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Abstract: Let K (r) be the complete elliptic integral of the first kind. We present an accurate rational

lower approximation for K (r). More precisely, we establish the inequality 2
πK (r) > 5(r′)2+126r′+61

61(r′)2+110r′+21

for r ∈ (0, 1), where r′ =
√

1− r2. The lower bound is sharp.
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1. Introduction

The complete elliptic integral of the first kind K (r) is defined on (0, 1) by

K (r) =
∫ π/2

0

1√
1− r2 sin2 t

dt,

which can be also represented by the Gaussian hypergeometric function

2
π
K (r) = F

(
1
2

,
1
2

; 1; r2
)
=

∞

∑
n=0

(1/2)2
n

(n!)2 r2n, (1)

where (a)0 = 1 for a 6= 0, (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a) is the shifted factorial
function and Γ(x) =

∫ ∞
0 tx−1e−tdt (x > 0) is the gamma function [1,2]. The famous Landen

identities [3], p. 507 show that

K
(

2
√

r
1 + r

)
= (1 + r)K (r) and K

(
1− r
1 + r

)
=

1 + r
2
K
(
r′
)

(2)

for all r ∈ (0, 1). Moreover, an asymptotic formula for K (r) as r → 1− is given by

K (r) ∼ ln
4
r′

as r → 1− (3)

(see [3], p. 299), where and in what follows r′ =
√

1− r2.

Mathematics 2020, 8, 635; doi:10.3390/math8040635 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-2719-4728
https://orcid.org/0000-0002-0631-038X
http://www.mdpi.com/2227-7390/8/4/635?type=check_update&version=1
http://dx.doi.org/10.3390/math8040635
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 635 2 of 9

As we all know, analytic inequality plays a very important role in mathematics and in other parts
of science (see for example, [4–6]) since it offers certain computable and accurate bounds for given
complicated functions. As far as the complete elliptic integral of the first kind is concerned, there are
at least two kinds of bounds for K (r). The first kind of bounds for K (r) are in terms of the inverse
hyperbolic tangent function, that is,

artanhr =
1
2

ln
1 + r
1− r

.

In 1992, Anderson, Vamanamurthy and Vuorinen [7] mentioned such bound, and they presented
the double inequality (

artanhr
r

)1/2
<

2
π
K (r) <

artanhr
r

(4)

for r ∈ (0, 1). This was improved by Alzer and Qiu in [8] (Theorem 19) as(
artanhr

r

)α1

<
2
π
K (r) <

(
artanhr

r

)β1

(5)

for r ∈ (0, 1) with the best weights α1 = 3/4 and β1 = 1. In the same paper [8] (Theorem 19),
the authors gave another better double inequality for K (r):

1− α2 + α2
artanhr

r
<

2
π
K (r) < 1− β2 + β2

artanhr
r

(6)

for r ∈ (0, 1) with the best weights α2 = 2/π and β2 = 3/4. Recently, Yang, Qian, Chu and Zhang [9]
(Theorem 3.2) obtain more accurate bounds:

2
(3π − 7) r′ + 1
(5π − 12) r′ + π

artanhr
r

<
2
π
K (r) < 3

17r′ + 23
31r′ + 89

artanhr
r

(7)

for r ∈ (0, 1).
The second kind of bounds for K (r) are related to the asymptotic Equation (3). In 1985,

Carlson and Guatafson [10] showed that

1 <
K (r)

ln (4/r′)
<

4
3 + r2 (8)

for r ∈ (0, 1). The first inequality of Equation (8) was improved in [7] as

9
8.5 + r2 <

K (r)
ln (4/r′)

(9)

for r ∈ (0, 1). Qiu and Vamanamurthy [11] and Alzer [12] proved the double inequality

1 +
( π

ln 16
− 1
) (

r′
)2

<
K (r)

ln (4/r′)
< 1 +

1
4
(
r′
)2 (10)

for r ∈ (0, 1), where the constant factors 1/4 and π/ ln 16− 1 in Equation (10) are the best possible.
The recent advance on such inequalities can be found in [13–15].

The aim of this paper is to provide the third kind of bounds (rational bounds) for K (r).
More precisely, we will prove the following theorem.
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Theorem 1. Let q ≥ 2. The inequality

2
π
K (r) >

1
8
(16− 3q) (r′)2 + (96 + 22q) r′ + (61q− 112)

10 (r′)2 + (7q− 4) r′ + (3q− 6)
= Lq

(
r′
)

(11)

holds for all r ∈ (0, 1) if and only if q ≥ q0 = 192/61. In particular, we have

2
π
K (r) >

5 (r′)2 + 126r′ + 61

61 (r′)2 + 110r′ + 21
= Lq0

(
r′
)

for r ∈ (0, 1).

