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Abstract: Product demand forecasting plays a vital role in supply chain management since it is
directly related to the profit of the company. According to companies’ concerns regarding product
demand forecasting, many researchers have developed various forecasting models in order to
improve accuracy. We propose a hybrid forecasting model called GA-GRU, which combines Genetic
Algorithm (GA) with Gated Recurrent Unit (GRU). Because many hyperparameters of GRU affect its
performance, we utilize GA that finds five kinds of hyperparameters of GRU including window size,
number of neurons in the hidden state, batch size, epoch size, and initial learning rate. To validate the
effectiveness of GA-GRU, this paper includes three experiments: comparing GA-GRU with other
forecasting models, k-fold cross-validation, and sensitive analysis of the GA parameters. During each
experiment, we use root mean square error and mean absolute error for calculating the accuracy of
the forecasting models. The result shows that GA-GRU obtains better percent deviations than other
forecasting models, suggesting setting the mutation factor of 0.015 and the crossover probability of
0.70. In short, we observe that GA-GRU can optimally set five types of hyperparameters and obtain
the highest forecasting accuracy.

Keywords: demand forecasting; gated recurrent unit; genetic algorithm; hyperparameter; supply
chain management

1. Introduction

As competition among companies to win the market increases, many companies have focused on
demand forecasting in order to quickly respond to customer needs. Demand forecasting with high
accuracy can respond well to customer needs, so it garners many benefits in terms of sales, profit,
planning, etc. [1]. If a company’s demand forecasting is poor, they may face two negative business
cases: overstock and/or out-of-stock status. If a company ends up overstocked, they waste inventory
costs for handling products, which results in loss. If a company ends up out-of-stock, customers
cannot buy their product and may then go to the company’s competitors [2]. Due to this problem,
demand forecasting is very important to supply chain members. Even though many researchers
have developed time-series forecasting models based on statistical methods, those models cannot
handle complicated market situations. Recently, development of the neural network (NN) allowed for
effectively solving untouchable real-world problems such as self-driving cars, image recognition, the
game of go, etc. Using NN is also expected to increase the accuracy of demand forecasting [3]. Thus,
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this paper presents a new forecasting model based on NN for product demand forecasting in supply
chain management (SCM).

Researchers have applied various types of NN models, such as Artificial Neural Networks (ANN),
Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) to demand forecasting
problems in SCM [1–5]. They prove that those models can dominate statistical methods including
linear regression and autoregressive integrated moving average (ARIMA). Due to statistical methods
being theoretically linear models, they don’t respond well to uncertain demand changes [3]. Among
NN based models, LSTM, which was introduced by Hochreiter and Schmidhuber [6], has been used as
the most fitted model in a time-series problem, such as recognition and process prediction disease
diagnosis [7–9]. The increased concerns of the time-series problem force researchers to develop new,
more effective NN based models. Regarding this concern, Cho et al. [10] developed Gated Recurrent
Unit (GRU) which is the upgraded version of LSTM. Even though many researchers have suggested NN
based models and applied them to various time-series problems, few researches have used LSTM and
GRU in demand forecasting [3,11]. In addition, while applying LSTM or GRU, many hyperparameters,
such as the number of inputs, hidden layers, etc., are key factors in the performance of forecasting. If a
decision maker sets hyperparameters unsuccessfully, the model obtains local optimum results. Thus,
some researchers utilize meta-heuristic algorithms to find hyperparameters for improving forecasting
accuracy [12–14].

In accordance with previous research, we developed a hybrid model, GA-GRU, which applies
Genetic Algorithm (GA) to obtain hyperparameters for GRU, in order to improve the performance of
product demand forecasting in SCM. In our model, GA is searching five types of hyperparameters
including window size, number of neurons in the hidden state, batch size, epoch size, and initial
learning rate. The contributions of this research are as follows. First, in our knowledge of the available
previous research, this research is the first to integrate GA and GRU for a product demand forecasting
problem in SCM. Second, GA-GRU, which obtains five types of optimal hyperparameters of GRU,
improves the accuracy of demand forecasting. Third, we compare the performance between the
GA-GRU and different models, and then prove the advantages of GA-GRU.

