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Abstract: A Bayesian approach was developed, tested, and applied to model ordinal response
data in monotone non-decreasing processes with measurement errors. An inhomogeneous hidden
Markov model with continuous state-space was considered to incorporate measurement errors in the
categorical response at the same time that the non-decreasing patterns were kept. The computational
difficulties were avoided by including latent variables that allowed implementing an efficient Markov
chain Monte Carlo method. A simulation-based analysis was carried out to validate the approach,
whereas the proposed approach was applied to analyze aortic aneurysm progression data.

Keywords: Bayesian analysis; conditional independence; hidden Markov model; measurement error;
misclassification; monotone continuous process; ordinal response

1. Introduction

Statistical modeling depends on accurate data to provide reliable results in many contexts. This is
especially relevant in the case of medical diagnosis. Since the human factor is introduced in the
data collection processes, errors may occur. For example, when modeling a degenerative disease,
which should produce non-decreasing outcome data over time, it may happen that some data do
not satisfy this condition, mainly due to human factors. Therefore, additional parameters should
be included in the statistical approach to correct the bias yielded by the use of error-prone data.
Ignoring measurement errors may lead, in many cases, to non-optimal decisions (see, e.g., [1,2]).
For example, the wrong estimations can be obtained for the sensitivity and specificity of diagnostic
tests, which may lead to errors in positive and negative predictive values, implying diagnostic errors.
Thus, statistical models should incorporate correction mechanisms for measurement errors to produce
proper inference.

In the scientific literature, there are different approaches considering measurement errors in
different contexts, depending on the type of observed data. When a measurement error occurs in
a categorical variable, it is called misclassification. The work in [3] proposed statistical models for
phenomena with misclassified ordinal responses in the multivariate case. The work in [4] considered
covariates with missing data. The work in [5] addressed misclassified ordinal response data based
on a cross-sectional framework. For misclassified longitudinal data with categorical responses,
The works in [6,7] considered generalized linear mixed models, whereas [6,8,9] used approaches
based on generalized estimating equations.
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Multi-state transitional models and hidden Markov models (HMM) are useful for quantifying
disease staging. They can be used to examine measurement error and misclassification in longitudinal
studies where the outcome is continuous or categorical in both continuous and discrete time settings.
For binary misclassifications with non-monotone longitudinal responses, HMM have been considered
by several authors ( e.g., [10,11]). The works in [12–15] addressed the problem of misclassified
monotone longitudinal responses. The work in [16–18] proposed models for longitudinal data with
ordinal responses subject to misclassification in a non-continuous internal process.

HMM with random effects [19], also called mixed hidden Markov models (MHMM), have been
used to cope with misclassification in multilevel data [20] and longitudinal data [21]. The model
parameters of HMM and MHMM for true monotone responses may be estimated without the use of
external information on the misclassification parameters. Recently, the works in [22,23] developed
approaches based on HMM to model measurement errors in continuous and binary responses,
respectively, in the context of non-decreasing processes. In this paper, an HMM is proposed to address
measurement errors in the ordinal response in the context of monotone non-decreasing processes.
A Bayesian framework is presented with an efficient Markov chain Monte Carlo (MCMC) method that
solves the computational problem. The approach is applied to simulated data in order to evaluate its
performance and to the problem of grading aortic aneurysms based on misclassified data.

In the proposed approach, the true process by which the disease develops can be modeled
continuously, but this level of measurement is transformed into an ordinal scale for practical
purposes. Furthermore, considering that the process is non-decreasing, it is assumed that the disease
progressively worsens. Aortic aneurysm is an example of the type of disease that can be modeled with
this approach, since it is a located and permanent dilation that occurs in the aorta and is caused by a
progressive degeneration of its wall. It must be monitored because its natural evolution is growth until
breakage. Its diagnosis is based on the diameter of the aorta [24], but it is staged by severity, according
to successive ranges of aortic diameter in an ordinal scale (from Stages 1 to 4). Besides, this disease is
prone to measurement errors due to the ultrasound equipment and/or its management.