2. Proof of Theorem 1

To prove Theorem 1, we need a sign rule for a type of special power series and polynomials,
which has been proven in [9,15,16] by Yang et al. It should be noted that this sign rule plays an
important role in the study for certain special functions, see, for example, [17–21].

Lemma 1. Let {ak}∞
k=0 be a nonnegative real sequence with am > 0 and ∑∞

k=m+1 ak > 0 and let

S (t) = −
m

∑
k=0

aktk +
∞

∑
k=m+1

aktk

be a convergent power series on the interval (0, r) (r > 0). (i) If S (r−) ≤ 0, then S (t) < 0 for all t ∈ (0, r).
(ii) If S (r−) > 0, then there is a unique t0 ∈ (0, r) such that S (t) < 0 for t ∈ (0, t0) and S (t) > 0 for
t ∈ (t0, r).

Remark 1. If r = ∞, then Lemma 1 is reduced to [22] (Lemma 6.3). Furthermore, if ak = 0 for k ≥ k2 + 1,
then Lemma 1 yields [16] (Lemma 7).

Remark 2. It follows from Lemma 1 that if there is a t1 ∈ (0, r) such that S (t1) < 0, then we have S (t) < 0
for all t ∈ (0, t1); if there is a t2 ∈ (0, r) such that S (t2) > 0, then we have S (t) > 0 for all t ∈ (t2, r).

For convenience, we introduce a notation:

Wn =
(1/2)n

n!
=

Γ (n + 1/2)
Γ (1/2) Γ (n + 1)

. (12)

Then

(−1/2)n
n!

=
(−1/2)
n− 1/2

Γ (n + 1/2)
n!Γ (1/2)

= − 1
2n− 1

Wn,

(−3/2)n
n!

=
(−3/2) (−1/2)

(n− 3/2) (n− 1/2)
Γ (n + 1/2)
n!Γ (1/2)

=
3Wn

(2n− 1) (2n− 3)
.

Clearly, Wn satisfies the recurrence relation:

Wn−1 =
2n

2n− 1
Wn. (13)

Using this notation, the Gaussian hypergeometric Equation (1) can be written as

2
π
K (r) = F

(
1
2

,
1
2

; 1; r2
)
=

∞

∑
n=0

W2
nr2n. (14)
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In addition, the functions r′ =
√

1− r2 and (r′)3 =
(
1− r2)3/2 can be expanded in power sereis

r′ =
√

1− r2 =
∞

∑
n=0

(−1/2)n
n!

r2n = −
∞

∑
n=0

Wn

2n− 1
r2n, (15)

(
r′
)3

=
(

1− r2
)3/2

=
∞

∑
n=0

(−3/2)n
n!

r2n =
∞

∑
n=0

3Wn

(2n− 1) (2n− 3)
r2n. (16)

We are now in a position to prove our main result.

Proof. (i) Necessity. Expanding in power series yields

2
π
K (r) = F

(
1
2

,
1
2

; 1; r2
)
= 1 +

1
4

r2 +
9
64

r4 +
25
256

r6 +
1225

16384
r8 + O

(
r10
)

Lq
(
r′
)

= 1 +
1
4

r2 +
9
64

r4 +
25
256

r6 +
379q + 12

5120q
r8 + O

(
r10
)

,

which gives
2
π
K (r)− Lq

(
r′
)
=

61q− 192
81920q

r8 + O
(

r10
)

. (17)

If the inequality seen in Equation (11) holds for all r ∈ (0, 1), then

lim
r→0+

(2/π)K (r)− Lq (r′)
r8 =

61q− 192
81920q

≥ 0,

which implies q ≥ 192/61 = q0. This proves the necessity.
(ii) Sufficiency. Differentiation yields

∂

∂q
Lq
(
r′
)
= −15

4
(1− r′)4[

10 (r′)2 + (7q− 4) r′ + (3q− 6)
]2 < 0

for r ∈ (0, 1). That is, the lower bound Lq (r′) is decreasing with respect to q on [2, ∞). Thus, to prove
the sufficiency, it is enough to prove the inequality in Equation (11) holds for r ∈ (0, 1) and q = q0.

Let

f0 (r) =
(

61
(
r′
)2 − 110r′ + 21

) (
61
(
r′
)2

+ 110r′ + 21
)( 2

π
K (r)− Lq0

(
r′
))

.

Obviously, f0 (r) has at least one zero on (0, 1) which satisfies

61
(
r′
)2 − 110r′ + 21 = 0.