The structure of this paper is organized as follows: Section 2 presents the literature review. In
Section 3, we present GRU and GA methodologies, and then develop GA-GRU. Section 4 details
some experiments. Section 5 presents both academic and management insights of this paper. Finally,
conclusions and future studies are presented in Section 6.

2. Literature Review

This paper is related to three research areas of demand forecasting in SCM: statistical methods,
NN based models, and hyperparameter optimization of NNs.

In the past, for product demand forecasting in SCM, many researchers used a variety of statistical
methods, such as moving average, weighted average, exponential smoothing, and the Holt-Winters
method, etc. Later, some researchers considered an ARIMA model for improving forecasting accuracy.
Kim et al. [15] generated both stationary and nonstationary demands using an ARIMA model. Based on
the result of ARIMA, they solved the replenishment contract between supply chain members. Shukla
and Jharkharia [16] applied an ARIMA model for fresh food demand forecasting in a supply chain.
Babai et al. [17] considered an ARIMA (0,1,1) model and presented the relationship between inventory
performance and forecasting accuracy. Ramos et al. [18] considered that retail sales contained seasonal
patterns for planning decisions. They presented that ARIMA obtains good performance in one-step
and multi-step forecasting. Van Calster et al. [19] developed ProfARIMA which handles the lags of a
seasonal ARIMA model. They applied a developed model to the sales data of the Coca-Cola company
and showed its accuracy. Even though ARIMA has been widely used in a variety of supply chain areas,
the linear characteristic of ARIMA makes it difficult to forecast real-world demand changes [3].

After the remarkable development of NN, many researchers have applied NN to various demand
forecasting problems [20–22]. Chawla et al. [1] suggested an attempt to use ANN in demand forecasting
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and showed that ANN usefully forecasts demand for Walmart. Choi and Lee [23] presented a novel
LSTM ensemble to combine forecast results from a set of individual LSTM models. Kim et al. [4]
focused on LSTM in order to improve the management quality of mass customization in smart
manufacturing. Bandara et al. [11] developed a LSTM model to handle the non-linear demand in
E-commerce and presented a pre-processing framework. According to previous researches, NN based
models outperform traditional statistic methods. However, there is a growing need to develop NN
based model which handles complex demand patterns in the real world.

Recently, as the high accuracy of demand forecasting grows, researchers have developed hybrid
models which combine NN and meta-heuristic algorithms including GA, Differential Evolution (DE),
and Particle Swarm Optimization (PSO), etc. The use of these meta-heuristic algorithms aims to obtain
hyperparameters of NNs such as the number of input parameters, the number of hidden neurons, and
batch size, etc. Almalaq and Zhang [24] focused on the future energy demand prediction for a building,
which is an important problem in energy demand reduction. Due to this, they proposed a hybrid model
which combined LSTM with GA, which optimizes window size and both the number of hidden layers
and the number of neurons. Bouktif et al. [14] considered a smart grid problem which forecasts the
electric load of each power company for load scheduling. They used GA to obtain the number of layers
and time lags for a LSTM model. Sagheer and Kotb [13] presented a forecasting model based on deep
LSTM which has two or more LSTM layers. In this research, GA optimized three hyperparameters,
lag size, number of hidden neurons, and number of epochs. Peng et al. [12] proposed an effective
LSTM model with DE, called DE-LSTM, for electricity price forecasting. In their proposed model, DE
obtained four kinds of hyperparameters including length of input, maximum training number, number
of units of the hidden layer, and batch size. Su et al. [25] developed a robust hybrid natural gas demand
forecasting approach based on integrating Wavelet Transform, RNN, and GA. In previous studies,
many researchers presented a hybrid model which deals with the forecasting problem in various
areas. However, a hybrid model was rarely applied to the product demand forecasting problem in
SCM. Demand forecasting is the basis of support for production capacities and customer demands
in SCM. Appropriating demand forecasting reduces inventory excesses and shortages and improves
profitability by balancing demand and supply [26]. For improving the accuracy of the NN model, most
studies have focused on model hyperparameters such as window size and number of hidden neurons.
In this study, we consider not only model hyperparameters, but also optimizer hyperparameters of
batch size, epoch size, and initial learning rate, which simultaneously improve the accuracy of the NN
model and training process. Thus, this research is necessary to develop a hybrid model that considers
more hyperparameters, which deals with the product demand forecasting in SCM.