The rest of the paper is organized as follows. Section 2 includes the proposed approach considering
non-decreasing time processes with measurement error in the ordinal response and the conditional
independence assumptions. In Section 3, a Bayesian analysis is presented. Section 4 shows the model
performance with a simulation-based example, whereas the analysis of the aortic aneurysm data is
presented in Section 5. Finally, the conclusions are presented in Section 6.

2. The Model

The proposed approach considered a time-dependent process, which was continuous and
monotone non-decreasing. It addressed the measurement errors in the ordinal response, and it
took into account several conditional independence assumptions. The following subsections describe
the approach.

2.1. A Continuous Monotone Non-Decreasing Process

N response scores were considered, all of them recorded at time points tiki
, i = 1, . . . , N and

ki = 1, . . . , Ki. Without loss of generality and for the sake of simplicity, the subjects were assumed to
have the same number of time points, which is denoted by K. Nevertheless, this is only a notation
issue, and a different number of time points could be handled by the approach. Let Wik be the true
response for the ith subject at time tik, such as Wi1 ≤Wi2 ≤ · · · ≤Wi,K−1 ≤WiK, for all i. This means
that {Wik} is a monotone non-decreasing continuous process, representing the true gradual process,
which is difficult to score quantitatively, and it is not observable. Therefore, let {Y∗ik} be a process that
is recorded and subject to measurement error, which will be introduced in Section 2.2.

Now, consider two vectors of covariates associated with the ith subject: xi, which is a non
time-varying L-dimensional vector, and zik, which is a time-varying M-dimensional vector at time
point tik. Moreover, zi = (zi1, . . . , ziK)

′ represents the vector of covariates for the ith subject. Let ηik be
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the linear predictors for the ith subject at time tik, consisting of linear combinations of the covariates xi
and zik, i.e.:

ηik = x′iβ + z′ikγ, (1)

where β and γ are the L-dimensional and M-dimensional vectors of coefficients for the covariates xi
and zik, respectively. Then, W i = (Wi1, . . . , WiK)

′ is the unknown response vector that is related to a
set of the exogenous covariates xi and zik through the following equations (see [22]):

Wi1 ∼ N (ηi1, 1) (2)

Wik
∣∣Wi,k−1 = wi,k−1 ∼ N (ηik, 1) I [Wik ≥ wi,k−1] , k = 2, . . . , K, (3)

where I[·] denotes the indicator function. Since the Wik’s are unobserved and in order to avoid
identifiability problems, the variances of the normal distributions were set to one. Moreover,
a first-order Markov chain property for continuous processes was assumed, and the truncation allowed
the non-decreasing restriction to be satisfied.

2.2. Addressing Measurement Errors in Ordinal Response

The response variables Wik are latent variables assumed to be prone to measurement errors.
Let Y∗ik be the non-error-free ordinal response for subject i at time tik, where Y∗ik takes one of J categories.
Thus, Y∗i = (Y∗i1, . . . , Y∗iK)

′ denotes the observed score, which may have been measured with error,
and with either non-decreasing or decreasing patterns.

Let pikj = P[Y∗ik = j|xi, zik] denote the probability that the ith subject at time tik is classified in
the jth category for j = 1, . . . , J. For ordered response categories, the ordinal model can be defined
by cutpoints κ0, κ1, . . . , κJ−1, κJ , considering that pikj = Ψ

(
κj − ηik

)
−Ψ

(
κj−1 − ηik

)
, where Ψ(·) is a

cumulative distribution function (cdf) (see [25]). Let κ =
(
κ1, . . . , κJ−1

)′ be the vector of unknown
cutpoints with κ0 = −∞ and κJ = ∞. In order to avoid parameter identifiability problems, the intercept
term is excluded from the linear predictor ηik, or it is included, but with only J − 2 unknown cutpoints
κ = (κ2, . . . , κJ−1) where κ1 = 0.

