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Abstract: A parameter-free optimization technique is applied in Quasi-Newton’s method for solving
unconstrained multiobjective optimization problems. The components of the Hessian matrix are
constructed using q-derivative, which is positive definite at every iteration. The step-length is
computed by an Armijo-like rule which is responsible to escape the point from local minimum to
global minimum at every iteration due to q-derivative. Further, the rate of convergence is proved as a
superlinear in a local neighborhood of a minimum point based on q-derivative. Finally, the numerical
experiments show better performance.
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1. Introduction

Multiobjective optimization is the method of optimizing two or more real valued objective
functions at the same time. There is no ideal minimizer to minimize all objective functions at
once, thus the optimality concept is replaced by the idea of Pareto optimality/efficiency. A point is
called Pareto optimal or efficient if there does not exist an alternative point with the equivalent or
smaller objective function values, such that there is a decrease in at least one objective function value.
In many applications such as engineering [1,2], economic theory [3], management science [4], machine
learning [5,6], and space exploration [7], etc., several multiobjective optimization techniques are used
to make the desired decision. One of the basic approaches is the weighting method [8], where a single
objective optimization problem is created by the weighting of several objective functions. Another
approach is the ε-constraint method [9], where we minimize only the chosen objective function and
keep other objectives as constraints. Some multiobjective algorithms require a lexicographic method,
where all objective functions are optimized in their order of priority [10,11]. First, the most preferred
function is optimized, then that objective function is transformed into a constraint and a second priority
objective function is optimized. This approach is repeated until the last objective function is optimized.
The user needs to choose the sequence of objectives. Two distinct lexicographic optimizations with
distinct sequences of objective functions do not produce the same solution. The disadvantages of
such approaches are the choice of weights, constraints, and importance of the functions, respectively,
which are not known in advance and they have to be specified from the beginning. Some other
techniques [12–14] that do not need any prior information are developed for solving unconstrained
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multiobjective optimization problems (UMOP) with at most linear convergence rate. Other methods
like heuristic approaches or evolutionary approaches [15] provide an approximate Pareto front but do
not guarantee the convergence property.

Newton’s method [16] that solves the single-objective optimization problems is extended for
solving (UMOP), which is based on an a priori parameter-free optimization method [17]. In this
case, the objective functions are twice continuously differentiable, no other parameter or ordering of
the functions is needed, and each objective function is replaced with a quadratic model. The rate of
convergence is observed as superlinear, and it is quadratic if the second-order derivative is Lipschitz
continuous. Newton’s method is also studied under the assumptions of Banach and Hilbert spaces for
finding the efficient solutions of (UMOP) [18]. A new type of Quasi-Newton algorithm is developed to
solve the nonsmooth multiobjective optimization problems, where the directional derivative of every
objective function exists [19].

A necessary condition for finding the vector critical point of (UMOP) is introduced in the steepest
descent algorithm [12], where neither weighting factors nor ordering information for the different
objective functions are assumed to be known. The relationship between critical points and efficient
points is discussed in [17]. If the domain of (UMOP) is a convex set and the objective functions
are convex component-wise then every critical point is the weak efficient point, and if the objective
functions are strictly convex component-wise, then every critical point is the efficient point. The new
classes of vector invex and pseudoinvex functions for (UMOP) are also characterized in terms of
critical points and (weak) efficient points [20] by using Fritz John (FJ) optimality conditions and
Karush–Kuhn–Tucker (KKT) conditions. Our focus is on Newton’s direction for a standard scalar
optimization problem which is implicitly induced by weighting the several objective functions.
The weighting values are a priori unknown and non-negative KKT multipliers, that is, they are
not required to fix in advance. Every new point generated by the Newton algorithm [17] initiates such
weights in the form of KKT multipliers.

