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Abstract: The image restoration problem is one of the popular topics in image processing which
is extensively studied by many authors because of its applications in various areas of science,
engineering and medical image. The main aim of this paper is to introduce a new accelerated
fixed algorithm using viscosity approximation technique with inertial effect for finding a common
fixed point of an infinite family of nonexpansive mappings in a Hilbert space and prove a strong
convergence result of the proposed method under some suitable control conditions. As an application,
we apply our algorithm to solving image restoration problem and compare the efficiency of our
algorithm with FISTA method which is a popular algorithm for image restoration. By numerical
experiments, it is shown that our algorithm has more efficiency than that of FISTA.

Keywords: image restoration problem; viscosity; inertial; nonexpansive mapping

1. Introduction

Let us first consider a simple linear inverse problem as the following form:

Ax = b + w, (1)

where x ∈ Rn×1 is the solution of the problem to be approximated, A ∈ Rm×n and b ∈ Rm×1 are
known and w ∈ Rm×1 is an additive noise vector. Such problems (1) arise in various applications such
as the image and signal processing problems, astrophysical problems and data classification problems.

Further, one of their well-known applications is the problem of approximating the original image
from the observed blurred and noisy image which is known as the image restoration problem. In this
problem, x, A and b represent the original image, blur operator and observed image, respectively.

The purpose of the image restoration problem is to minimize the additive noise in which the
classical estimator is the least squares (LS) given as follows:

x̂ := arg min
x
‖Ax− b‖2

2, (2)

where ‖ · ‖2 is `2-norm. However, this model still has some ill-conditions in the case that the least
square solution has a huge norm which is thus meaningless. In 1977, Tikhonov and Arsenin [1]
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improved this ill-posed problem by introducing the regularization techniques which are known as the
Tikhonov regularization (TR) model and it is of the following form:

x̂ := arg min
x
{‖Ax− b‖2

2 + λ‖Lx‖2
2}, (3)

for some regularization parameter λ > 0 and Tikhonov matrix L.
On the other hand, another successful regularization method for improvement of Tikhonov

regularization is known as the least absolute shrinkage and selection operator (LASSO) which was
introduced by Tibshirani (1996). The method is to find a solution

x̂ := arg min
x
{‖Ax− b‖2

2 + λ‖x‖1}, (4)

where ‖ · ‖1 is `1-norm. The LASSO can be applied to regression problems and image restoration
problems (see [2,3] for examples).

For solving (3) and (4), we extend them to a general naturally formulation, that is, the problem of
finding the minimizer of sum of two functions:

x̂ := arg min
x
{h(x) + g(x)}. (5)

In order to solve (5), we assume the following:

1. h : Rn → R is a smooth convex loss function and differentiable with L-Lipschitz continuous
gradient, where L > 0, i.e.,

‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn;

2. g : Rn → R∪ {+∞} is a proper convex and lower semi-continuous function.

We here denote the set of all solutions of above problem by arg min(h + g). It is well-known that
the solution of (5) can be reformulated as the problem of finding a zero-solution x̂ such that

0 ∈ ∂g(x̂) +∇h(x̂), (6)

where ∂g is the subdifferential of function g and ∇h is the gradient operator of function h (see [4]
for more details). Moreover, the problem (6) can be solved by using the proximal gradient technique
which was presented by Parikh and Boyd [5], i.e., if x̂ is a solution of (6), then it is a fixed point of a
forward-backward operator T defined by T := proxλg(I − λ∇h) for λ > 0. The operator proxλg is
called the proximity operator with respect to λ and function g. We know that T is a nonexpansive
mapping whenever λ ∈

(
0, 2

L
)
. It is easily seen that proxλg is an example of the resolvent of ∂g, that is,

proxλg = J∂g
λ = (I + λ∂g)−1, see Section 2 for more details.

We have seen from above fact that fixed point theory plays very important role in solving and
developing of the image and signal processing problems which can be applied to solving many
real-world problems in digital image processing such as medical image and astronomy as well as
image processing for security sections. Fixed point theory focuses on two important problems. The first
one is an existence problem of a solution of many kind of real-world problems while the other problem
is a problem of how to approximate such solutions of the interested problems. For the past two decades,
a lot of fixed point iteration processes were introduced and studied to solving many practical problems.
It is well-known by Banach Contraction Principle that every contraction map from a complete metric
space X into itself has a unique fixed point.

A mapping T from a metric space (X, d) into itself is called a contraction if there is a k ∈ [0, 1)
such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X.
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It is well-known that the Picard iteration process, defined by x1 ∈ X and

xn+1 = Txn, ∀n ≥ 1,

converges to a unique fixed point x∗ of T.
It is observed that when k = 1 in above inequality, we have a new nonlinear mapping, called

nonexpansive mapping. This type of mapping plays a crucial role to solving many optimization
problems and economics.

From now on, we would like to provide some background concerning various iteration methods
for finding a fixed point of nonexpansive and other nonlinear mappings.

Mann [6] was the first who introduced a modified iterative method known as Mann iteration
process in Hilbert space H as follows: x1 ∈ H,

xn+1 = αnxn + (1− αn)Txn, ∀n ≥ 1,

where {αn} is a real sequence in [0, 1]. In 1974, Ishikawa extended Mann iteration, called the Ishikawa
iteration process, by the following method: For an initial point x1,{

yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)xn + βnTyn, ∀n ≥ 1,
(7)

where {αn}, {βn} ⊂ [0, 1]. Agarwal et al. employed the idea of the Ishikawa method to introduce
S-iteration process as follows: For an initial point x1,{

yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)Txn + βnTyn, ∀n ≥ 1,
(8)

where {αn} and {βn} are sequences in [0, 1]. They showed that the convergence behavior of S-iteration
is better than that of Mann and of Ishikawa iterations.

