (El denotes the euclidean l-space)

dX(t) = b(X)dt +
k

∑
r=1

gr(X)dBr(t), (9)

and its diffusion matrix is

Λ(x) = (λij(x)), (λij(x)) =
k

∑
r=1

gi
r(x)gj

r(x).

The differential operator L, which associated with Equation (9) is defined by

L =
l

∑
k=1

bk(x)
∂

∂xk
+

1
2

l

∑
k,j=1

λkj(x)
∂2

∂xk∂xj
.

Lemma 1. (See [21]) Suppose that there is a bounded domain U ⊂ El with regular boundary Γ, which having the
following characters:
(i) The smallest eigenvalue of the diffusion matrix Λ(x) is bounded away from zero in the domain U and some
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neighborhood thereof.
(ii) If x ∈ El\U, the mean time τ at which a path issuing from x reaches the set U is finite, and supx∈K Exτ < ∞
for every compact subset K ⊂ El .
Then the Markov process X(t) has a stationary distribution µ(·). If we let f (·) be a function integrable with regard
to the measure µ. Then

Px{ lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)µ(dx)} = 1,

for all x ∈ El .

Remark 1. The proof of Lemma 1 is given in [21]. In Theorem 4.1, p.119 and Lemma 9.4, p.138, the existence
of a stationary distribution with density is given. The ergodicity and the weak convergence are obtained in
Theorem 5.1, p.121 and Theorem 7.1, p.130. To validate (i), it is sufficient to prove that F is uniformly elliptical
in any bounded domain D, where Fu = b(x)ux +

1
2 tr(Λ(x)uxx), that is, there is a positive number M such that

k
∑

i,j=1
λij(x)ξiξ j ≥ M|ξ|2, x ∈ D̄, ξ ∈ Rk (see [23], Chapter 3, p. 103 and Rayleigh’s principle in [24], Chapter 6, p.

349). In order to verify (ii), it is enough to show that there are some neighborhood U and a non-negative C2-function,
therefore for any El\U, LV is negative (for details see [25], p. 1163).

Lemma 2. Let X(t) be a regular homogeneous temporally Markov process in El . In case X(t) is recurrent relative
to a few bounded domain U, then it is recurrent relative to any nonempty domain in El .

Remark 2. Due to the existence of a positive solution of stochastic B-Z model (5) was obtained in Theorem 1, it is
sufficient to take R3

+ as the whole space.

Theorem 2. For any initial value (x(0), y(0), z(0)) ∈ R3
+, if σ2

1 < 2s, then stochastic system (5) has a stationary
distribution µ(·), and it has the ergodic property.

Proof. In order to prove this theorem, all we need to do is to verify that (i) and (ii) hold according to
Lemma 1. First, the stochastic system (5) can be written as:

d

 x
y
z

 =

 s(y− xy + x− qx2)
1
s (−y− xy + f z)

ω(x− z)

 dτ +

 σ1x
0
0

 dB1(τ) +

 0
σ2y
0

 dB2(τ) +

 0
0

σ3z

 dB3(τ).

Here the diffusion matrix is

Λ(x, y) =

 σ2
1 x2 0 0
0 σ2

2 y2 0
0 0 σ2

3 z2

 .

Now there is M = min{σ2
1 x2, σ2

2 y2, σ2
3 z2, (x, y, z) ∈ Ū} > 0 such that

3

∑
i,j=1

λij(x, y)ξiξ j = σ2
1 x2ξ2

1 + σ2
2 y2ξ2

2 + σ2
3 z2ξ2

3 ≥ M|ξ|2, all (x, y, z) ∈ Ū, ξ ∈ R2,

which implies condition (i) is satisfied.
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Now we need to verify condition (ii). First, we construct a nonnegative C2−function V and a closed
set U ∈ ∑ (which lies in R3

+ entirely) so as to

sup
(x,y)∈R3

+\U
LV(x, y) < 0,

which guarantees that condition (ii) is satisfied. Take into account a C2−function h(x, y, z):

h(x, y, z) = x + 2s2y +
3s f
ω

z− l1 log x− l2 log y− l3 log z, (x, y, z) ∈ R3
+.