Now, based on the data augmentation framework for the ordinal regression model proposed
by [25,26], let W∗ik be the non error-free continuous response for subject i at time tik having Ψ as the cdf.
These variables W∗ik are related to Y∗ik by:

Y∗ik = j if κj−1 < W∗ik ≤ κj, for j = 1, . . . , J. (4)

Measurement error is here assumed to occur on the latent continuous variable W∗ik, which has a
normal distribution conditional on Wik (see [1] and [2]), i.e.:

W∗ik|Wik = wik ∼ N(wik, σ2). (5)

Note that in the case that there is information about who examined each subject i at each time
k, then a different variance parameter could be used to estimate the degree of error made by each
examiner. Moreover, different cutpoints could be considered for each time point.

2.3. Conditional Independence Assumptions

The proposed full model is an inhomogeneous hidden Markov model with a continuous
state-space that is comprised of Equations (1)–(5). Figure 1 displays the probabilistic graphical
representation showing the dependencies among the variables in the proposed model. The usual
convention of graphical models is followed.
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Figure 1. Graphical representation of the proposed model. Square boxes represent observed variables,
and ovals represent latent variables. The direction of the arrows indicates conditional dependence.

The process is characterized by the following conditional independence assumptions
(see also [27]):

• ⊥⊥ 1≤i≤NY∗i
∣∣ W1, . . . , W N , σ2, i.e., the observed ordinal response vectors for each subject

are independent given the true unobserved continuous responses and the variance of the
measurement error.

• Y∗i ⊥⊥ W1, . . . , W i−1, W i+1, . . . , W N
∣∣ W i, σ2, ∀i, i.e., the distribution of the observed ordinal

response vector for a subject only depends on his/her true unobserved continuous response
vector and the variance of the measurement error.

• ⊥⊥ 1≤k≤KY∗ik
∣∣W i, σ2, ∀(i, k), i.e., the observed ordinal response for a subject at one time point is

independent of the one for the same subject at any other point of time, given the subject’s true
unobserved continuous response vector and the measurement error variance.

• Y∗ik ⊥⊥ Wi1, . . . , Wi,k−1, Wi,k+1, . . . , WiK
∣∣ Wik, σ2, i.e., the distribution of the observed ordinal

response in the kth examination only depends on the subject’s true unobserved continuous
response at the same examination and variance of the measurement error.

These conditional independence assumptions lead to distributions that are free of other model
parameters. In particular, they are independent of parameters β, γ, and κ, and they are also
independent of the observed variables x and z. Note that these assumptions are a natural extension of
the usual conditional independence assumptions of the HMM proposed by [28].

3. Bayesian Analysis

In this section, the Bayesian analysis is presented, including the MCMC algorithm used.

3.1. The Prior Distributions

Some components of the prior distribution were chosen to be conditionally conjugate distributions.
For the coefficients of the covariates in the linear predictor, normal distributions were considered, i.e.,
β ∼ NL(b, B) and γ ∼ NM(c, C). The inverse Gamma (IG) was taken for the prior distribution of the
variance parameter related to the measurement error model, namely σ2 ∼ IG(s, r). For the cutpoints κ,
a flat prior distribution was used, i.e., π(κ) ∝ 1. Note that all these distributions allow obtaining the
posterior distributions in an easy way.

3.2. Exploring the Posterior Distribution

Based on the independence assumptions defined in Section 2.3, the likelihood function has the
following form:



Mathematics 2020, 8, 622 5 of 12

L
(

W∗, W , β, γ, κ, σ2 | Y∗, x, z
)

(6)

=
N

∏
i=1

{[
K

∏
k=1

P (Y∗ik|W
∗
ik, κ)P

(
W∗ik|Wik, σ2

)]

× P (Wi1|xi, zi1, β, γ)

[
K

∏
k=2

P (Wik|Wi,k−1, xi, zik, β, γ)

]}
.

Therefore, from (6) and the prior distributions, the joint posterior distribution is given by:

π
(

W∗, W , β, γ, κ, σ2 | Y∗, x, z
)

(7)

∝ L
(

W∗, W , β, γ, κ, σ2 | Y∗, x, z
)

π (β)π (γ)π (κ)π
(

σ2
)

.