Because Mann iteration obtained only weak convergence (see [7] for more details). In 2000,
Moufafi [8] introduced a well-known viscosity approximation was defined as follows: For x1 ∈ H,

xn+1 = αn f (xn) + (1− αn)Txn, ∀n ≥ 1, (9)

where {αn} ⊂ [0, 1] and f is a contraction mapping. Under some suitable control conditions,
he proved that {xn} converges strongly to a fixed point of T, when T is a nonexpansive mapping.
Recently, authors in [9] proposed the viscosity-based inertial forward-backward algorithm (VIFBA),
for solving (5) by finding a common fixed point of an infinite family {Tn} of forward-backward
operators. For initial points x0, x1 ∈ H, they define their method as follows:

yn = xn + θn(xn − xn−1),

zn = (1− βn)yn + βn f (yn),

xn+1 = Tnzn, ∀n ≥ 1,

(10)

where f is a contraction mapping on H and {αn}, {βn} are sequences in [0, 1]. Here, the inertial term is
represented by the term θn(xn − xn−1) which was firstly introduced by Nesterov [10]. This algorithm
is also applied to solve the regression and recognition problems.
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In 2009, Beck and Teboulle introduced a fast iterative shrinkage-thresholding algorithm (FISTA)
which was defined by 

yn = Txn,

tn+1 =
1 +

√
1 + 4t2

n
2

,

θn =
tn − 1
tn+1

,

xn+1 = yn + θn(yn − yn−1), ∀n ≥ 1,

(11)

where T = proxλg(I − λ∇h) for λ > 0 and the initial points x1 = y0 ∈ Rn and t1 = 1. Moreover,
they applied their algorithm to the image restoration problems (see [3] for more details). It is pointed
out from this work that the LASSO model is a suitable model for image restoration problems.

Motivated and inspired by all of these researches going on in this direction, in this paper,
we introduce a new accelerated algorithm for finding a common fixed point of a family of nonexpansive
mappings {Tn} in Hilbert spaces based on the concept of inertial forward-backward, of Mann and of
viscosity algorithms. Then a strong convergence theorem is established under some control conditions.
Moreover, we apply the main results to solving image restoration problems and compare efficiency of
our proposed algorithm with others. The presented results in this work also improve some well-known
results in the literature.

This paper is organized as follows: In Section 2, Preliminaries, we recall some definitions and the
useful facts which will be used in the later sections. We prove and analyze a strong convergence of the
proposed algorithm in Section 3, Main Results. In the next section, Section 4 (Applications), we apply
our main result to solving image restoration problems. Finally, the last section, Section 5 (Conclusions),
is the summary of our work.

2. Preliminaries

Throughout this paper, we let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
Let {xn} be a sequence in H. We use xn → x stands for {xn} converges strongly to x and xn ⇀ x
stands for {xn} converges weakly to x. Let T : C → C be a mapping from a nonempty closed convex
subset of H into itself. A fixed point of T is a point x ∈ C such that x = Tx. The set of all fixed points
of T is denoted by F(T), that is,

F(T) := {x ∈ C : x = Tx}.

A mapping T : C → H is said to be L-Lipschitzian, if there exists a constant L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C.

If L = 1, then T is said to be a nonexpansive mapping. It is well-known that if T is nonexpansive,
then F(T) is closed and convex.

We call a mapping f : C → H a contraction, if there exists a constant k ∈ [0, 1) such that

‖ f (x)− f (y)‖ ≤ k‖x− y‖, ∀x, y ∈ C.

Here, we say that f is a k-contraction mapping.
Let A : H → 2H . The domain of A is the set D(A) := {x ∈ H : Ax 6= ∅} and the range of A is the

set R(A) :=
⋃{Az : z ∈ D(A)}. The inverse of A is denoted by A−1 is defined as follows: x ∈ A−1y if

and only if y ∈ Ax. The graph of A is denoted by G(A) and G(A) := {(x, u) : u ∈ Ax}.
An operator A : H → 2H is said to be monotone if 〈u− v, x− y〉 ≥ 0, for all u ∈ Ax and v ∈ Ay.

A monotone operator A on H is said to be maximal if the graph of A is not properly contained in
any graph of other monotone operators on H. It is well-known that A is maximal if and only if for
x ∈ D(A) and u ∈ Ax, 〈u− v, x− y〉 ≥ 0 implies (y, v) ∈ G(A).
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Moreover, A is a maximally monotone operator if and only if R(I + λA) = H for every λ > 0,
where I is an identity operator. We also know that the subdifferential of a proper lower semicontinuous
convex function is a nice example of a maximal monotone.

For a function g : H → [−∞,+∞]. The subdifferential ∂g : H → 2H of g at x ∈ H, with g(x) ∈ R,
is the set ∂g(x) := {x∗ ∈ H : g(x) + 〈y− x, x∗〉 ≤ g(y), ∀y ∈ H}. We take by convention ∂g(x) := ∅,
if g(x) ∈ {±∞}. If g ∈ Γ0(H), the set of proper lower semicontinuous convex functions from H to
(−∞,+∞], then ∂g is maximally monotone (see [11] for more details).

For a maximally monotone operator A and λ > 0, the resolvent of A for λ is defined to be a
single-valued operator JA

λ : R(I + λA)→ D(A), where JA
λ = (I + λA)−1. It is well-known that JA

λ is a
nonexpansive mapping and F(JA

λ ) = A−10, where A−10 := {x ∈ H : 0 ∈ Ax} and it is called the set
of all zero (or null) points of A.

Let A : H → 2H be a multi-valued mapping and B : H → H a single-valued nonlinear mapping.
The quasi-variational inclusion problem is the problem of finding a point x ∈ H such that

0 ∈ Ax + Bx. (12)

The set of all solutions of the problem (12) is denoted by (A + B)−10.
A classical method for solving the problem (12) is the forward-backward method [12–14] which

was first introduced by Combettes and Hirstoaga [15] in the following manner: x1 ∈ H and

xn+1 = JA
λ (xn − λBxn), ∀n ≥ 1, (13)

where λ > 0. Moreover, we have from [16], if A is a maximally monotone operator and B is an
L-Lipschitz continuous, then F(JA

λ (I − λB)) = (A + B)−10.