Quantum calculus or q-calculus is also called calculus without limits. The q-analogues of
mathematical objects can be again recaptured as q→ 1. The history of quantum calculus can be traced
back to Euler (1707–1783), who first proposed the quantum q in Newton’s infinite series. In recent
years, many researchers have shown considerable interest in examining and exploring the quantum
calculus. Therefore, it emerges as an interdisciplinary subject. Of course, the quantum analysis is very
useful in numerous fields such as in signal processing [21], operator theory [22], fractional integral and
derivatives [23], integral inequalities [24], variational calculus [25], transform calculus [26], sampling
theory [27], etc. The quantum calculus is seen as the bridge between mathematics and physics. To study
some recent developments in quantum calculus, interested researches should refer to [28–31].

The q-calculus was first studied in the area of optimization [32], where the q-gradient is used in
steepest descent method to optimize objective functions. Further, global optimum was searched using
q-steepest descent method and q-conjugate gradient method where a descent scheme is presented
using q-calculus with the stochastic approach which does not focus on the order of convergence
of the scheme [33]. The q-calculus is applied in Newton’s method to solve unconstrained single
objective optimization [34]. Further, this idea is extended to solve (UMOP) within the context of the
q-calculus [35].

In this paper, we present the q-calculus in Quasi-Newton’s method for solving (UMOP).
We approximate the second q-derivative matrices instead of evaluating them. Using q-calculus,
we present the convergence rate is superlinear.

The rest of this paper is organized as follows. Section 2 recalls the problem, notation,
and preliminaries. Section 3 derives a q-Quasi-Newton direction search method solved by (KKT)
conditions. Section 4 establishes the algorithms for convergence analysis. The numerical results are
given in Section 5 and the conclusion is in the last section.
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2. Preliminaries

Denote R as the set of real numbers, N as the set of positive integers, and R+ or (R−) as the set of
strictly positive or (negative) real numbers. If a function is continuous on any interval excluding zero,
then the function is called continuous q-differentiable. For a function f : R→ R, the q-derivative of
f [36] denoted as Dq,x f , is given as

Dq,x f (x) =


f (x)− f (qx)
(1−q)x , x 6= 0, q 6= 1

f ′(x), x = 0.
(1)

Suppose f : Rn → R, whose partial derivatives exist. For x ∈ Rn, consider an operator εq,i on f as

(εq,i) f (x) = f (x1, x2, . . . , qxi, xi+1, . . . , xn). (2)

The q-partial derivative of f at x with respect to xi, indicated by Dq,xi f , is [23]:

Dq,xi f (x) =


f (x)−(εq,i f )(x)

(1−q)xi
, xi 6= 0, q 6= 1,

∂ f
∂xi

, xi = 0.
(3)

We are interested to solve the following (UMOP):

minimize F(x) (4)

subject to x ∈ X,

where X ⊆ Rn is a feasible region and F : X → Rm. Note that the function F = ( f1, f2, . . . , fm) is a
vector function whose components are real valued functions such as f j : X → R, where j = 1, . . . , m.
In general, n and m are independent. For x, y ∈ Rn, we present the vector inequalities as:

x = y ⇐⇒ xi = yi; ∀ i = 1, . . . , n,

x = y ⇐⇒ xi ≥ yi ∀ i = 1, . . . , n,

x ≥ y ⇐⇒ xi ≥ yi and x 6= y,

x > y ⇐⇒ xi > yi ∀ i = 1, . . . , n.

A point x∗ ∈ X is called Pareto optimal point such that there is no any point x ∈ X, for which
F(x) ≤ F(x∗), and F(x) 6= F(x∗). A point x∗ ∈ X is called weakly Pareto optimal point if there is
no x ∈ X for which F(x) < F(x∗). Similarly, a point x∗ ∈ X is a local Pareto optimal if there exists a
neighborhood Y ⊆ X of x∗ such that the point x∗ is a Pareto optima for F restricted on Y. Similarly,
a point x∗ is a local weak Pareto optima if there exists a neighborhood Y ⊆ X of x∗ such that the point
x∗ is a weak Pareto optimal for F restricted on Y. The matrix JF(x) ∈ Rm×n is the Jacobian matrix of f j
at x, i.e., the j-th row of JF(x) is ∇q f j(x) (q-gradient) for all j = 1, . . . , m. Let W f j(x) be the Hessian
matrix of f j at x for all j = 1, . . . , m. Note that every Pareto optimal point is a weakly Pareto optimal
point [37]. The directional derivative of f j at x in the descent direction dq is given as:

