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Abstract: Currently, intelligent devices with fingerprint identification are widely deployed in our daily
life. However, they are vulnerable to attack by fake fingerprints made of special materials. To elevate
the security of these intelligent devices, many fingerprint liveness detection (FLD) algorithms have
been explored. In this paper, we propose a novel detection structure to discriminate genuine or fake
fingerprints. First, to describe the subtle differences between them and take advantage of texture
descriptors, three types of different fine-grained texture feature extraction algorithms are used. Next,
we develop a feature fusion rule, including five operations, to better integrate the above features.
Finally, those fused features are fed into a support vector machine (SVM) classifier for subsequent
classification. Data analysis on three standard fingerprint datasets indicates that the performance of
our method outperforms other FLD methods proposed in recent literature. Moreover, data analysis
results of blind materials are also reported.
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1. Introduction

Protecting digital information from illegal attacks is becoming increasingly important in our daily
life [1–3]. With the coming of the information age, intelligent devices with fingerprint identification
are used in various information management systems, such as intelligent devices quick payment
and bank attendance. The development of image technology and the application of intelligent
devices enable us to capture significant amounts of high-resolution images. Among these, biometric
images have attracted considerable attention owing to the popularity of intelligent devices with
biometric authentication. Unlike conventional authentication methods based on passwords and
tokens, biometrics has the advantage of being hard to forget, copy, lose, or forge. Thus, as an
important biometric technique, fingerprint identification is widely employed for unlocking intelligent
devices or using them for payment. However, as a result of overuse, fingerprints are becoming the
targets of attackers or imposters. Scholars [4] have proven that intelligent devices with fingerprint
identification are vulnerable to artificial replicas made from common materials, such as silica, gelatin,
clay, and Play-Doh, and attackers or imposters can hinder these optical and capacitive sensors using
these forged fingerprints when fingers press on the surface of the scanners. Thus, one of the common
problems with these intelligent devices is that they cannot guarantee the authenticity of fingerprints
before identification; specifically, they cannot distinguish between genuine or fake fingerprints [5].

The fingerprint liveness detection (FLD) method aims to solve the problems of spoofing attacks.
Several researchers have devoted considerable effort to distinguishing genuine fingerprints from fake
ones based on different physical or psychological characteristics in recent years [5], and the existing
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FLD methods mainly consist of two categories: hardware-based FLD methods and software-based
FLD methods. In hardware-based methods, additional sensor devices are essential to collect intrinsic
properties of human live fingerprint, such as oxygen saturation, blood pressure, skin distortion, or odor
of fingertips. Accordingly, these methods are usually complex and costlier. Moreover, it is hard to
update or maintain when attackers adopt a new craft to improve the quality of forged fingerprints [6].
In contrast, software-based FLD approaches are relatively simple and low cost without extra hardware,
and discriminative traits can be directly extracted from raw images to verify the fingertip liveness
using fingerprint data analysis algorithms. Additionally, software-based methods are a very suitable
solution to protect against biometrics spoofing attacks.

The software-based FLD methods are further divided into five categories: image quality, sweat
pores, perspiration, skin deformation, and texture features. The first four FLD methods need two or
more images to compare resulting in poor user experience. The methods based on texture features
analyze the fine texture information individually, and can measure using just one image, which
solves the problems in the first four methods. Texture is an important visual trait that describes
the homogeneity phenomenon of the image, and reflects the arrangement property of the surface
structure with slow change. Genuine and fake fingerprints can show different texture properties, such
as morphology, smoothness, and orientation, and, hence, texture information of fingerprints could be
employed for FLD.

At present, how to better describe the texture pattern of the fingerprints and achieve higher
classification accuracy is a research hotspot of FLD. Abhyankar et al. [7] proposed a novel FLD method
by combining multiresolution texture analysis and cross ridge frequency analysis. They attempted
to use different texture information to quantify how the pixel value distribution of the fingerprints
changed when the physical structure changed. Yuan et al. [8] introduced a multi-scale local phase
quantization (LPQ) and principal component analysis (PCA) algorithm. By performing a series of data
analyses based on several common feature extraction algorithms, including LPQ, local binary pattern
(LBP), and convolutional neural networks (CNN) [9–11], they demonstrated that the detection accuracy
of their method was optimal. Ghiani et al. [12] proposed a new method of binary statistical image
feature (BSIF), which encoded the local fingerprint texture into a feature vector using a set of filters
learnt from natural images. Xia et al. [13] built a co-occurrence array by calculating the horizontal and
vertical gradient of the quantified fingerprint image, and extracted features from the array, which were
fed into a support vector machine (SVM) for discrimination. Nika et al. [14] used LBP to extract the
local texture features and reduce the dimension of the feature vector by sequential forward floating
selection (SFFS). Fingerprint images were classified by a hybrid classifier.

The key to distinguishing true fingerprints from fakes is to extract the significant features between
them. The scale-invariant feature transform (SIFT) is invariant to image scaling, translation, and rotation,
and partially invariant to illumination changes and affine or three-dimensional projection [15]. This is
conducive to the effective expression of target feature information, but is cannot be used to extract
features from the dataset accurately and smoothly. LBP [16] has the advantages of rotation invariance
and gray invariance, however, it does not satisfy scale invariance. Histograms of oriented gradients
(HOG) [17] represent the structural feature of an edge (gradient) and describe the local shape information.
Because the influence of light color on the image data is ignored to some extent, the dimension of
the representation data required by the image is reduced. In addition, because of its processing
method of dividing blocks and dividing units, the relationship between local pixels of the image can
be well represented.