Definition 1. Let g ∈ Γ0(H) and λ > 0. The proximity operator of parameter λ of g at x ∈ H is denoted by
proxλg and it is defined by

proxλgx := arg min
y∈H

{
g(y) +

1
2λ
‖y− x‖2

}
.

It is well-known that if g ∈ Γ0(H), then J∂g
λ = proxλg, that is, the proximity operator is an example

of resolvent operator. Moreover, if g = ‖ · ‖1, then

proxλ‖·‖1
x = sign(x)max{‖x‖1 − λ, 0},

where sign is a signum function (see [4] for more details).
The following basic definitions and well-known results are also needed for proving our main results.

Lemma 1. ([17,18]) Let H be a real Hilbert space. For x, y ∈ H and any arbitrary real number λ in [0, 1],
the following hold:

1. ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2;
2. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
3. ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

The identity in Lemma 1(3) implies that the following equality holds:

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − βγ‖y− z‖2 − αγ‖x− z‖2, (14)

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] with α + β + γ = 1.
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Let C be a nonempty closed convex subset of a Hilbert space H. We know that for each element
x ∈ H, there exists a unique point in C, say PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.

Such a mapping PC is called the metric projection of H onto C. It is well-known that PC is a
nonexpansive mapping. Moreover, PC can be characterized by the following inequality

〈x− PCx, y− PCx〉 ≤ 0 (15)

holds for all x ∈ H and y ∈ C (see [19] for more details).
We next recall the following properties which are useful for proving our main result, we refer

to [20,21].
Let {Tn} and T be families of nonexpansive mappings of H into itself such that ∅ 6= F(T ) ⊂⋂∞

n=1 F(Tn), where F(T ) is the set of all common fixed points of T . We say that {Tn} satisfies
NST-condition(I) with T if for each bounded sequence {xn} such that limn→∞ ‖xn − Tnxn‖ = 0,
it follows

lim
n→∞

‖xn − Txn‖ = 0 for all T ∈ T .

In particular, if T consists of one mapping T, i.e., T = {T}, then {Tn} is said to satisfy
NST-condition(I) with T.

Lemma 2. Let {Tn} be a family of nonexpansive mappings of H into itself and T : H → H a nonexpansive
mapping with ∅ 6= F(T) ⊂ ⋂∞

n=1 F(Tn). One always has, if {Tn} satisfies NST-condition(I) with T, then {Tt}
also satisfies NST-condition(I) with T, for any subsequences {t} of positive integers.

Proof. Let {xt} be a bounded sequence such that ‖xt − Ttxt‖ → 0 as t → +∞. Take u ∈ F(T).
Define the sequence {xn} by

xn :=

{
xt if n = t;

u otherwise.

Then {xn} is bounded. Moreover, we have that

lim
n→∞

‖xn − Tnxn‖ = lim
t→∞
‖xt − Ttxt‖ = 0,

due to u is a fixed point of Tn for all n ∈ N. By the NST-condition(I) with T on {Tn}, we obtain that

lim
t→∞
‖xt − Txt‖ = lim

n→∞
‖xn − Txn‖ = 0.

Thus, {Tt} satisfies NST-condition(I) with T.

Proposition 1. ([22]) Let H be a Hilbert space. Let A : H → 2H be a maximally monotone operator and
B : H → H an L-Lipschitz operator, where L > 0. Let Tn = JA

λn
(I − λnB), where 0 < λn < 2

L for all n ≥ 1
and let T = JA

λ (I − λB), where 0 < λ < 2
L with λn → λ. Then {Tn} satisfies the NST-condition(I) with T.

The following lemmas are crucial for proving our main results.

Lemma 3. ([23]) Let H be a real Hilbert space and T : H → H a nonexpansive mapping with F(T) 6= ∅.
Then the mapping I − T is demiclosed at zero, i.e., for any sequences {xn} in H such that xn ⇀ x ∈ H and
‖xn − Txn‖ → 0 imply x ∈ F(T).
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Lemma 4. ([24,25]) Let {sn}, {ξn} be sequences of nonnegative real numbers, {δn} a sequence in [0,1] and
{tn} a sequence of real numbers such that

sn+1 ≤ (1− δn)sn + δntn + ξn,

for all n ∈ N. If the following conditions hold:

1. ∑∞
n=1 δn = ∞;

2. ∑∞
n=1 ξn < ∞;

3. lim supn→∞ tn ≤ 0.

Then limn→∞ sn = 0.

Lemma 5. ([26]) Let {Θn} be a sequence of real numbers that does not decrease at infinity in the sense that
there exists a subsequence {Θni} of {Θn} which satisfies Θni < Θni+1 for all i ∈ N. Define the sequence
{τ(n)}n≥n0 of integers as follows:

τ(n) := max{k ≤ n : Θk < Θk+1},

where n0 ∈ N such that {k ≤ n0 : Θk < Θk+1} 6= ∅. Then the following hold:

1. τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n)→ ∞;
2. Θτ(n) ≤ Θτ(n)+1 and Θn ≤ Θτ(n)+1 for all n ≥ n0.

3. Main Results

In this section, we first give a new algorithm for finding a common fixed point of a family of
nonexpansive mappings in a real Hilbert space. We then prove its strong convergence under some
suitable conditions.

We now propose a new accelerated algorithm for approximating a solution of our common fixed
point problem as the following.

Let H be a real Hilbert space. Let {Tn} be a family of nonexpansive mappings on H into itself. Let f be
a k-contraction mapping on H with k ∈ (0, 1) and let {ηn} ⊂ (0, ∞) and {σn}, {αn}, {βn}, {γn} ⊂ (0, 1).