Note that the posterior inference considers the relationship between the covariates and the latent
variables jointly with the prior distributions. Figure 2 shows a graphical representation of the proposed
model. This is based on the doodle objects of WinBUGS [29]. It represents a direct acyclic graph,
where the nodes are the model variables and the arrows show dependencies between them. There
are two rectangular frames representing sets of identical repeating operations. One panel is indexed
by i and ranges from one to N (subjects), and the second panel is indexed by k and ranges from two
to K (time points). The variables Y∗ik, and xi, and zik are represented by rectangular boxes, and they
correspond to the response variables subject to measurement error and the exactly known independent
variables, respectively. The stochastic variables W∗ik and Wik (latent variables related to the responses)
are represented by oval nodes with the heads of the simple arrows pointing to them. The linear
predictors ηik depend on the variables and parameters from which their arrows start, and these are
represented by double-lined arrows pointing to them. Finally, the parameters β, γ, κ, and σ2 are
stochastic, with distributions depending on other hyperparameters.

Y ∗

i1
Y ∗

ik

W ∗

i1
W ∗

ik

Wi1 Wik

zi1 zikηi1 ηik

xi xi

k = 2, . . . , K

i = 1, . . . , N

β γ κ

σ2

Figure 2. Flowchart for the proposed model. It represents a direct acyclic graph, where the nodes are
the model variables and the arrows show dependencies between them. There are two rectangular
frames representing sets of identical repeating operations. Square boxes represent observed variables,
and ovals represent latent variables and unknown parameters.

Since (7) is not directly tractable for computing, a Markov chain Monte Carlo
method was used [30]. The proposed approach was implemented in JAGS software
(http://mcmc-jags.sourceforge.net/) through the R platform (https://cran.r-project.org/). Source

http://mcmc-jags.sourceforge.net/
https://cran.r-project.org/
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codes and instructions can be downloaded from the GitHub repository through the link
https://github.com/lizbethna/HMMprogressionOrdinal.git.

4. Simulation Example

A procedure was implemented to generate one hundred datasets. A set of measurements for
N = 100 subjects at K = 6 time points was simulated. The covariates xi and zik were generated from
uniform distributions, xil ∼ U(0, 1) and zikm ∼ U(0, 1), for i = 1, . . . , N, k = 1, . . . , K, l = 1, . . . , L, and
m = 1, . . . , M, and they were vectors of dimension L = 2 and M = 2, respectively, for subject i at time
point k. Linear predictors of Equation (1) were computed by using β = (−1, 1)′ and γ = (−1, 1)′.

The true responses wik were generated by Equations (2) and (3). Now, considering the conditional
independence assumptions and J = 4 categories, the responses subject to measurement error Y∗ik
were generated by Equation (4), by using the cutpoints κ = (0, 2, 4), and two values for the standard
deviation parameter of the measurement error were considered, assuming two different values for the
measurement errors that were committed, σ1 = 0.5 (for the first half of the subjects) and σ2 = 1 (for the
other subjects), defined by the latent continuous variable subject to measurement error w∗ik in (5).

Using the simulation-based procedure previously described, one-hundred datasets with
100 subjects each were generated. Table 1 shows the average transition rates between stages.

Table 1. Simulated data: rates of transitions between states.

States at time ti,k+1
State 1 State 2 State 3 State 4

States State 1 0.05402 0.10328 0.02266 0.00092
at State 2 0.02776 0.25406 0.16908 0.01118

time State 3 0.00302 0.06454 0.21316 0.03912
tik State 4 0.00006 0.00300 0.01928 0.01486

In order to assess the model generalization performance, a cross-validation was considered,
splitting datasets into training (75% of the subjects) and testing subsets. Using the training data,
the model parameters were estimated, and using the testing data, the classification errors were
computed. This was performed for all simulated datasets, and then, the results were averaged.

For the prior distributions, the following were considered: β ∼ NL(0, diag(10,000)), γ ∼
NM(0, diag(10,000)), and σ2 ∼ IG(0.001, 0.001). Now, in order to obtain the convergence of the
MCMC algorithm, twenty-thousand iterations were considered, with a burn-in of 5000. For each chain,
a thinning period of 10 generated values was considered, resulting in a reduced chain of length 2000.
The convergence analysis was performed by using the BOA package [31].