Here l1, l2, l3 are positive numbers with 0 < l1 < 1 and

l1(s−
σ2

1
2
)− l2(

1
s
+

σ2
2

2
)− l3(ω +

σ2
3

2
) > 0. (10)

Obviously, if σ2
1 < 2s, we only need to choose l2, l3 small enough such that condition (10) holds. It is

not hard to verify that h(x, y, z) has a unique minimum point (l1, 2s2

l2
, 3s f

ωl3
), and

lim
k→∞

inf
(x,y,z)∈R3

+\Dk

h(x, y, z) = +∞,

where Dk = (1/k, k) × (1/k, k) × (1/k, k). Next we define a nonnegative C2−function taking the
following form:

V(x, y, z) = h(x, y, z)− h(l1,
2s2

l2
,

3s f
ωl3

).

By direct calculation, we obtain that

LV = s(x + y− qx2 − xy) + 2s(−y + f z− xy) + 3s f (x− z) + l1s(−1− y
x + qx + y) + l2

s (1 + x− f z
y )

+ l3ω(− x
z + 1) + l1

σ2
1

2 + l2
σ2

2
2 + l3

σ2
3

2

≤ −qsx2 + (s + 3s f + l1sq + l2
s )x− s(1− l1)y− s f z− f l2

s
z
y − l3ω x

z + l1(
σ2

1
2 − s) + l2( 1

s +
σ2

2
2 ) + l3(ω +

σ2
3

2 ).

Let C = l1(
σ2

1
2 − s) + l2( 1

s +
σ2

2
2 ) + l3(ω +

σ2
3
2 ), and from (11) we have C < 0. Then we can get

LV ≤ −qsx2 + (s + 3s f + l1sq +
l2
s
)x− s(1− l1)y− s f z− f l2

s
z
y
− l3ω

x
z
+ C. (11)

Define a closed set

U = {(x, y, z) ∈ R3
+ : ε1 ≤ x ≤ 1

ε1
, ε2 ≤ y ≤ 1

ε2
, ε3 ≤ z ≤ 1

ε3
},

where
ε1 = ε, ε2 = ε3, ε3 = ε2 (12)

and ε is a sufficiently small number such that

− qs
2

1
ε2

1
+ M1 + C < −1, (13)

− s(1− l1)
1
ε2

+ M1 + C < −1, (14)
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− s f
1
ε3

+ M1 + C < −1, (15)

(s + 3s f + l1sq +
l2
s
)ε1 + C <

C
2
< 0, (16)

M1 −
f l2
s

ε3

ε2
+ C < −1, (17)

M1 − l3ω
ε1

ε3
+ C < −1. (18)

Let
D∞

1 = {(x, y, z) ∈ R3
+\U : x > 1

ε1
},

D∞
2 = {(x, y, z) ∈ R3

+\U : y > 1
ε2
},

D∞
3 = {(x, y, z) ∈ R3

+\U : z > 1
ε3
},

D1 = {(x, y, z) ∈ R3
+\U : 0 < x < ε1},

D2 = {(x, y, z) ∈ R3
+\U : 0 < y < ε2, z ≥ ε3}

D3 = {(x, y, z) ∈ R3
+\U : x ≥ ε1, 0 < z < ε3}.

Then R3
+\U = D∞

1
⋃

D∞
2

⋃
D∞

3
⋃

D1
⋃

D2
⋃

D3. For any (x, y, z) ∈ R3
+\U we talk over the following

six cases:

Case 1. If (x, y, z) ∈ D∞
1 ,

LV ≤ −qsx2 + (s + 3s f + l1sq + l2
s )x + C

≤ − 1
2 qsx2 + M1 + C

< − qs
2

1
ε2

1
+ M1 + C,

where M1 = sup
x∈(0,+∞)

{− 1
2 qsx2 + (s + 3s f + l1sq + l2

s )x}. Then we can get LV < −1 on D∞
1 from (12)

and (13).