f ′j (x, dq) = lim
α→0

f j(x + αdq)− f j(x)
α

(5)

The necessary condition to get the critical point for multiobjective optimization problems is given
in [17]. For any x ∈ Rn, ‖x‖ denotes the Euclidean norm in Rn. Let K(x0, r) = {x : ‖x− x0‖ ≤ r} with
a center x0 ∈ Rn and radius r ∈ R+. Norm of the matrix A ∈ Rn×n is ‖A‖ = maxx∈Rn×n

‖Ax‖
‖x‖ , x 6= 0.

The following proposition indicates that when f (x) is a linear function, then the q-gradient is similar
to the classical gradient.
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Proposition 1 ([33]). If f (x) = a + pTx, where a ∈ R and p ∈ Rn, then for any x ∈ Rn, and q ∈ (0, 1),
we have ∇q f (x) = ∇ f (x) = p.

All the quasi-Newton methods approximate the Hessian of function f as Wk ∈ Rn×n, and update
the new formula based on previous approximation [38]. Line search methods are imperative methods
for (UMOP) in which a search direction is first computed and then along this direction a step-length is
chosen. The entire process is an iterative.

3. The q-Quasi-Newton Direction for Multiobjective

The most well-known quasi-Newton method for single objective function is the BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) method. This is a line search method along with a descent direction dk

q
within the context of q-derivative, given as:

dk
q = −(Wk)−1∇q f (xk), (6)

where f is a continuously q-differentiable function, and Wk ∈ Rn×n is a positive definite matrix that is
updated at every iteration. The new point is:

xk+1 = xk + αkdk
q. (7)

In the case of the Steepest Descent method and Newton’s method, Wk is taken to be an Identity
matrix and exact Hessian of f , respectively. The quasi-Newton BFGS scheme generates the next
Wk+1 as

Wk+1 = Wk − Wksk(sk)TWk

(sk)TWksk +
yk(yk)T

(sk)Tyk , (8)

where sk = xk+1 − xk = αkdk
q, and yk = ∇q f (xk+1)−∇q f (xk). In Newton’s method, second-order

differentiability of the function is required. While calculating Wk, we use q-derivative which behaves
like a Hessian matrix of f (x). Wk+1 may not be a positive definite, which can be modified to be a
positive definite through the symmetric indefinite factorization [39]. The q-Quasi-Newton’s direction
dq(x) is an optimal solution of the following modified problem [40] as:

min
dq∈Rn

max
j=1,...,m

∇q f j(x)dq +
1
2

dT
q Wj(x)Tdq, (9)

where Wj(x) is computed as (8). The solution and optimal value of (9) are:

ψ(x) = min
dq∈Rn

max
j=1,...,m

∇q f j(x)Tdq +
1
2

dT
q Wj(x)dq, (10)

and

dq(x) = arg min
dq∈Rn

max
j=1,...,m

∇ f j(x)Tdq +
1
2

dT
q Wj(x)dq. (11)

The problem (9) becomes a convex quadratic optimization problem (CQOP) as follows:

minimize h(t, dq) = t,

subject to ∇q f j(x)Tdq +
1
2

dT
q Wj(x)dq − t ≤ 0, j = 1, . . . , m, (12)

where (t, dq) ∈ R×Rn.
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The Lagrangian function of (CQOP) is:

L((t, dq), λ) = t +
m

∑
j=1

λj

(
∇q f j(x)Tdq +

1
2

dT
q Wj(x)dq − t

)
. (13)