After applying the MCMC algorithm with the previous specifications, the posterior distribution
was estimated. Table 2 presents the means and standard deviations of the posterior estimates of the
regression coefficients and variance parameters based on the 100 generated datasets.

Table 2. Simulated data: means and standard deviations (SD) of the posterior estimates of the model
parameters based on the 100 generated datasets.

Parameter True Mean SD

β1 −1 -0.99178 0.30584
β2 1 1.07347 0.33454
γ1 −1 -0.98747 0.37299
γ2 1 0.96573 0.31908
κ1 0 0 —
κ2 2 2.03908 0.13337
κ3 4 4.11077 0.22114
σ1 0.5 0.51851 0.07393
σ2 1.0 1.03625 0.10296

https://github.com/lizbethna/HMMprogressionOrdinal.git
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Note that the estimation of the parameters was reasonably well recovered, showing small
biases. Moreover, models with measurement errors usually required external information on the
parameters to correct the error, which could be given via informative prior distributions. The proposed
vague informative prior distributions provided good results, since the model managed to capture the
measurement errors of the response variable properly.

In order to measure the goodness-of-fit of the approach, the mean absolute error (MAE) and root
mean squared error (RMSE) were considered. Table 3 shows the means and the standard deviations
(between brackets) of the goodness-of-fit criteria obtained with the specified cross-validation scheme.
The results showed greater errors between the observed responses and the estimated ones (w∗,ŵ) than
those between the non-decreasing generated responses and the estimated values (w,ŵ).

Table 3. Simulated data: means and standard deviations (between brackets) of two goodness-of-fit
criteria for the approach based on the 100 generated datasets.

Criteria (w∗, ŵ)
Training Testing

MAE 1.19077 (0.06181) 1.19914 (0.05929)
RMSE 1.38327 (0.06539) 1.39308 (0.06577)

Criteria (w, ŵ)
Training Testing

MAE 1.01441 (0.06107) 1.02015 (0.05341)
RMSE 1.13663 (0.06290) 1.14334 (0.05261)

Note that the parameters of the model could be estimated without using external information
about the measurement error parameters, i.e., the approach was able to obtain information from data
in order to estimate the parameters related to measurement errors.

5. Aortic Aneurysm Progression

An aortic aneurysm is an abnormal bulge that occurs in the wall of the aorta, which is greater
than 1.5 times its normal size [24]. Aortic aneurysms can occur anywhere in the aorta and may be
tube-shaped or rounded. If an aneurysm grows large, it can burst and cause dangerous bleeding or
even death. Therefore, once it has been detected, it is very important to perform a proper tracking.

The following analysis as based on longitudinal measurements of the grades of aortic aneurysms,
measured by ultrasound examination of the aorta diameter. The dataset aneur is available in the R
package msm [32]. In this dataset, the disease is staged by severity, according to successive ranges of
aortic diameter. The data frame contains 4337 rows. Each row corresponds to an ultrasound scan from
one of 838 men over 65 years of age. The variables are the following: ptnum, patient identification
number; age, recipient age at examination (years); diam, aortic diameter; stage, stage of aneurysm.
The stages represent successive degrees of aneurysm severity, as indicated by the aortic diameter: Stage
1, aneurysm free, less than 30 mm; Stage 2, mild aneurysm, 30–44 mm; Stage 3, moderate aneurysm,
45–54 mm; Stage 4, severe aneurysm, 55 mm and above. These are the stages that are often used to
determine the time to the next screen.

The data used in this paper were from 207 men who had more than one screen, specifically, who
had a stage greater than 1. The remaining subjects appeared in Stage 1 at the initial screen and were not
offered an additional screen, and no longitudinal study could be performed. Table 4 shows the relative
frequencies of the transitions between observed stages at consecutive pairs of times. The measures
were subject to error. It can be observed that the data presented decreasing transitions, i.e., decreasing
patterns, which were not possible since the disease has a degenerative nature. The measurement errors
could be due to the ultrasonography scanners or the screening process.
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Table 4. Aneurysm data: relative frequencies of transitions between stages of aortic diameter for the
observed data.