We next prove the convergence of the sequence generated by Algorithm 1. To this end, we assume
that the algorithm does not stop after finitely many iterations.

Algorithm 1: NAVA (New Accelerated Viscosity Algorithm).
Initialization: Take x0, x1 ∈ H. Choose θ ≥ 0.
For n ≥ 1:

Set

θn :=

min
{

θ,
ηnαn

‖xn − xn−1‖

}
if xn 6= xn−1;

θ otherwise.

Compute

yn := xn + θn(xn − xn−1),

zn := (1− σn)yn + σnTnyn,

xn+1 := αn f (xn) + βnTnyn + γnTnzn.
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Theorem 1. Let {Tn} be a family of nonexpansive mappings and T : H → H a nonexpansive mapping such
that ∅ 6= F(T) ⊂ ⋂∞

n=1 F(Tn). Suppose that {Tn} satisfies NST-condition(I) with T. Let {xn} be the sequence
generated by Algorithm 1 such that the following additional conditions hold:

1. αn + βn + γn = 1;
2. 0 < a ≤ σn ≤ a′ < 1;
3. 0 < b ≤ βn ≤ b′ < 1;
4. 0 < c ≤ γn ≤ c′ < 1;
5. limn→∞ ηn = 0;
6. limn→∞ αn = 0 and ∑∞

n=1 αn = ∞,

for some positive real numbers a, b, c, a′, b′, c′. Then the sequence {xn} converges strongly to u ∈ F(T),
where u = PF(T) f (u).

Proof. Let u ∈ F(T) be such that u = PF(T) f (u). First of all, we show that {xn} is bounded. By the
definition of yn and of zn, we have

‖yn − u‖ = ‖xn + θn(xn − xn−1)− u‖
≤ ‖xn − u‖+ θn‖xn − xn−1‖, ∀n ≥ 1,

(16)

and
‖zn − u‖ = ‖(1− σn)yn + σnTnyn − u‖

≤ (1− σn)‖yn − u‖+ σn‖Tnyn − u‖
= (1− σn)‖yn − u‖+ σn‖Tnyn − Tnu‖
≤ (1− σn)‖yn − u‖+ σn‖yn − u‖
= ‖yn − u‖, ∀n ≥ 1.

(17)

From (16) and (17), we also have that

‖xn+1 − u‖ = ‖αn f (xn) + βnTnyn + γnTnzn − u‖
= ‖αn( f (xn)− u) + βn(Tnyn − u) + γn(Tnzn − u)‖
≤ αn‖ f (xn)− u‖+ βn‖Tnyn − u‖+ γn‖Tnzn − u‖
= αn‖ f (xn)− u‖+ βn‖Tnyn − Tnu‖+ γn‖Tnzn − Tnu‖
≤ αn‖ f (xn)− f (u)‖+ αn‖ f (u)− u‖+ βn‖yn − u‖+ γn‖zn − u‖
≤ αnk‖xn − u‖+ αn‖ f (u)− u‖+ (βn + γn)‖yn − u‖
≤ αnk‖xn − u‖+ αn‖ f (u)− u‖+ (βn + γn)(‖xn − u‖+ θn‖xn − xn−1‖)
≤ (αnk + βn + γn)‖xn − u‖+ αn‖ f (u)− u‖+ (βn + γn)θn‖xn − xn−1‖
≤ (αnk + βn + γn)‖xn − u‖+ αn‖ f (u)− u‖+ (b′ + c′)θn‖xn − xn−1‖
= (1− αn(1− k))‖xn − u‖+ αn‖ f (u)− u‖

+ (b′ + c′)αn ·
θn

αn
‖xn − xn−1‖, ∀n ≥ 1.

(18)

According to the definition of θn and the assumption (5), we have

θn

αn
‖xn − xn−1‖ → 0 as n→ ∞.

Then there exists a positive constant M1 > 0 such that

θn

αn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1.
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From (18), we obtain

‖xn+1 − u‖ ≤ (1− αn(1− k))‖xn − u‖+ αn‖ f (u)− u‖+ αn(b′ + c′)M1

= (1− αn(1− k))‖xn − u‖+ αn(‖ f (u)− u‖+ (b′ + c′)M1)

= (1− αn(1− k))‖xn − u‖+ αn(1− k)
[
‖ f (u)− u‖+ (b′ + c′)M1

1− k

]
≤ max

{
‖xn − u‖, ‖ f (u)− u‖+ (b′ + c′)M1

1− k

}
...

≤ max
{
‖x1 − u‖, ‖ f (u)− u‖+ (b′ + c′)M1

1− k

}
, ∀n ≥ 1.

This implies {xn} is bounded and so are {yn}, {zn}, { f (xn)} and {Tnyn}.
Indeed, we have that for all n ≥ 1,

‖yn − u‖2 = ‖xn + θn(xn − xn−1)− u‖2

= ‖(xn − u) + θn(xn − xn−1)‖2

≤ ‖xn − u‖2 + 2θn‖xn − u‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2.