Solving the equation yields

r0 =

√
440
√

109− 1048
3721

= 0.97617.... (18)

On the other hand, using the power series representations in Equations (14)–(16), f0 (r) can be
expressed as

f0 (r) =
[
3721

(
r′
)4 − 9538

(
r′
)2

+ 441
] 2

π
K (r)

−
[
305

(
r′
)4

+ 7136
(
r′
)3 − 10034

(
r′
)2 − 4064r′ + 1281

]
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=
(

3721r4 + 2096r2 − 5376
) ∞

∑
n=0

W2
nr2n −

[
305r4 + 9424r2 − 8448

+7136
∞

∑
n=0

3Wn

(2n− 1) (2n− 3)
r2n + 4064

∞

∑
n=0

Wn

2n− 1
r2n

]
,

which, by the recurrence relations in Equation (13), is simplified to

=
∞

∑
n=3

16
(
441n4 + 7774n3 − 21131n2 + 16128n− 3024

)
(2n− 1)2 (2n− 3)2 W2

nr2n

−
∞

∑
n=3

64 (127n + 144)
(2n− 1) (2n− 3)

Wnr2n =
∞

∑
n=3

anr2n,

where

an =
64 (127n + 144)Wn

(2n− 1) (2n− 3)
a∗n, (19)

a∗n =
441n4 + 7774n3 − 21131n2 + 16128n− 3024

4 (127n + 144) (2n− 1) (2n− 3)
Wn − 1. (20)

We now check that there is an integer n0 > 3 such that a∗n ≤ 0 for 3 ≤ n ≤ n0 and a∗n > 0 for
n > n0. It is easy to verify that a∗3 = a∗4 = 0 and

a∗n+1 − a∗n
Wn

=
1
8

(n− 3) p4 (n)
(n + 1) (2n− 1) (2n− 3) (127n + 144) (127n + 271)

,

where
p4 (n) = 56007n4 − 740779n3 + 1451470n2 + 1793252n− 519264. (21)

Since
p4 (m + 4) = 56007m4 + 155333m3 − 2061206m2 − 7814588m− 3194800

and p4 (6 + 4) = −18148744 < 0, p4 (7 + 4) = 28856016 > 0, by Lemma 1 we see that p4 (n) < 0
for 5 ≤ n ≤ 10 and p4 (n) > 0 for n ≥ 11. This shows that the sequence {a∗n}n≥5 is decreasing for
5 ≤ n ≤ 10 and increasing for n ≥ 11. Due to a∗5 = −245/199424 < 0 and a∗∞ = ∞, there is an n1 > 5
such that a∗n < 0 for 5 ≤ n ≤ n1 and a∗n > 0 for n ≥ n1 + 1.

Thus, as a special power series, those coefficients of f0 (r) satisfy the conditions of Lemma 1,
and clearly, f0 (1−) = ∞. From Lemma 1, it follows that there is a unique r∗0 ∈ (0, 1) such that f0 (r) < 0
for r ∈ (0, r∗0) and f0 (r) > 0 for r ∈ (r∗0 , 1), that is to say, f0 (r) has a unique zero r∗0 , and therefore,
r∗0 = r0, where r0 is given by Equation (18).

It is readily checked that 61 (r′)2 − 110r′ + 21 < 0 for r ∈ (0, r0) and 61 (r′)2 − 110r′ + 21 > 0 for
r ∈ (r0, 1), which yields

2
π
K (r)− Lq0

(
r′
)
=

f0 (r)(
61 (r′)2 − 110r′ + 21

) (
61 (r′)2 + 110r′ + 21

) > 0

for r ∈ (0, 1) with r 6= r0. The continuity at r = r0 of the functions K (r) and Lq0 (r) shows that the
inequality in Equation (11) also holds for r = r0.

This completes the proof.

3. Remarks

In this section, we give some remarks on our result.
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Remark 3. Using the monotonicity of the bound Lq (r′), we can obtain a chain of inequalities. For example,
taking q = q0 = 192/61, 16/3 and q→ ∞, we obtain

2
π
K (r) >

5(r′)2 + 126r′ + 61
61(r′)2 + 110r′ + 21

> 8
r′ + 1

(r′ + 3) (3r′ + 1)
>

1
8

61 + 22r′ − 3(r′)2

7r′ + 3

for r ∈ (0, 1).

Remark 4. Let Ek (r) (k = 1, 2, 3) denote the lower bound in Equation (5), upper bound in Equation (6) and
upper bound in Equation (7), respectively. Power series expansions give

2
π
K (r)− E1 (r) =

1
960

r4 + O
(

r6
)

2
π
K (r)− E2 (r) = − 3

320
r4 + O

(
r6
)

,

2
π
K (r)− E3 (r) = − 437

537600
r6 + O

(
r8
)

,

2
π
K (r)− Lq0

(
r′
)

=
35

786432
r10 + O

(
r12
)

.