3. Methodology

This section presents the background theories of GRU and GA. Based on these theories, we
developed a hybrid model called GA-GRU, which optimizes the hyperparameters of GRU using GA.

3.1. Gated Recurrent Unit

GRU developed to solve the long short dependency problem regarding vanishing and exploding
gradients, which is another well-known version of LSTM [10]. GRU is concretely designed to handle
sequential data that shows patterns over time steps, such as time-series data. The structure of GRU,
which consists of an update gate and a reset gate, is simpler than LSTM which has three gates, an input
gate, a forget gate, and an output gate. Thus, the train speed of GRU is a little bit faster than LSTM.

The update gate controls how much information should be added at the next state cell. More
information moves into the next state cell when the value of the update gate is higher. The reset gate
controls how much of the previous information should be forgotten. In this case, more information
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from the previous cell might be forgotten when the value of the reset gate is higher [27]. The equations
for update gate Zt and reset gate rt are explained below:

Zt = σ(Wzxt + Vzht−1 + bz) (1)

rt = σ(Wrxt + Vrht−1 + br) (2)

The hidden state ht related to current time step t takes a linear interpolation between the previous
activation function at previous time step t− 1 and the candidate hidden state h̃t. Both the hidden state
and the candidate hidden state are formulated as:

ht = (1− zt) ⊗ ht−1 + zt ⊗ h̃t (3)

h̃t = tanh(Wcxt + Vc(rt ⊗ ht−1)) (4)

In Equations (1)–(4), the matrices Wz, Wr, and Wc are the input weighted matrices, and Vz, Vr,
and Vc are the recurrent weight matrices. The vectors bz and br are the bias vectors. The function σ is
the activation function. Figure 1 shows the structure of GRU.

Mathematics 2020, 8, 565 4 of 15 

 

𝑍𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑉𝑧ℎ𝑡−1 + 𝑏𝑧) 
(1) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑉𝑟ℎ𝑡−1 + 𝑏𝑟) (2) 

The hidden state ℎ𝑡  related to current time step 𝑡 takes a linear interpolation between the 

previous activation function at previous time step 𝑡 − 1 and the candidate hidden state ℎ̃𝑡. Both the 

hidden state and the candidate hidden state are formulated as: 

ℎ𝑡 = (1 − 𝑧𝑡) ⊗ ℎ𝑡−1 + 𝑧𝑡 ⊗ ℎ̃𝑡 (3) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑉𝑐(𝑟𝑡 ⊗ ℎ𝑡−1)) 
(4) 

In Equations (1)–(4), the matrices 𝑊𝑧, 𝑊𝑟 , and 𝑊𝑐 are the input weighted matrices, and 𝑉𝑧, 

𝑉𝑟 , and 𝑉𝑐  are the recurrent weight matrices. The vectors 𝑏𝑧  and 𝑏𝑟  are the bias vectors. The 

function 𝜎 is the activation function. Figure 1 shows the structure of GRU. 

 

Figure 1. The structure of Gated Recurrent Unit. 

3.2. Genetic Algorithm 

GA is one of the famous meta heuristic algorithms based on a stochastic optimization method. 

The major benefit of GA is to obtain an optimal or a near optimal solution of a large scale problem 

under reasonable computing time [28]. Holland [29] developed GA based on Darwin’s The Origin of 

Species, so it utilizes natural evolution. GA begins with a set population, which is the initial set of 

random solutions. And then, GA selects chromosomes to obtain a good fitness value. For this process, 

GA consists of three operators: selection, crossover, and mutation. Thus, the efficiency of GA depends 

on the initial population and those operators. The three operators and fitness functions of GA are 

described as follows. 