For λ = (λ1, λ2, . . . , λm)T , we obtain the following (KKT) conditions [40]:

m

∑
j=1

λj
(
∇q f j(x) + Wj(x)dq

)
= 0, (14)

λj ≥ 0, j = 1, . . . , m, (15)
m

∑
j=1

λj = 1, (16)

∇q f j(x)Tdq +
1
2

dT
q Wj(x)dq ≤ t, j = 1, . . . , m, (17)

λj

(
∇q f j(x)Tdq +

1
2

dT
q Wj(x)dq − t

)
= 0, j = 1, . . . , m. (18)

The solution (dq(x), ψ(x)) is unique, and set λj = λj(x) for all j = 1, . . . , m with dq = dq(x) and
t = ψ(x) for satisfying (14)–(18). From (14), we obtain

dq(x) = −
( m

∑
j=1

λj(x)Wj(x)
)−1 m

∑
j=1

λj(x)∇q f j(x). (19)

This is a so-called q-Quasi-Newton’s direction for solving (UMOP). We present the basic result
for relating the stationary condition at a given point x to its q-Quasi-Newton direction dq(x) and
function ψ.

Proposition 1. Let ψ : X → R and dq : X → Rn be given by (10) and (11), respectively, and Wj(x) ≥ 0 for
all x ∈ X. Then,

1. ψ(x) ≤ 0 for all x ∈ X.
2. The conditions below are equivalent:

(a) The point x is non stationary.
(b) dq(x) 6= 0
(c) ψ(x) < 0.
(d) dq(x) is a descent direction.

3. The function ψ is continuous.

Proof. Since dq = 0, then from (10), we have

ψ(x) ≤ min
dq∈Rn

max
j=1,...,m

∇q f j(x)T0 +
1
2

dT
q Wj(x)0 = 0,

thus ψ(x) ≤ 0. It means that JF(x∗)dq(x) ∈ Rm
−. Thus, the given point x ∈ Rn is non-stationary. Since

Wj(x) is positive definite, and from (10) and (11), we have

∇q f j(x)Tdq(x) < ∇ f j(x)Tdq(x) +
1
2

dq(x)TWj(x)Tdq(x) = ψ(x) ≤ 0.
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Since ψ(x) is the optimal value of (CQOP), and it is negative, thus solution of (CQOP) can never
be dq(x) = 0. It is sufficient to show that the continuity [41] of ψ in set Y ⊂ X. Since ψ(x) ≤ 0, then

∇q f j(x)Tdq(x) ≤ −1
2

dq(x)TWj(x)dq(x), (20)

for all j = 1, . . . , m, and Wj(x), where j = 1 . . . , m are positive definite for all x ∈ Y. Thus, the
eigenvalues of Hessian matrices Wj(x), where j = 1, . . . , m are uniformly bounded away from zero on
Y so there exists R, S ∈ R+ such that

R = max
x∈Y,j=1,...,m

‖∇q f j(x)‖, (21)

and

S = min
x∈Y,‖e‖=1,j=1,...,m

eTWj(x)e. (22)

From (20) and using Cauchy–Schwarz inequality, we get

‖∇q f j(x)‖‖dq(x)‖ ≤ 1
2

S‖dq(x)‖2 ≤ R‖dq(x)‖,

that is,

dq(x) ≤ 2
R
S

,

for all x ∈ Y, that is, Newton’s direction is uniformly bounded on Y. We present the family of function
{ℵx,j}x∈Y,j=1,...,m, where

ℵx,j : Y → R,

and
z→ ∇q f (z)Tdq(x) +

1
2

dq(x)TWj(x)dq(x).