Since

lim
r→0

∣∣(2/π)K (r)− Lq0 (r
′)
∣∣

|(2/π)K (r)− Ek (r)|
= 0 < 1, (22)

lim
r→1

∣∣(2/π)K (r)− Lq0 (r
′)
∣∣

|(2/π)K (r)− Ek (r)|
= ∞ > 1, (23)

for k = 1, 2, 3, the absolute errors approximating for K (r) by Ek (r) (k = 1, 2, 3) are greater (less) than Lq0 (r
′)

near r = 0 (r = 1). These show that the bound Lq0 (r
′) for K (r) is much more accurate near r = 0 than those

given in Equations (5)–(7). It is weaker than the latter three bounds near r = 1.

Remark 5. Let Ek (r) (k = 4, 5, 6) denote the upper bound in (8), lower bound in (9) and lower bound in (10),
respectively. Similarly, the relations in Equations (22) and (23) also hold for k = 4, 5, 6. We conclude that the
bound Lq0 (r

′) for K (r) is much more accurate near r = 0 than Ek (r) (k = 4, 5, 6), but weaker than Ek (r)
(k = 4, 5, 6) near r = 1.

Let a, b > 0 with a 6= b. The Gaussian arithmetic-geometric mean (AGM) is defined by

AGM (a, b) = lim
n→∞

an = lim
n→∞

bn,

where a0 = a, b0 = b, and for n ∈ N,

an+1 = A (an, bn) =
an + bn

2
, bn+1 = G (an, bn) =

√
anbn. (24)

An amazing connection between AGM (a, b) and complete elliptic integral of the first kind K (r)
is given by Gauss’ formula

AGM
(
1, r′

)
=

π

2K(r) (25)

(see [23]).
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Remark 6. Using the second Landen identity in Equation (2) and the Gauss identity in Equation (25),
some inequalities for the complete elliptic integral of the first kind K (r) can be transformed into corresponding
inequalities for AGM (1, r). For example, let r = (1− x) / (1 + x). Then

r′ =
2
√

x
1 + x

,
artanhr

r
=

1
2

1 + x
L (1, x)

, K (r) =
1 + x

2
K
(
x′
)

,

where x′ =
√

1− x2 and L (1, x) is the logarithmic mean of 1 and x. Thus, the double inequality for K (r) in
Equation (6) is changed into

1− 2
π

+
2
π

1
2

1 + x
L (1, x)

<
2
π

1 + x
2
K
(
x′
)
<

1
4
+

3
4

1
2

1 + x
L (1, x)

,

which, due to Equation (25), gives[
1/4

A (1, x)
+

3/4
L (1, x)

]−1
< AGM (1, x) <

[
1− 2/π

A (1, x)
+

2/π

L (1, x)

]−1
. (26)

Remark 7. Likewise, the double inequality in Equation (7) can be equivalently changed into

1
3

89A + 31G
23A + 17G

L < AGM <
1
2

πA + (5π − 12) G
A + (3π − 7) G

L (27)

for x ∈ (0, 1), where AGM ≡ AGM(1, x), A ≡ A(1, x), G ≡ G(1, x), L ≡ L(1, x).

More inequalities for AGM can be seen in [8,24–27].
In the same way, our Theorem 1 also implies an sharp upper bound for AGM.

Theorem 2. Let q ≥ 2. The inequality

AGM < 8A
10G2 + (7q− 4) AG + (3q− 6) A2

(16− 3q) G2 + (96 + 22q) AG + (61q− 112) A2

holds for all x ∈ (0, 1) if and only if q ≥ q0 = 192/61, where AGM ≡ AGM(1, x), A ≡ A(1, x),
G ≡ G(1, x). In particular, we have

AGM < A
21A2 + 110AG + 61G2

61A2 + 126AG + 5G2 (28)

Remark 8. Correspondingly, the upper bound for AGM given in Equation (28) has the same accuracy
near x = 1. Numeric computations show that this new upper bound is not comparable with ones given
in Equations (26) and (27), but is better than them near x = 1.

Remark 9. It was proven in [26] (Theorem 1) that

AGM (1, r) < S (1, r) =
1
5

1− r5/4

1− r1/4

for r ∈ (0, 1). Since

A
21A2 + 110AG + 61G2

61A2 + 126AG + 5G2 − S (1, r) = − 1
40

(
4
√

r− 1
)4 D

(
4
√

r
)

61A2 + 126AG + 5G2 < 0,

where
D (x) = 17x8 + 190x7 + 184x6 + 290x5 + 174x4 + 290x3 + 184x2 + 190x + 17,
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The upper bound for AGM given in Equation (28) is superior to S (1, r).
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