Case 2. On D∞
2 ,

LV ≤ −s(1− l1)y + M1 + C < −s(1− l1)
1
ε2

+ M1 + C,

we have LV < −1 due to (12) and (14).

Case 3. If (x, y, z) ∈ D∞
3 ,

LV ≤ −s f z + M1 + C < −s f
1
ε3

+ M1 + C.

Note (12) and (15), and we have LV < −1 on D3 .

Case 4. On D1,

LV ≤ (s + 3s f + l1sq +
l2
s
)x + C < (s + 3s f + l1sq +

l2
s
)ε1 + C <

C
2
< 0,

from (12) and (16) .
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Case 5. On D2,

LV ≤ −qsx2 + (s + 3s f + l1sq + l2
s )x + C− f l2

s
z
y

≤ sup
x∈(0,+∞)

{− 1
2 qsx2 + (s + 3s f + l1sq + l2

s )x} − 1
2 qsx2 + C− f l2

s
z
y

≤ M1 − f l2
s

ε3
ε2
+ C,

because (12) and (17) hold, which gives LV < −1 in this domain,.

Case 6. On D3, using the same method as in Case 5, we have the following inequality:

LV ≤ M1 − l3ω
x
z
+ C < M1 − l3ω

ε1

ε3
+ C,

which gives LV < −1 in this domain, since (12) and (18) hold.
Thus condition (ii) is satisfied. Then we finish the proof of Theorem 1.

4. Simulation

Now, we test our theory conclusions by simulations in this section. In this section we suppose that
the unit of time is a minute and reactant concentration are measured in units of mol/L·min. We always
use a discretization method and choose Mt = 0.002. Choose the parameters in the system (5) as

s = 7.727, q = 0.08375, ω = 0.161, f = 1, σ1 = σ2 = σ3 = 0.2 (19)

s = 7.727, q = 0.08375, ω = 0.161, f = 0.1, σ1 = σ2 = σ3 = 0.2 (20)

respectively. Obviously, only the value of the parameter f is different in the above two conditions.
We set the initial value (x(0), y(0), z(0)) = (0.8, 0.8, 0.5) and simulate the scatter distribution and the
stationary distribution figures of the stochastic differential equation model (5) with Matlab under the
condition (19) and (20) . The simulation results are shown in Figures 1–4 respectively. The corresponding
deterministic model (3), the value of the parameters in (19) do not satisfy the condition in Theorem 1.10 [13],
because the value f = 1 satisfies neither (1) nor (2). The value of f = 0.1 in (20) satisfies the
conditions of Theorem 1.10 [13]. In these two cases, the stochastic model (5) always has ergodicity
and a stationary distribution.

In this paper, we have added multiplicative noise terms into the Equation (1) as a representation of
environmental white noise, furthermore we proved that the existence of the positive solution and the
stochastic model is ergodic. In fact, ergodicity is a kind of weak stability, that is, stability according to
distribution. Regardless of what state the system show, the chemical reaction is always continuing in the
weak stable state.
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Figure 1. The distribution of scatter for stochastic reaction model (5) by computer simulation when we
choose the parameters as in (19).
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Figure 2. The distribution of scatter for stochastic reaction model (5) by computer simulation when we
choose the parameters as in (20).
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Figure 3. The solution of the stochastic system and its histogram when parameters are chosen as in (19).
The blue lines represent the solution of the corresponding undisturbed system (3) and the red lines represent
the solution of the stochastic system (5). The right picture is the histograms of the stochastic system (5).
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Figure 4. The solution of the stochastic system and its histogram when parameters are chosen as in (20).
The blue lines represent the solution of the corresponding undisturbed system (3) and the red lines represent
the solution of the stochastic system (5). The right picture are the histograms of the stochastic system (5).

5. Conclusions

The conclusion we get is very interesting that original restrictions on parameter f in the deterministic
is gone, all of the condition is the white noise satisfies inequality σ2

1 < 2s. So we think white noise is
conducive to the stability of the B-Z reaction stochastic system in practice. In future work, we will try our
best to make a breakthrough on this model.
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