We shall prove that this family of functions is uniformly equicontinuous. For small value εz ∈ R+

there exists δz ∈ R+, and for y ∈ K(z, δz), we have

‖Wj(y)−∇2
q f j(z)‖ <

εz

2
,

and

‖∇2
q f j(y)−∇2

q f j(z)‖ <
εz

2
,

for all j = 1, . . . , m. because of q-continuity of Hessian matrices, the second inequality is true. Since Y
is compact space, then there exists a finite sub-cover.

ψx,j(z) = ∇q f j(z)Tdq(x) +
1
2

dq(x)TWj(x)dq(x),

that is

ψx,j(z) = ∇q f j(z)Tdq(x) +
1
2

dq(x)T∇2 f j(z)dq(x) +
1
2

dq(x)T(Wj(z)−∇2
q f j(z)dq(x)).
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To show the q-continuous of last term, set y1, y2 ∈ Y such that ‖y1 − y2‖ < δ for small δ ∈ R+, then

|1
2

dq(x)TWj(y1)−∇2
q f j(y1)dq(x)− 1

2
dq(x)TWj(y2)−∇2

q f j(y2)dq(x)|

≤ 1
2
‖dq(x)‖2(‖Bj(y1)−∇2 f j(z1))‖+ ‖∇2

q f j(z2)

−∇2
q f j(z1 + ‖Bj(y2)−∇2 f j(z21))‖+ ‖∇2

q f j(z2)−∇2
q f j(z21‖)

≤ 1
2
‖dq(x)‖2(εz1 + εz2).

ψx,j is uniformly continuous [40] for all x ∈ Y and for all j = 1, . . . , m. There exists δ ∈ R+ such that
for all y, z ∈ Y, ‖y− z‖ < δ implies |ψ(y)− ψ(z)| < ε for all x ∈ Y. Thus, ‖y− z‖ < δ.

ψ(z) ≤ max
j=1,...,m

∇ f j(z)Tdq(y) +
1
2

dq(y)TWj(z)dq(y) = φy(z)

≤ φy(y) + |φy(z)− φy(y)| < ψ(y) + ε.

Thus, ψ(z)− ψ(y) < ε. If we interchange y and z, then |ψ(z)− ψ(y)| < ε. It proves the continuity
of ψ.

The following modified lemma is due to [17,42].

Lemma 1. Let F : Rn → Rm be continuously q-differentiable. If x∗ ∈ X is not a critical point for∇q(x)dq < 0,
where dq ∈ Rn, σ ∈ (0, 1], and ε > 0. Then,

x + αdq(x) ∈ X and F(x + αdq(x)) < F(x) + αγψ(x),

for any α ∈ (0, σ] and γ ∈ (0, ε].

Proof. Since x∗ is not a critical point, then ψ(x) < 0. Let r > 0 such that B(x, r) ⊂ X and α ∈ (0, σ].
Therefore,

F(x + αdq(x))− F(x) = α∇qF(x)Tdq(x) + oj(αdq(x), x)

Since ∇q(x)dq(x) < ψ(x), for α ∈ (0, σ], then

F(x + αdq(x))− F(x) = αγψ(x) + α(1− σ)ψ(x) + oj(αdq(x), x).

The last term in the right-hand side of the above equation is non-positive because ψ(x) ≤ ψ(x∗)
2 < 0,

for α ∈ [0, σ].

4. Algorithm and Convergence Analysis

We first present the following Algorithm 1 [43] to find the gradient of the function using q-calculus.
The higher-order q-derivative of f can be found in [44].

Algorithm 1 q-Gradient Algorithm

1: Input q ∈ (0, 1), f (x), x ∈ R, z.
2: if x = 0 then

3: Set g← lim
(

f (z)− f (q∗z)
(z−q∗z) , z, 0

)
.

4: else
5: Set g← f (x)− f (q∗x)

(x−q∗x) .

6: Print ∇q f (x)← g.
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Example 1. Given that f : R2 → R defined by f (x1, x2) = x2
2 + 3x3

1. Then ∇q f (x) =

[
3x2

1(1 + q + q2)

x2(1 + q)

]
.