(19)

By Lemma 1(2), (14) and (17) we have

‖xn+1 − u‖2 = ‖αn f (xn) + βnTnyn + γnTnzn − u‖2

= ‖αn( f (xn)− f (u)) + βn(Tnyn − u) + γn(Tnzn − u) + αn( f (u)− u)‖2

≤ ‖αn( f (xn)− f (u)) + βn(Tnyn − u) + γn(Tnzn − u)‖2 + 2αn〈 f (u)− u, xn+1 − u〉
≤ αn‖ f (xn)− f (u)‖2 + βn‖Tnyn − u‖2 + γn‖Tnzn − u‖2 + 2αn〈 f (u)− u, xn+1 − u〉
= αn‖ f (xn)− f (u)‖2 + βn‖Tnyn − Tnu‖2 + γn‖Tnzn − Tnu‖2 + 2αn〈 f (u)− u, xn+1 − u〉
≤ αnk2‖xn − u‖2 + βn‖yn − u‖2 + γn‖zn − u‖2 + 2αn〈 f (u)− u, xn+1 − u〉
≤ αnk2‖xn − u‖2 + (βn + γn)‖yn − u‖2 + 2αn〈 f (u)− u, xn+1 − u〉, ∀n ≥ 1

(20)

It follows from (19) with 0 < k < 1 that

‖xn+1 − u‖2 ≤ αnk‖xn − u‖2

+ (βn + γn)
(
‖xn − u‖2 + 2θn‖xn − u‖‖xn − xn−1‖+ θ2

n‖xn − xn−1‖2)
+ 2αn〈 f (u)− u, xn+1 − u〉

= (1− αn(1− k))‖xn − u‖2

+ (βn + γn)θn‖xn − xn−1‖
(
2‖xn − u‖+ θn‖xn − xn−1‖

)
+ 2αn〈 f (u)− u, xn+1 − u〉, ∀n ≥ 1.

(21)

Since
θn‖xn − xn−1‖ = αn ·

θn

αn
‖xn − xn−1‖ → 0, as n→ ∞,

there exists a positive constant M2 > 0 such that

θn‖xn − xn−1‖ ≤ M2, ∀n ≥ 1.
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From the inequality (21), we derive that for all n ≥ 1,

‖xn+1 − u‖2 ≤ (1− αn(1− k))‖xn − u‖2 + 3M3(βn + γn)θn‖xn − xn−1‖+ 2αn〈 f (u)− u, xn+1 − u〉
≤ (1− αn(1− k))‖xn − u‖2 + 3M3(b′ + c′)θn‖xn − xn−1‖+ 2αn〈 f (u)− u, xn+1 − u〉
≤ (1− αn(1− k))‖xn − u‖2

+ αn(1− k)
[

3M3(b′ + c′)
1− k

· θn

αn
‖xn − xn−1‖+

2
1− k

〈 f (u)− u, xn+1 − u〉
]

,

(22)

where M3 := supn≥1{‖xn − u‖, M2}. From above inequality, we set

sn := ‖xn − u‖2, δn := αn(1− k)

and

tn :=
3M3(b′ + c′)

1− k
· θn

αn
‖xn − xn−1‖+

2
1− k

〈 f (u)− u, xn+1 − u〉, ∀n ≥ 1.

So, we obtain
sn+1 ≤ (1− δn)sn + δntn, (23)

for all n ≥ 1.
Now, we consider two cases for the proof as follows:
Case 1. Suppose that there exists a natural number n0 such that the sequence {‖xn − u‖}n≥n0

is nonincreasing. Hence, {‖xn − u‖} converges due to it is bounded from below by 0. Using the
assumption (6), we get that ∑∞

n=1 δn = ∞. From Lemma 4, we next claim that

lim sup
n→∞

〈 f (u)− u, xn+1 − u〉 ≤ 0.

Coming back to the definition of zn, by Lemma 1(3), one has that

‖zn − u‖2 = ‖(1− σn)yn + σnTnyn − u‖2

= ‖(1− σn)(yn − u) + σn(Tnyn − u)‖2

= (1− σn)‖yn − u‖2 + σn‖Tnyn − u‖2 − σn(1− σn)‖yn − Tnyn‖2

= (1− σn)‖yn − u‖2 + σn‖Tnyn − Tnu‖2 − σn(1− σn)‖yn − Tnyn‖2

≤ ‖yn − u‖2 − σn(1− σn)‖yn − Tnyn‖2, ∀n ≥ 1.

(24)

Using the facts that (14), (17), (19) and (24) yield

‖xn+1 − u‖2 = ‖αn f (xn) + βnTnyn + γnTnzn − u‖2

= ‖αn( f (xn)− u) + βn(Tnyn − u) + γn(Tnzn − u)‖2

≤ αn‖ f (xn)− u‖2 + βn‖Tnyn − u‖2 + γn‖Tnzn − u‖2

= αn‖ f (xn)− u‖2 + βn‖Tnyn − Tnu‖2 + γn‖Tnzn − Tnu‖2

≤ αn‖ f (xn)− u‖2 + βn‖yn − u‖2 + γn‖zn − u‖2

≤ αn‖ f (xn)− u‖2 + βn‖yn − u‖2 + γn
(
‖yn − u‖2 − σn(1− σn)‖yn − Tnyn‖2)

= αn‖ f (xn)− u‖2 + (βn + γn)‖yn − u‖2 − γnσn(1− σn)‖yn − Tnyn‖2

≤ αn‖ f (xn)− u‖2 + (βn + γn)‖xn − u‖2 + 2(βn + γn)θn‖xn − u‖‖xn − xn−1‖
+ (βn + γn)θ

2
n‖xn − xn−1‖2 − γnσn(1− σn)‖yn − Tnyn‖2

= αn‖ f (xn)− u‖2 + (1− αn)‖xn − u‖2 + 2(βn + γn)θn‖xn − u‖‖xn − xn−1‖
+ (βn + γn)θ

2
n‖xn − xn−1‖2 − γnσn(1− σn)‖yn − Tnyn‖2, ∀n ≥ 1.

(25)
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It implies that for all n ≥ 1,

γnσn(1− σn)‖yn − Tnyn‖2 ≤ αn
(
‖ f (xn)− u‖2 − ‖xn − u‖2)+ ‖xn − u‖2 − ‖xn+1 − u‖2

+ (βn + γn)θn‖xn − xn−1‖
(
2‖xn − u‖+ θn‖xn − xn−1‖

)
.