Relative Stages at time ti,k+1
Frequencies Stage 1 Stage 2 Stage 3 Stage 4

Stages Stage 1 0.1216 0.1778 0.0165 0.0230
at Stage 2 0.0442 0.2847 0.0442 0.0009

time Stage 3 0.0018 0.0165 0.1465 0.0294
tik Stage 4 0 0 0.0165 0.0755

Prior information was not available for the model parameters; therefore, vague information
distributions were considered. Specifically, β ∼ N(0, 10, 000), and σ2

y ∼ IG(0.01, 0.01). A total of
50,000 iterations were performed with 20,000 burn-in iterations with a thinning factor of 10. The BOA
package [31] was used to assess the chain convergence. The JAGS code under the R platform was
run on a computer with a 2.5GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 RAM memory.
The computation time was 3.92 min.

The proposed approach provided information about the progression process through the
regression parameter β and about the degree of error made through the standard deviation parameter
σ. Table 5 presents a summary of the estimated posterior values of the regression coefficients associated
with the time, the cutpoints of the ordinal categories, and the variances of the measurement errors.
This summary includes their corresponding means, medians, standard deviations, and 2.5% and
97.5% quantiles.

Table 5. Aneurysm data: estimated posterior means, medians, standard deviations (SD), and 2.5% and
97.5% percentiles.

Parameter Mean Median SD 2.5% 97.5%

β −0.1026 −0.1020 0.0111 −0.1256 −0.0828
κ1 0 0 — — —
κ2 1.2755 1.2754 0.0727 1.1312 1.4141
κ3 2.1168 2.1156 0.1093 1.8980 2.3150
σ2

1 0.3372 0.3313 0.0666 0.2230 0.4824
σ2

2 0.0895 0.0880 0.0191 0.0566 0.1309
σ2

3 0.0791 0.0771 0.0189 0.0480 0.1217
σ2

4 0.0676 0.0581 0.0415 0.0158 0.1717

Considering the estimations obtained from the model for all the subjects, the relative frequencies
of transitions between stages of the aortic diameter are presented in Table 6. It can be observed how
decreasing patterns did not appear, and only one stage at a time could be increased.

Table 6. Aneurysm data: relative frequencies of transitions between stages of the aortic diameter
obtained with the proposed model for all the subjects.

Relative Stages at time ti,k+1
Frequencies Stage 1 Stage 2 Stage 3 Stage 4

Stages Stage 1 0 0.1907 0 0
at Stage 2 0 0.7290 0.0184 0

time Stage 3 0 0 0.0589 0.0009
tik Stage 4 0 0 0 0.0018

Figure 3 shows the observed and estimated trajectories for six subjects with measurement errors.
The estimated dots represent the mean of the estimated true responses with non-decreasing patterns
ŵik. The corrections performed seem to be in agreement with the dynamic progression of the disease.
The observed and estimated stages for these subjects are presented in Table 7.
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Figure 3. Aneurysm data: observed profiles and corrections for six subjects with measurement errors.

Table 7. Aneurysm data: observed and estimated stages for six subjects.

Subject Age 60.0 65.0 66.1 67.1 68.0 70.1 72.1 73.1
690 Observed 1 2 1 1 1 2 1 2

Estimated 1 2 2 2 2 2 2 2

Subject Age 60.0 70.0 71.1 72.1 73.2 74.2 75.2 75.4 75.7 75.9 76.1 76.4 76.7 76.9 77.1 77.4 77.6 77.8
703 Observed 1 2 2 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3

Estimated 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

Subject Age 60.0 67.3 68.3 69.3 70.3 70.5 70.5 70.8 71.0 71.3 71.5 71.8 72.1 72.1 72.1
705 Observed 1 2 2 2 2 3 2 2 3 1 3 3 4 4 4