We are now prepared to write the unconstrained q-Quasi-Newton’s Algorithm 2 for solving
(UMOP). At each step, we solve the (CQOP) to find the q-Quasi-Newton direction. Then, we obtain
the step length using the Armijo line search method. In every iteration, the new point and Hessian
approximation are generated based on historical values.

Algorithm 2 q-Quasi-Newton’s Algorithm for Unconstrained Multiobjective (q-QNUM)

1: Choose q ∈ (0, 1), x0 ∈ X, symmetric definite matrix W0 ∈ Rn×n, c ∈ (0, 1), and a small tolerance
value ε > 0.

2: for k=0,1,2,. . . do
3: Solve (CQOP).
4: Compute dk

q and ψk.

5: if ψk > −ε then
6: Stop.
7: else
8: Choose αk as the α ∈ (0, 1] such that xk + αdk

q ∈ X and F(xk + αdk
q) ≤ F(xk) + cαψk.

9: Update xk+1 ← xk + αkdk
q.

10: Update Wk+1
j , where j = 1, . . . , m using (8).

We now finally start to show that every sequence produced by the proposed method converges to
a weakly efficient point. It does not matter how poorly the initial point is guessed. We assume that the
method does not stop, and produces an infinite sequence of iterates. We now present the modified
sufficient conditions for the superlinear convergence [17,40] within the context of q-calculus.

Theorem 1. Let {xk} be a sequence generated by (q-QNUM), and Y ⊂ X be a convex set. Also, γ ∈ (0, 1)
and r, a, b, δ, ε > 0, and

(a) aI ≤Wj(x) ≤ bI for all x ∈ Y, j = 1, . . . , m,
(b) ‖∇2

q f j(y)−∇2
q f j(x), ‖ < ε

2 for all x, y ∈ Y with ‖y− x‖ ∈ δ,
(c) ‖(Wk

j −∇2
q f j(xk))(y− xk)‖ < ε

2‖y− xk‖ for all k ≥ k0, y ∈ Y, j = 1, . . . , m,
(d) ε

a ≤ 1− c,
(e) B(x0, r) ∈ Y,
(f) ‖dq(x0)‖ < min{δ, r(1− ε

a )}.

Then, for all k ≥ k0, we have that

1. ‖xk − xk0‖ ≤ ‖dq(x0)‖ 1−( ε
a )

k−k0

1−( ε
a )

2. αk = 1,
3. ‖dq(xk)‖ ≤ ‖dq(xk0)‖( ε

a )
k−k0 ,

4. ‖dq(xk+1)‖ ≤ ‖dq(xk)‖ ε
a .

Then, the sequence {xk} converges to local Pareto points x∗ ∈ Rm, and the convergence rate is superlinear.

Proof. From part 1, part 3 of this theorem and triangle inequality,

‖xk + dq(xk)− x0‖ ≤
1−

(
ε
a
)k+1

1− ε
a
‖dq(xk0)‖.

From (d) and (f), we follow xk, xk + dq(xk) ∈ K(xk0 , r) and xk + dq(xk)− xk < δ. We also have

f j(xk + dq(xk)) ≤ f j(xk) + dq(xk)∇q f (xk) +
1
2

dq(xk)(∇2
q f )(xk) +

1
2
‖dq(xk)‖2,



Mathematics 2020, 8, 616 9 of 14

that is,

f j(xk + dq(xk)) ≤ f j(xk) + ψ(xk) +
ε

2
‖dq(xk)‖2

= f j(xk) + γψ(xk) + (1− γ)ψ(xk) +
ε

2
‖dq(xk)‖2.