3.2.1. Selection 

Using the selection operator, GA picks good chromosomes for the next generation. Tournament 

selection is used in this paper. This selection is done by running several tournaments among certain 

chromosomes which are randomly picked from the population. The winning chromosome of each 

Figure 1. The structure of Gated Recurrent Unit.

3.2. Genetic Algorithm

GA is one of the famous meta heuristic algorithms based on a stochastic optimization method.
The major benefit of GA is to obtain an optimal or a near optimal solution of a large scale problem
under reasonable computing time [28]. Holland [29] developed GA based on Darwin’s The Origin of
Species, so it utilizes natural evolution. GA begins with a set population, which is the initial set of
random solutions. And then, GA selects chromosomes to obtain a good fitness value. For this process,
GA consists of three operators: selection, crossover, and mutation. Thus, the efficiency of GA depends
on the initial population and those operators. The three operators and fitness functions of GA are
described as follows.

3.2.1. Selection

Using the selection operator, GA picks good chromosomes for the next generation. Tournament
selection is used in this paper. This selection is done by running several tournaments among
certain chromosomes which are randomly picked from the population. The winning chromosome
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of each tournament with the best fitness value is selected, and those chromosomes move into the
next generation.

3.2.2. Crossover

For producing offspring chromosomes, the crossover operator is performed between parent
chromosomes. The two points crossover is applied in this paper. This crossover randomly picks two
crossover points from parent chromosomes and swaps them [30].

3.2.3. Mutation

The mutation operator randomly changes one or more genes in a chromosome. Due to this
operator, GA can escape the local optimum. We use the uniform mutation operator which changes the
value of chosen genes to a random uniform value [31].

3.2.4. Fitness Function

Evaluating the performance of GA, we calculate a fitness value using a fitness function. We apply
two kinds of evaluation functions; root mean square error (RMSE) and mean absolute error (MAE).
Those equations are presented as follows:

RMSE =

√√√
1
N

N∑
i=1

(yn − fn)
2 (5)

MAE =
1
N

N∑
i=1

∣∣∣yn − fn
∣∣∣ (6)

In Equations (5) and (6), N is the number of data values in the time-series. yn and fn denote the
real value and predicted value, respectively. Finally, the process of GA is presented as follows:

Step 1. (Initialization)

Step 1.1 Set iter = 1.
Step 1.2 Set length of chromosome C, range of gene value [gmin, gmax], population size S, probability

of crossover CR, mutation factor F, maximum iteration number ITER.
Step 1.3 Search the initial population randomly.

xsc = gmin + rand ∗ (gmax − gmin) where s = 1, 2, . . . , S; c = 1, 2, . . . , C.

Step 2. Calculate the fitness function an Equation (5) or (6) for each chromosome Gs.

Step 3. (Apply the tournament selection operator)

Select two chromosomes G1 and G2 which have good fitness values.

Step 4. (Apply the crossover operator with CR)

Select two-points randomly and swap chromosomes, G1 and G2.

Step 5. (Apply the mutation operator)

Step 5.1 Set the definition domain of each gene, xs = (xs1, xs2, . . . xsC), as rand [0, 1).
Step 5.2 For c = 1 to C, if the definition domain of xsc < F, xsc → gmin + rand ∗ (gmax − gmin).

Step 6. If iter < ITER, iter = iter + 1 and go to Step 2. Otherwise, stop GA.
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3.3. Hyperparameter Optimization Using Genetic Algorithm

In this section, we develop a hybrid model GA-GRU to obtain the hyperparameters of GRU using
GA. The NN based models, such as ANN, RNN, LSTM, GRU, etc., have a lot of hyperparameters
which affect their performance. A decision maker sets hyperparameters using the rule of thumb
method before the machine learning process is started. Regarding this, a decision maker who has
less experience would be likely to obtain bad results. Finding optimal hyperparameters is one of the
major issues in machine learning. However, finding optimal hyperparameters is a non-deterministic
polynomial (NP) hard problem, which is difficult to solve. GA is a well-known powerful meta-heuristic
algorithm used to solve NP problems in a variety of fields [32]. Therefore, we apply GA when searching
for optimal hyperparameters for GRU.