(26)

It follows from the assumptions (2), (3), (4), (6) and the convergence of the sequences {‖xn − u‖}
and of {θn‖xn − xn−1‖} that

‖yn − Tnyn‖ → 0 as n→ ∞. (27)

According to {Tn} satisfies NST-condition(I) with T, we obtain that

‖yn − Tyn‖ → 0 as n→ ∞. (28)

From the definition of yn and of zn, we obtain

‖yn − xn‖ = θn‖xn − xn−1‖ → 0 as n→ ∞, (29)

and

‖zn − yn‖ ≤ σn‖yn − Tnyn‖ → 0 as n→ ∞. (30)

Using (27) and (30) with the assumption (6), we have

‖xn+1 − yn‖ ≤ ‖xn+1 − Tnyn‖+ ‖Tnyn − yn‖
≤ ‖αn f (xn) + βnTnyn + γnTnzn − Tnyn‖+ ‖Tnyn − yn‖
≤ ‖αn( f (xn)− Tnyn) + βn(Tnyn − Tnyn) + γn(Tnzn − Tnyn)‖+ ‖Tnyn − yn‖
≤ αn‖ f (xn)− Tnyn‖+ βn‖Tnyn − Tnyn‖+ γn‖Tnzn − Tnyn‖+ ‖Tnyn − yn‖
≤ αn‖ f (xn)− Tnyn‖+ γn‖zn − yn‖+ ‖Tnyn − yn‖, ∀n ≥ 1,

(31)

which implies
‖xn+1 − yn‖ → 0 as n→ ∞. (32)

Hence
‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖ → 0 as n→ ∞. (33)

Let
v = lim sup

n→∞
〈 f (u)− u, xn+1 − u〉.

So, there exists a subsequence {xt} of {xn} such that

v = lim
t→∞
〈 f (u)− u, xt+1 − u〉.

Since {xt} is bounded, there exists a subsequence {xt′} of {xt} such that xt′ ⇀ w for some w ∈ H.
Without loss of generality, we may assume that xt ⇀ w and

v = lim
t→∞
〈 f (u)− u, xt+1 − u〉.

From (28) and (29), we derive

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Tyn − Txn‖
≤ 2‖xn − yn‖+ ‖yn − Tyn‖, ∀n ≥ 1,

(34)
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and hence,
‖xn − Txn‖ → 0 as n→ ∞. (35)

It implies by Lemma 3 that w ∈ F(T). Since ‖xn+1 − xn‖ → 0, we get xt+1 ⇀ w. Moreover, using
u = PF(T) f (u) and (15), we obtain

v = lim
t→∞
〈 f (u)− u, xt+1 − u〉 = 〈 f (u)− u, w− u〉 ≤ 0. (36)

Then

lim sup
n→∞

〈 f (u)− u, xn+1 − u〉 ≤ 0. (37)

It implies from (37) with the fact of θn
αn
‖xn − xn−1‖ → 0 that lim supn→∞ tn ≤ 0. Coming back

to (23), using Lemma 4, we conclude that xn → u.
Case 2. Suppose that the sequence {‖xn − u‖}n≥n0 is not a monotonically decreasing sequence

for some n0 large enough. Set
Θn := ‖xn − u‖2.

So, there exists a subsequence {Θnj} of {Θn} such that Θnj ≤ Θnj+1 for all j ∈ N. In this case,
we define τ : {n : n ≥ n0} → N by

τ(n) := max{k ∈ N : k ≤ n, Θk < Θk+1}.

By Lemma 5, we have that Θτ(n) ≤ Θτ(n)+1 for all n ≥ n0. That is,

‖xτ(n) − u‖ ≤ ‖xτ(n)+1 − u‖, ∀n ≥ n0.

As in Case 1, we can conclude that for all n ≥ n0,

γτ(n)στ(n)(1− στ(n))‖yτ(n) − Tτ(n)yτ(n)‖2 ≤ ατ(n)
(
‖ f (xτ(n))− u‖2 − ‖xτ(n) − u‖2)

+ ‖xτ(n) − u‖2 − ‖xτ(n)+1 − u‖2

+ (βτ(n) + γτ(n))θτ(n)‖xτ(n) − xτ(n)−1‖

×
(
2‖xτ(n) − u‖+ θτ(n)‖xτ(n) − xτ(n)−1‖

)
≤ ατ(n)

(
‖ f (xτ(n))− u‖2 − ‖xτ(n) − u‖2)

+ (βτ(n) + γτ(n))θτ(n)‖xτ(n) − xτ(n)−1‖

×
(
2‖xτ(n) − u‖+ θτ(n)‖xτ(n) − xτ(n)−1‖

)
and hence,

‖yτ(n) − Tτ(n)yτ(n)‖ → 0 as n→ ∞. (38)

Similarly to the proof of Case 1, we get

‖yτ(n) − xτ(n)‖ → 0, (39)

‖zτ(n) − yτ(n)‖ → 0 (40)

and
‖xτ(n)+1 − yτ(n)‖ → 0, (41)

as n→ ∞, and hence
‖xτ(n)+1 − xτ(n)‖ → 0 as n→ ∞. (42)
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We next show that lim supn→∞〈 f (u)− u, xτ(n)+1 − u〉 ≤ 0. Put

v = lim sup
n→∞

〈 f (u)− u, xτ(n)+1 − u〉.

Without loss of generality, there exists a subsequence {xτ(t)} of {xτ(n)} such that {xτ(t)} converges
weakly to some point w ∈ H and

v = lim
t→∞
〈 f (u)− u, xτ(t)+1 − u〉.