Estimated 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3

Subject Age 60.0 68.6 68.8 69.0 69.3 69.5 69.6 69.8 70.8 71.0 71.1 71.4 71.5 71.7 71.9 72.3 72.5 72.6
745 Observed 1 2 2 2 2 2 2 2 2 3 2 2 3 4 3 3 3 3

Estimated 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

Subject Age 60.0 72.5 73.5 74.9 75.0 76.1 76.1 76.3 76.6 76.7 76.8 77.0 77.3 77.5 77.9
746 Observed 1 2 1 2 2 1 2 2 1 3 3 3 3 3 3

Estimated 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3

Subject Age 60.0 72.5 73.5 74.0 75.0 75.3 75.4 75.7 75.9 76.0 76.3 76.7 76.8 77.0 77.3 77.6 77.9 78.1 78.4
837 Observed 1 2 2 2 3 3 2 2 2 3 2 3 3 3 3 3 3 3 3

Estimated 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
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A cross-validation scheme was considered to assess the model generalization performance.
The 207 subjects were randomly divided into a training set with 75% (155 subjects) and a testing
set with 25% (52 subjects). The approach was applied to the training set of subjects, and the model
parameters were estimated, then applied to the subjects in the testing set, so that the estimated
measurements and stages could be calculated. This was repeated 100 times, and the results were
averaged. Table 8 shows the relative frequencies of transitions under this cross-validation scheme.

Table 8. Aneurysm data: relative frequencies of transitions between stages of aortic diameter with
cross-validation.

Relative Stages at Time ti,k+1
Frequencies Stage 1 Stage 2 Stage 3 Stage 4

Stages Stage 1 0.0688 0.0889 0 0
at Stage 2 0 0.7723 0.0166 0

time Stage 3 0 0 0.0517 0.0009
tik Stage 4 0 0 0 0.0008

This cross-validation allowed predicting the fit of the proposed model to hypothetical test data.
These predictions only showed non-decreasing patterns, i.e.: subjects in Stage 1 remained in Stage 1 or
went to Stage 2; subjects in Stage 2 remained in Stage 2 or went to Stage 3; subjects in Stage 3 remained
in Stage 3 or went to Stage 4; and finally, subjects in Stage 4 remained in Stage 4. It can also be observed
that from one time to another, no more than one stage was increased. Both non-decreasing patterns
and increasing one stage at a time were compatible with the degenerative nature of this disease.

Using all the subjects as training data may have resulted in model overfitting, which is the effect
of overtraining a learning algorithm with certain data. Cross-validation provides a better indication of
how well a model will perform on unseen data. In this case, the results with cross-validation presented
in Table 8 supported those obtained in Table 6, since the results were close. In order to quantify this
closeness, the average of the differences in the absolute value between the elements in both matrices
was considered. This average was 0.0139, which in percentage terms represented 1.39%.

6. Conclusions

An inhomogeneous continuous hidden Markov model was defined, developed, and implemented
to address measurement errors in ordinal response and monotonic non-decreasing processes.
An efficient MCMC algorithm was derived and tested on a simulation-based experiment and applied
to aortic aneurysm data. Although the approach was motivated by the aortic aneurysm progression
problem, it is applicable to any monotonic non-decreasing process whose ordinal response variable is
subject to measurement errors.

The predominant pathologic feature of abdominal aortic aneurysm is elastin destruction,
which leads to an abnormal bulge in the aorta walls. Errors are produced when measuring the
diameter of the aorta in the affected area. Some of the measurements show decreasing patterns through
time, which are not possible since this disease has a degenerative nature. The proposed approach
provided information about the progression process through the regression parameters and about the
degree of error made through the standard deviation parameters. The corrections performed seemed
to be in agreement with the dynamic progression of the disease.

As a future research line, the approach could be modified to consider other experimental
designs such as considering that several examiners recorded the responses or using different ways of
measuring. This would imply the inclusion of new parameters in the model, which slightly change
the implementation. Moreover, different specifications of the regression parameters or the variance
parameters could also be considered to build heterogeneity models. In addition, the proposed model
could also be modified to handle monotonic non-increasing responses.
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