Since ψ ≤ 0 and (1− γ)ψ(xk) + ε
2‖dq(xk)‖2 ≤ (ε− a(1− γ))

‖dq(xk)‖2

2 ≤ 0, we get

f j(xk + dq(xk)) ≤ f j(xk) + γψ(xk),

for all j = 1, . . . , m. The Armijo conditions holds for αk = 1. Part 1 of this theorem holds. We now
set xk, xk+1 ∈ K(xk0 , r), and ‖xk+1 − xk‖ < δ. Thus, we get xk+1 = xk + dq(xk). We now define
v(xk+1) = ∑m

j=1 λk
j∇q f j(xk+1). Therefore,

|ψ(xk+1)| ≤ 1
2a
‖v(xk+1)‖2.

We now estimate ‖v(xk+1)‖. For x ∈ X, we define

Gk(x) :=
m

∑
j=1

λk
j f j(xk+1),

and

Hk =
m

∑
j=1

λk
j Wj(xk),

where λk
j ≥ 0, for all j = 1, . . . , m, are KKT multipliers. We obtain following:

∇qGk(x) =
m

∑
j=1

λk
j∇q f j(x),

and

∇2
qGk(x) =

m

∑
j=1

λk
j∇2

q f j(x).

Then, vk+1 = ∇qGk(xk+1). We get

dq(xk) = −(Hk)−1∇qGk(xk).

From assumptions (b) and (c) of this theorem,

‖∇2
qGk(y)−∇2

qGk(xk)‖ < ε

2
,

‖(Hk −∇2
qGk(xk))(y− xk)‖ < ε

2
‖y− xk‖

hold for all x, y ∈ Y with ‖y− x‖ < δ and k ≥ k0. We have

∇qGk(xk + dq(xk))− (∇qGk(xk) + Hkdq(xk))‖ < ε‖dq(xk)‖.

Since ∇qGk(xk) + Hkdq(xk) = 0, then

‖v(xk+1)‖ = ‖∇qGk(xk+1)‖ < ε‖dq(xk)‖,



Mathematics 2020, 8, 616 10 of 14

and

|ψk+1| ≤ 1
2a
‖v(xk+1)‖2 <

ε2

2a
‖dq(xk)‖2.

We have
a
2
‖dq(xk+1)‖2 <

ε2

2a
‖dq(xk)‖2.

Thus,
‖dq(xk+1)‖ < ε

a
‖dq(xk)‖

Thus, part 4 is proved. We finally prove superlinear convergence of {xk}. First we define

rk = ‖d0
q‖

ε
a

k−k0

1− ε
a

,

and
δk = ‖dk0

q ‖
( ε

a
)k−k0 .

From triangle inequality, assumptions (e), (f) and part 1, we have K(xk, rk) ⊂ K(xk0 , r) ⊂ V.
Choose any τ ∈ R+, and define

ε̄ = min{a τ

1 + 2τ
, ε}.

For k ≥ k0 inequalities

‖∇2
q f j(y)−∇2

q f j(x)‖ < ε̄

2

for all x, y ∈ K(xk, rk) with ‖y− x‖ < δk, and

‖Wj(xl)−∇2
q f j(xl)(y− xl)‖ < ε̄

2

for all y ∈ K(xk, rk) and l ≥ k holds both for j = 1, . . . , m. Assumptions (a)–(f) are satisfied for ε̄, rk, δk,
and xk instead of ε, r, δ, and x0, respectively. We have

‖xl − xk‖ ≤ ‖dq(xk)‖
1− ( ε̄

a )
l−k

1− ε̄
a

.

Let l → ∞ and we get ‖x∗ − xk‖ ≤ ‖dq(xk)‖ 1
1− ε̄

a
. Using the last inequality, and part 4, we have

‖x∗ − xk+1‖ ≤ ‖dq(xk+1)‖ 1
1− ε̄

a
≤ ‖dq(xk)‖

ε̄
a

1− ε̄
a

.