In this paper, we focus on five hyperparameters: window size, number of neurons in the hidden
state, batch size, epoch size, and initial learning rate. First is the window size, which is normally called
the length of the input. A suitable length of the input can keep necessary input data which reduces
forecasting errors. Second is the number of neurons in the hidden state. Using few neurons in the
hidden state causes underfitting, and vice versa. Third is the batch size. If the batch size is small, the
training might be underfitted. If the batch size is large, we need a lot of required memory. Fourth
is the epoch size. If the epoch size is small, the learning has difficulty converging. If the epoch size
is large, the training might be overfitted. Fifth is the initial learning rate. An over or under sized
learning rate can cause undesirable divergence in the short time and tapping in local minima with long
time. Even though some methods, which change the learning rate during the learning process, are
developed, setting the initial learning rate is still important. As we mentioned above, the performance
of GRU can be affected by the five hyperparameters. Thus, the purpose of GA-GRU is to optimize
those hyperparameters using GA. Figure 2 shows the flowchart of GA-GRU. The main procedure of
GA-GRU is proposed as follows:

Step 1. (Data processing)

The dataset is normalized and then divided into training, validation, and test sets.

Step 2. (Initialization of GA)

Set Fittemp
←∞.

Set length of chromosome C, range of gene value [gmin, gmax], population size S, probability of
crossover, mutation factor, maximum iteration number GEN.

Step 3. (Operation of GA)

Step 3.1 Set gen = 1
Step 3.2 Search a random initial population.
xsc = gmin + rand ∗ (gmax − gmin) where s = 1, 2, . . . , S; c = 1, 2, . . . , C.
Step 3.3 Calculate fitness values for the initial population using Equation (5) or (6).
Step 3.4 Select chromosomes which have good fitness values.
Step 3.5 (Apply the crossover and mutation operators and obtain the offspring population)

Step 3.5.1 Select two-points randomly and swap chromosomes.
Step 3.5.2 Set the definition domain of each gene, xs = (xs1, xs2, . . . xsC), as rand [0, 1).
Step 3.5.3 For c = 1 to C, if the definition domain of xsc < F,

xsc → gmin + rand ∗ (gmax − gmin).
Step 3.5.4 Generate new offspring population.

Step 3.6 Using Equation (5) or (6), calculate the fitness values of the validation set for the
offspring population.
Step 3.7 Set Fittemp

←MIN
[
Fittemp, f itness values(xsc)

]
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Step 3.8 If gen = GEN, GA is terminated. Otherwise, gen = gen + 1, and go to Step 3–5.

Step 4. (Training of GRU with optimal hyperparameters)

GRU with optimal hyperparameters is trained using the training and validation sets.

Step 5. (Testing performance of GRU)

Compare the test set with the forecasting outputs of GRU.Mathematics 2020, 8, 565 8 of 15 
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Figure 2. The flowchart of GA-GRU.

In Step 1, the dataset is normalized and then divided into three main datasets, training (70% of the
dataset), validation (10% of the dataset), and test (20% of the dataset). In Step 2, the parameters of GA
are initialized. In Step 3, GA searches hyperparameters and applies them to train a GRU model with
the training set. While training a GRU model, we use mean squared error (MSE) as a loss function.
Then, using the validation set, GA calculates a fitness function with the current hyperparameters.
Equation (7) denotes the function of MSE.

MSE =
1
N

N∑
i=1

(yn − fn)
2 (7)

GA ends when the current generation hits the maximum generation, otherwise GA moves to
the next generation in order to find a better solution. Step 4 is to train a GRU model with optimal
hyperparameters using the training and validation sets. In Step 5, GRU obtains the predicted vales
and compares them with the test set.