By Lemma 2, one has {Tτ(t)} satisfies NST-condition(I) with T. So, according to the equality (38),
‖yτ(t) − Tτ(t)yτ(t)‖ → 0, we obtain that

‖yτ(t) − Tyτ(t)‖ → 0 as t→ ∞, (43)

which implies, by (39) and Lemma 3 again, that w ∈ F(T). Since ‖xτ(t)+1 − xτ(t)‖ → 0, we get
xτ(t)+1 ⇀ w. Moreover, using u = PF(T) f (u) and (15), we obtain

v = lim
t→∞
〈 f (u)− u, xτ(t)+1 − u〉 = 〈 f (u)− u, w− u〉 ≤ 0. (44)

Then

lim sup
n→∞

〈 f (u)− u, xτ(n)+1 − u〉 ≤ 0. (45)

Since Θτ(n) ≤ Θτ(n)+1 and ατ(n)(1− k) > 0, as in the proof of Case 1, we have that for all n ≥ n0,

‖xτ(n) − u0‖2 ≤ 3M3(b′ + c′)
1− k

·
θτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖+

2
1− k

〈 f (u)− u, xτ(n)+1 − u〉. (46)

It follows by the fact that θn
αn
‖xn − xn−1‖ → 0 and (45) that

lim sup
n→∞

‖xτ(n) − u0‖2 ≤ 0,

and hence ‖xτ(n) − u0‖ → 0 as n→ ∞. It implies by (42) that ‖xτ(n)+1 − u0‖ → 0 as n→ ∞.
By Lemma 5, we get

‖xn − u0‖ ≤ ‖xτ(n)+1 − u0‖ → 0 as n→ ∞.

Hence xn → u0. The proof is completed.

As a direct consequence of Theorem 1, by using Proposition 1, we obtain the following corollary.

Corollary 1. Let H be a real Hilbert space. Let A : H → 2H be a maximally monotone operator and B : H → H
an L-Lipschitz operator, where L > 0. Let Tn = JA

λn
(I − λnB), where 0 < λn < 2

L for all n ≥ 1 and let
T = JA

λ (I − λB), where 0 < λ < 2
L with λn → λ. Suppose that (A + B)−10 6= ∅. Let f be a k-contraction

mapping on H with k ∈ (0, 1). Let {xn} be a sequence in H generated by Algorithm 1 under the same conditions
of parameters as in Theorem 1. Then {xn} converges strongly to u ∈ (A + B)−10, where u = P(A+B)−10 f (u).

Proof. Since (A + B)−10 = F(T) ⊂ ⋂∞
n=1 F(Tn) and T, Tn are nonexpansive for each n ∈ N, we can

conclude that the sequence {xn} converges strongly to u ∈ (A + B)−10 by using Proposition 1 and
Theorem 1.
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4. Applications

In this section, we first begin with presenting the algorithm obtained from our main results.
We investigate throughout this section under the following setting.

� H is a real Hilbert space;
� h : H → R is a differentiable and convex function with an L-Lipschitz continuous gradient ∇h

where L > 0;
� g ∈ Γ0(H);
� arg min(h + g) 6= ∅;
� f is a k-contraction mapping on H with k ∈ (0, 1);
� λ ∈

(
0, 2

L
)

and {λn} ⊂
(
0, 2

L
)

with λn → λ;
� {ηn} ⊂ (0, ∞) and {σn}, {αn}, {βn}, {γn} ⊂ (0, 1).

The algorithm we propose in this context has the following formulation.
We next prove the strong convergence of the sequence generated by our proposed algorithm.

Theorem 2. Let {xn} be a sequence generated by Algorithm 2 under the same conditions of parameters as in
Theorem 1. Then {xn} converges strongly to u ∈ arg min(h + g).

Algorithm 2: AVFBA (Accelerated Viscosity Forward-Backward Algorithm).
Initialization: Take x0, x1 ∈ H. Choose θ ≥ 0.
For n ≥ 1:

Set

θn :=

min
{

θ,
ηnαn

‖xn − xn−1‖

}
if xn 6= xn−1;

θ otherwise.

Compute

yn := xn + θn(xn − xn−1),

zn := (1− σn)yn + σnproxλng(I − λn∇h)yn,

xn+1 := αn f (xn) + βnproxλng(I − λn∇h)yn + γnproxλng(I − λn∇h)zn.

Proof. In Corollary 1, we set A := ∂g and B := ∇h. So, A is a maximal operator. Then we obtain the
required result directly by Corollary 1.

We next discuss some experiment results by using our proposal algorithm to solving the image
restoration problem. The image restoration problem (2) can be related to

min
x
{‖Ax− b‖2

2 + λ‖x‖1},

where x ∈ Rn is the original image, b is the observed image and A represents the blurring operator.
In this situation, we choose the regularization parameter λ = 5e−5. For this example, we look at the
256 × 256 Schonbrunn palace (original image). We use a Gausssian blur of size 9 × 9 and standard
deviation σ = 4 to create the blurred and noisy image (observed image). These two images are given
as in Figure 1.
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(a) Original image (b) Observed image

Figure 1. The Schonbrunn palace.

In 2009, Thung and Raveendran [27] introduced Peak Signal-to-Noise Ratio (PSNR) to measure a
quality of restored images for each xn as the following:

PSNR(xn) = 10 log
(

2552

MSE

)
,

where MSE = 1
2562 ‖xn − x‖2, the Mean Square Error for the original image x. We note that a higher

PSNR shows a higher quality for deblurring image.
In Theorem 2, we set h(x) = ‖Ax− b‖2

2 and g(x) = λ‖x‖1 and choose the Lipschitz constant L of
the gradient ∇h which is the maximum value of eigenvalues of the matrix AT A.