From above and triangle inequality, we have

‖x∗ − xk+1‖ ≥ ‖xk+1 − xk‖ − ‖x∗ − xk+1‖,

that is,

‖x∗ − xk+1‖ ≥ ‖dq(xk)‖ − ‖dk‖ ε̄

1− ε̄
a
= ‖dk

q‖
1− 2 ε̄

a
1− ε̄

a
. (23)

Since 1− 2 ε̄
a > 0, and 1− 2 ε̄

a > 0, then we get

‖x∗ − xk+1‖ ≤ τ‖x∗ − xk‖,

where τ ∈ R+ is chosen arbitrarily. Thus, the sequence {xk} converges superlinearly to x∗.



Mathematics 2020, 8, 616 11 of 14

5. Numerical Results

The proposed algorithm (q-QNUM), i.e., Algorithm 2, presented in Section 4 is implemented in
MATLAB (2017a) and tested on some test problems known from the literature. All tests were run under
the same conditions. The box constraints of the form lb ≤ x ≤ ub are used for each test problem. These
constraints are considered under the direction search problem (CQOP) such that the newly generated
point always lies in the same box, that is, lb ≤ x + dq ≤ ub holds. We use the stopping criteria at xk as:
ψ(xk) > −ε where ε ∈ R+. All test problems given in Table 1 are solved 100 times. The starting points
are randomly chosen from a uniform distribution between lb and ub. The first column in the given
table is the name of the test problem. We use the abbreviation of author’s names and number of the
problem in the corresponding paper. The second column indicates the source of the paper. The third
column is for lower bound and upper bound. We compare the results of (q-QNUM) with (QNMO)
of [40] in the form of a number of iterations (iter), number of objective functions evaluation (obj), and
number of gradient evaluations (grad), respectively. From Table 1, we can conclude that our algorithm
shows better performance.

Example 2. Find the approximate Pareto front using (q-QNUM) and (QNMO) for the given (UMOP) [45]:

Minimize f1(x1, x2) = (x1 − 1)2 + (x1 − x2)
2,

Minimize f2(x1, x2) = (x2 − 3)2 + (x1 − x2)
2,

where −3 ≤ x1, x2 ≤ 10.

The number of Pareto points generated due to (q-QNUM) with Algorithm 1 and (QNMO) is
shown in Figure 1. One can observe that the number of iterations as iter = 200 in (q-QNUM) and
iter = 525 in (QNMO) are responsible for generating the approximate Pareto front of above (UMOP).

Figure 1. Approximate Pareto Front of Example 1.
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Table 1. Numerical Results of Test Problems.

Problem Source [lb,ub] (q-QNUM) (QNMO)
iter obj grad iter obj grad

BK1 [46] [−5, 10] 200 200 200 200 200 200

MOP5 [46] [−30, 30] 141 965 612 333 518 479

MOP6 [46] [0, 1] 250 2177 1712 181 2008 2001

MOP7 [46] [−400, 400] 200 200 200 751 1061 1060

DG01 [47] [−10, 13] 175 724 724 164 890 890

IKK1 [47] [−50, 50] 170 170 170 253 254 253

SP1 [45] [−3, 2] 200 200 200 525 706 706

SSFYY1 [45] [−2, 2] 200 200 200 200 300 300

SSFYY2 [45] [−100, 100] 263 277 277 263 413 413

SK1 [48] [−10, 10] 139 1152 1152 87 732 791

SK2 [48] [−3, 11] 154 1741 1320 804 1989 1829

VU1 [49] [−3, 3] 316 1108 1108 11,361 19,521 11,777

VU2 [49] [−3, 7] 99 1882 1882 100 1900 1900

VFM1 [50] [−2, 2] 195 195 195 195 290 290

VFM2 [50] [−4, 4] 200 200 200 524 693 678

VFM3 [50] [−3, 3] 161 1130 601 690 1002 981

6. Conclusions

The q-Quasi-Newton method converges superlinearly to the solution of (UMOP) if all objective
functions are strongly convex within the context of q-derivative. In a neighborhood of this solution,
the algorithm uses a full Armijo steplength. The numerical performance of the proposed algorithm is
faster than their actual evaluation.
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