4. Experiments

To check the performance of GA-GRU, we performed three experiments. The first experiment was
to compare GA-GRU with other models, such as ARIMA, ANN, RNN, and GA-LSTM. The second



Mathematics 2020, 8, 565 8 of 14

experiment was to test k-fold cross validation. The third experiment was the sensitive analysis of the GA
parameters. We took a Brazilian top retailer’s sales dataset, which included the customers’ daily product
demand, from January 2014 to July 2016 (Retail Sales Forecasting, https://www.kaggle.com/tevecsystems/
retail-sales-forecasting) as an example. The dataset was divided into three subsets: training set (70%, 564
observations), validation set (10%, 81 observations), and test set (20%, 162 observations). Because the
dataset was daily demand data, 1-day-ahead (one-step-ahead) forecasting was performed. Figure 3 shows
the time-series graph of daily product demand.
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Before we performed the three experiments using the dataset, data preprocessing had to be applied.
This work is one of the important steps for obtaining better performance and accuracy, because the data
has some missing fields and noise. The data has different scales, so the features with a large scale might
dominate other features. This situation weakens learning performance. Thus, using the normalization
method, we made the data the same scale, which means each sample is equally important. In this
paper, the raw dataset was preprocessed through the min-max normalization method. The equation of
the min-max normalization method is presented as follows [24]:

.
xi =

xi −min
max−min

(8)

In Equation (8), xi is the original data of the raw dataset. max and min are the maximum value of
the features and the minimum value of the features, respectively.

.
xi is the normalized value, scaled to

be [0, 1]. The optimizer is an adaptive moment estimation (ADAM) optimizer. We used a computer
with an Intel i7 3770 3.9GHZ, 16GB RAM, and a NVIDIA Geforce GTX 1060 graphics card. The
development environment is Python 3.6 where GRU is implemented with Tensorflow 2.0. For GA, we
utilized Distributed Evolutionary Algorithms in Python (DEAP). To obtain optimal hyperparameters,
it is necessary to set the range for each hyperparameter on the search space of GA. It is recommended
that the ranges of hyperparameters, such as window size, number of neurons in the hidden state, batch
size, and epoch size, are set as less than the range of the training set (observation). The initial learning
rate should be less than 1. It is better to decide those ranges based on personal computer performance,
because large ranges require more memory and computational time. Table 1 shows the range of each
hyperparameter of GRU used in this paper.

https://www.kaggle.com/tevecsystems/retail-sales-forecasting
https://www.kaggle.com/tevecsystems/retail-sales-forecasting
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Table 1. The range of hyperparameters of Gated Recurrent Unit.

Hyperparameter Range

Window size [1, 30]
Number of neurons in the hidden state [1, 50]

Batch size [1, 50]
Epoch size [10, 300]

Initial learning rate [0.0001, 0.001]
Loss function MSE

4.1. Comparison of the Performance of GA-GRU with other Forecasting Models

This test compared GA-GRU with five forecasting models including ARIMA, RNN, LSTM, GRU,
and GA-LSTM. GA-LSTM is a hybrid model operated as the same manner as GA-GRU. We applied
GA to LSTM to find five hyperparameters of LSTM. To evaluate the performance of those models, we
used two measures, RMSE and MAE. Table 2 presents the parameters of GA used in this experiment.

Table 2. The parameters of Genetic Algorithm.

Parameter Value

Number of population size 10
Number of generations 15
Crossover probability 0.70

Mutation factor 0.015

The parameters of GA were set based one previous research. GA obtains poor results with a
very small population and small generation number. According to Kalyanmoy and Samir (1999),
the population size and generations should be set to 5 or more and larger than the population size,
respectively. Based on this, we set population size at 10 and number of generations at 15. In addition,
the crossover probabilities and mutation factors in the literature are generally set as 0.5–1.0 and
0.005–0.05, respectively [33]. On the basis of similar work [24], crossover probability and mutation
factor were set at 0.7 and 0.015, respectively. Table 3 reports the performance of the six forecasting
models. Compared with different forecasting models, GA-GRU achieves higher accuracy in the cases
of RMSE and MAE. The measure is defined as a percent deviation, 100×