Let us begin with the first experiment. We study convergence behavior of our method by
considering the following six different cases:

Parameters Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

αn
1

33n
1

33n
1

33n
1

33n
1

33n
1

33n

βn
n

n+1
n

300n+1
n

300n+1
n

300n+1
n

300n+1
n

300n+1

γn 1− αn − βn 1− αn − βn 1− αn − βn 1− αn − βn 1− αn − βn 1− αn − βn

σn
n

10(n+1)
n

10(n+1)
99n

100(n+1)
99n

100(n+1)
99n

100(n+1)
99n

100(n+1)

ηn
33·1020

n
33·1020

n
33·1020

n
33·1020

n
33·1020

n
33·1020

n

λn
n

L(n+1)
n

L(n+1)
n

L(n+1)
31n

20L(n+1)
31n

20L(n+1)
31n

20L(n+1)

θ 0.5 0.5 0.5 0.5 0.09 0.99

It is clear that these control parameters satisfy all conditions of Theorem 2. In this experiment,
we take f (x) = 0.25 · x. By Theorem 2, the sequence {xn} converges to the original image and its
convergence behavior for each case is shown by the values of PSNR as seen in Table 1.

Table 1. The values of PSNR of six cases in Theorem 2 at x1, x5, x10, x25, x50, x100, x250, x500.

No. Iterations Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

1 19.435266 19.440476 19.528889 19.686937 19.686937 19.686937
5 20.539773 20.568442 20.849492 21.151064 20.888207 21.598216

10 21.126851 21.174059 21.606305 22.068696 21.554700 23.435160
25 22.136789 22.228847 22.949968 23.587612 22.788089 25.383824
50 23.125241 23.246531 24.087158 24.748261 23.893124 27.283463
100 24.198479 24.331965 25.199378 25.852069 25.000206 29.440357
250 25.605450 25.741976 26.608033 27.265159 26.408127 31.342524
500 26.645135 26.784026 27.674898 28.365891 27.466181 32.443743
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The second experiment is to consider the behavior of the sequence {xn} for each case of contraction
mappings f (x) = k · x. We consider the following four different cases as follows:

Case (1) f (x) = 0.1 · x

Case (2) f (x) = 0.5 · x

Case (3) f (x) = 0.75 · x

Case (4) f (x) = 0.95 · x

We choose the parameters as follows:

αn =
1

33n
, βn =

n
300n + 1

, γn = 1− αn − βn, σn =
99n

100(n + 1)
, ηn =

33 · 1020

n
, λn =

31n
20L(n + 1)

.

Here θ = 0.99 then

θn =

min
{

0.99,
1020

n2‖xn − xn−1‖

}
if xn 6= xn−1;

0.99 otherwise.

From Table 2, we get the values of PSNR at x500 of each case which equal to 32.212326, 32.929758,
33.580650 and 34.170032, respectively. We also observe from Table 2 and Figure 2 that when k is close
to 1, the value of PSNR is higher than those of smaller k.

Table 2. The values of PSNR of four cases in Theorem 2 at x1, x5, x10, x25, x50, x100, x250, x500.

No. Iterations Case (1) Case (2) Case (3) Case (4)

1 19.645629 19.742816 19.781947 19.800875
5 21.595741 21.600924 21.601822 21.601207
10 23.430366 23.441553 23.445829 23.447628
25 25.433348 25.289174 25.178923 25.079196
50 27.329109 27.167872 26.997762 26.819210

100 29.375156 29.468395 29.352150 29.121785
250 31.091760 31.811123 32.260577 32.431003
500 32.212326 32.929758 33.580650 34.170032

0 100 200 300 400 500
18

20

22

24

26

28

30

32

34

36

Number of iterations

P
S

N
R

 (
d
B

)

 

 

Case (1)

Case (2)

Case (3)

Case (4)

Figure 2. Comparison of four cases in Theorem 2.

On the other hand, the other experiment is to compare the quality of image restored by our
algorithm and the quality of image restored by FISTA method [3]. Here, all parameters in Theorem 2
were the same as the previous experiment and we used f (x) = 0.95 · x.
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For FISTA method [3], we set

h(x) = ‖Ax− b‖2
2, g(x) = λ‖x‖1 and T = proxλg(I − λ∇h),

where the parameter λ = 1
L .

Then we obtain the PSNR values of our algorithm and of FISTA as seen in Tables 3 and 4, and Figure 3.
The restoration images at 500th iteration of both algorithms are also presented in Figure 4.

Table 3. The values of PSNR at x1, x5, x10, x25, x50, x100, x250, x500 (Schonbrunn palace).

No. Iterations Our Algorithm FISTA Method

1 19.800875 19.785363
5 21.601207 20.774354

10 23.447628 21.530504
25 25.079196 23.502806
50 26.819210 25.401943
100 29.121785 27.342763
250 32.431003 30.290802
500 34.170032 32.356010

Table 4. The values of PSNR at x1, x5, x10, x25, x50, x100, x250, x500 (Camera man).

No. Iterations Our Algorithm FISTA Method

1 21.738865 21.730405
5 23.165748 22.429808

10 24.702169 23.081284
25 25.986847 24.741192
50 27.383389 26.213578
100 29.320097 27.633632
250 32.287817 29.889833
500 34.262873 32.016958
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Our Algorithm

FISTA Algorithm

(b) Camera man

Figure 3. Plotting of the values of PSNR.

Our experiments show that our algorithm gives a better performance in restoring the blurred
image than that of FISTA [3].
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(a) Original palace (b) Blurred palace

(c) By our algorithm (d) By FISTA algorithm [3]

(e) Original camera man (f) Blurred camera man

(g) By our algorithm (h) By FISTA algorithm [3]

Figure 4. Original images: Schonbrunn palace (a), camera man (b), Blurred images: Schonbrunn
palace (b), camera man (f), Results at x500 for restored images by our algorithm (c,g) and by FISTA
method [3] (d,h).
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5. Conclusions

In this paper, we present a new accelerated fixed point algorithm using the ideas of the viscosity
and inertial technique to solving image restoration problems. A strong convergence theorem of our
proposed method, Theorem 1, is established and proved under some suitable conditions. We then
compare its convergence behavior with the others by considering its application to an image restoration
problem. We find that our algorithm has convergence behavior better than FISTA which is a
well-known and popular method using in image restoration problem.
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