(
R−R f m

)
/R f m, where R is

the result of GA-GRU, and R f m is the result of other forecasting models. This measure proves that
GA can obtain optimal hyperparameters of GRU. In addition, the interesting point is that GA-GRU
obtains better results than GA-LSTM although the hyperparameters of both models are optimized
using GA. This result shows that GRU is more powerful than LSTM in our problem. In short, GA-GRU
dominated other forecasting models. Figure 4 illustrates the comparison graph of actual demand and
forecasted demand generated by GA-GRU.

Table 3. The performance of different forecasting models.

Forecasting Model RMSE Percent Deviation MAE Percent Deviation

ARIMA 96.494 −24.312 69.723 −27.013
RNN 84.900 −13.985 61.380 −17.092
LSTM 83.315 −12.348 58.045 −12.328
GRU 81.341 −10.221 56.423 −9.808

GA-LSTM 80.729 −9.541 51.996 −2.129
GA-GRU 73.027 . 50.889 .
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Figure 4. The graph of the forecasted demand generated by GA-GRU and real demand. 
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Figure 4. The graph of the forecasted demand generated by GA-GRU and real demand.

4.2. Test the k-Fold Cross-Validation of GA-GRU

We checked the k-fold cross-validation which splits the time-series dataset into k-fold subsets.
This method repeats the process of splitting the dataset into training and test sets k-times. The size of
the test set is fixed while the size of the training set increases for every fold. Testing the cross-validation
offers a robust performance estimation of demand forecasting when each data is used for training
and testing at each k-fold [24]. We utilized 10-fold cross-validation using the best hyperparameters of
GA-GRU obtained in Section 4.1.

Table 4 shows the result of the 10-fold cross-validation. The results of RMSE and MAE in each
fold are different because both train and test sets are shuffled during the test of k-fold cross-validation.
This test improved the confidence of forecasting efficiency even though the dataset is small. When
the dataset is small, the overfitting will result. The k-fold cross-validation can check the overfitting of
current GA-GRU model which obtains optimal hyperparameters. The mean of RMSE and MAE in the
10-fold cross-validation is less than the results of GA-GRU in Section 4.1. Thus, the GA-GRU with
optimal hyperparameters is not overfitted even though we trained GA-GRU with small datasets.

Table 4. The results of the 10-fold cross-validation.

Number of Folds RMSE MAE

1 53.214 39.660
2 47.354 37.817
3 60.134 43.875
4 71.770 42.149
5 53.064 40.836
6 64.976 52.274
7 75.330 60.632
8 63.977 48.907
9 50.466 37.180

10 96.630 63.324

Mean 63.692 46.665
Standard deviation 14.016 8.880
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4.3. Sensitivity Analysis of the Genetic Algorithm Parameters

The results of GA-GRU are affected by the GA parameters such as probability of crossover and
mutation factor. In this experiment, we tested the forecasting accuracy between the performance of
GA-GRU and the GA parameters. The results of the sensitivity analysis are presented in Tables 5 and 6.

Table 5. The forecasting results with different mutation factors.

Probability of Crossover Mutation Factor RMSE MAE

0.70

0.005 74.315 51.957
0.010 73.673 51.086
0.015 73.027 50.889
0.020 74.272 51.391
0.025 74.507 51.045

Table 6. The forecasting results with different probabilities of crossover.

Mutation Factor Probability of Crossover RMSE MAE

0.015

0.60 74.681 52.321
0.65 74.220 51.040
0.70 73.027 50.889
0.75 73.926 51.061
0.80 74.261 51.582

Table 5 shows the forecasting results at different mutation factors. When the mutation factor is
0.015, both RMSE and MAE are minimized. Table 6 shows the forecasting results of different crossover
probabilities. When the probability of crossover is 0.70, both RMSE and MAE are minimized. It is
important to calculate the proper crossover probability and mutation factor, because those parameters
affect the performance of GA. According to the literature [33], large crossover probability can converge
a population quickly but might miss the optimal solution. A large mutation factor changes GA to a
purely random search algorithm. In this sensitivity analysis, the result suggests setting the mutation
factor to 0.015 and the probability of crossover to 0.70. Even though the optimal values of those
parameters might change depending on the dataset, this result will help a decision maker who sets GA
parameters when he/she faces this kind of problem.

5. Implications

5.1. Academic Implications

This paper suggested a hybrid model that combined GRU and GA for product demand forecasting
in SCM. Even though GRU has been a well-known NN model in the time-series forecasting area,
it is quite difficult to set the initial hyperparameters for improved performance. Accordingly, we
suggested that GA obtain the optimal hyperparameters of GRU. This is the first attempt to consider
five hyperparameters including window size, number of neurons in the hidden state, batch size, epoch
size, and initial learning rate. We believe that this research is an initiating academic research in the
area of product demand forecasting and hyperparameter selection. Thus, this research will help other
researchers who want to study related follow-up problems.

5.2. Managerial Implications

The proposed GA-GRU provides valuable implications for a company by predicting future
product demand. Based on product demand forecasting, the company can do inventory control
and make a cost-minimizing business plan. Because GA-GRU finds the optimal hyperparameters
of GRU, GA-GRU has the advantages of flexibility and customization. As an example, a company
can combine GA-GRU with a parallel computing technique and frameworks, such as MapReduce,
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Hadoop, and Spark. Applying a parallel computing technique to GA-GRU can handle time series
data sets in real time. In addition, GA-GRU could be applied for forecasting any industry area such
as inventory, demand, sales, and pricing. Accordingly, the company can apply GA-GRU to various
complex business situations. Thus, the company could obtain the basis of decision making and respond
to future uncertainty.

6. Conclusions and Future Researches

This paper presents a hybrid model called GA-GRU, which predicts future product demand in
SCM. Due to false demand forecasting driving up a lot of supply chain costs, many companies and
researchers have focused on methods of demand forecasting. In order to improve the performance of
demand forecasting, we developed GA-GRU based on two research ideas. First is to utilize GRU. GRU
is an upgraded version of LSTM and has an advantage in handling time-series data. Second is to apply
GA to GRU. GA is a well-known meta-heuristic algorithm in various research areas. The performance
of GRU is dependent on the initial hyperparameter values. If the hyperparameters of GRU are set
incorrectly, the demand forecasting performance might be bad. We considered five hyperparameters of
GRU, window size, number of neurons in the hidden state, batch size, epoch size, and initial learning
rate. Thus, GA-GRU firstly obtains optimal hyperparameter values, then operates the process of
demand forecasting.

To test the performance and accuracy of GA-GRU, we conducted three experiments. First, we
compared GA-GRU with five forecasting models including ARIMA, RNN, LSTM, GRU, and GA-LSTM.
Although GA-LSTM followed the same process as GA-GRU, GA-GRU gets better results. It suggests
that GRU is more powerful than LSTM in our problem. Also, the result shows that GA-GRU dominates
the other five forecasting models. Second, we performed 10-fold cross-validation testing. Based on
this test, we showed the robust performance of GA-GRU. Third, we performed a sensitivity analysis
of the GA parameters. GA-GRU is functionally an optimization-based model for product demand
forecasting using GA and GRU. The performance of GA-GRU is dependent on the GA parameters.
The result shows that setting the mutation factor of 0.015 and the crossover probability of 0.70 is the
best option. This experiment might be useful for a decision maker who is a beginner in GA.

There are some limitations of our research and related future research topics. First, this paper
only considers univariate time-series data. For handling more complex supply chain problems, we
could consider multivariate time-series data. Second, we only focused on a single GRU model. In
order to improve the performance of forecasting, GRU can be combined with other models such as
ARIMA and convolutional NN, etc. Finally, other meta-heuristic algorithms can be applied in order to
obtain optimal hyperparameter values.
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