To sum up, the contributions of this paper are as follows: firstly, aiming at the defects of the
existing texture feature algorithm, a fine-grained feature fusion structure is proposed, which can
well solve the shortcomings of the single feature method. Secondly, feature fusion has a variety of
approaches, so this paper proposes a feature fusion rule to improve the detection performance of the
algorithm. Finally, the experimental results on three standard fingerprint sets demonstrates that the
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detection performance of the proposed method outperforms other algorithms, and that it also achieves
better detection performance in blind material detection.

The remainder of this paper is organized as follows. Section 2 presents the methodology, including
different feature extraction algorithms and particulars of the proposed model. Section 3 describes
the database and design of the experiments. Section 4 analyzes the results of the experiments.
Section 5 concludes.

2. Proposed Method

2.1. Feature Extraction

In order to better describe the differences between genuine and fake fingerprints in our data
analysis method, we establish feature fusion rules to concatenate the extracted features using three
feature extraction algorithms (SIFT, LBP, and HOG). As shown in Figure 1, our framework consists
of two processes, namely, the training process and testing processing. The former obtains the model
classifier through the training set, while the latter uses the testing set to verify the performance of
the model classifier. Firstly, the training set and the testing set of the fingerprint images are used as
the inputs of the feature extraction stage (including three feature extractors: SIFT, LBP, and HOG) to
extract features of the fingerprint images. Because the dimensions of extracted features are different,
it is hard to directly splice them. Thus, before feature fusion, insufficient parts of the feature vector
need to be filled with 0. Next, the above features are processed using the feature fusion operation
proposed in this paper. Then the fused features of the training set are input into the SVM classifier for
training, and the model classifier is obtained. Finally, in the evaluation stage, the testing set is used to
verify the performance of the model classifier.
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Figure 1. Flow chart of fingerprint liveness detection based on fine-grained feature fusion. 
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Figure 1. Flow chart of fingerprint liveness detection based on fine-grained feature fusion.

SIFT is a kind of local feature descriptor, and can detect the key subtle information differences
between genuine and fake fingerprints. As a stable descriptor of local features, SIFT remains unchanged
when these images are rotated and zoomed, even when the intensity changes. First, the image scale is
reconstructed using gray-scale transformation to gain the multi-scale space representation sequences of
images, and the main contour of the scale space is extracted from these sequences, which are regarded
as a feature vector to realize the extraction of key points in edge and corner detection at different
resolutions. Then, to ensure that the detected key points are local extreme points in the scale space
and two-dimensional image space, each pixel point is compared with its adjacent points, and the
location of the key points realized. In addition, the stable extreme points are extracted in the space of
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different scales, to guarantee the scale invariance of the key points. In order to make the key points
invariable to the image angle and rotation, the direction assignment is realized finding the gradient of
each extremum. Finally, the key point descriptor is used to generate a unique vector by dividing the
pixel area around the key point into blocks, calculating the gradient histogram within the key point,
and this vector is an abstract representation of the image information in the area.

In above calculation, the scale space L(x, y, σ) denotes the convolutional operation between the
original image I(x, y) and a variable-scale two-dimensional Gaussian function G(x, y, σ), and the
distribution is as follows:

G(x, y, σ) =
1

2πσ2 exp(−
(x− xi)

2 + (y− yi)
2

2σ2 ). (1)

The scale space of the image is the calculation of the convolution operation using the Gaussian
distribution and the original image, which can be expressed as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y). (2)

LBP [18,19] is an operator used to describe local texture features of images, and has obvious
advantages of rotation invariance and gray invariance. The aim is to measure the local contrast of
the fingerprints and describe the local texture information of the image. Before constructing the local
texture, we need to preprocess the given image, then transform the image into a gray-scale image
and analyze its pixels. The LBP operator is defined in the window of size 3 × 3, and the threshold is
the pixel in the center of the window. Then, the central pixel values are compared with those of the
adjacent 8 pixels. If the surrounding pixels are larger than the central pixel value, the position of the
pixel is marked as 1, otherwise as 0. In this way, 8-bit binary numbers are generated by comparing the
adjacent 8 points in the window of size 3 × 3, which are arranged in sequence to form a binary number.
This value is taken as the LBP value of the pixel in the center of the window to reflect the texture
information of the window of size 3 × 3. Usually, the image after LBP operation is divided into many
square regions, such as 4 × 4, 10 × 10 or 16 × 16, and obtain 16, 100, or 256 histograms, respectively,
representing the feature of fingerprint images by means of the above regions. The equation of the LBP
is as follows:

LBP(xc, yc) =
7∑

p=0

2ps[pi − pc], (3)

where [xc, yc] represents the position of the center pixel in a 3 × 3 window, pi and pc denote the gray of
the neighbor pixel and center pixel, respectively, and s[·] represents the symbolic function. The formula
of the symbolic function is as follows:

s[x] =
{

1, x ≥ 0,
0, x < 0,

(4)

HOG [20] are made up of local features calculating the gradient direction histogram of the given
images. Since HOG denote the structural feature of an edge (gradient), they can describe the local
shape information, thus, they are a commonly used feature descriptor. The quantization of position
and direction space can restrain the influence of translation and rotation to some extent. In addition,
after normalizing the histogram in the local region, the influence of illumination change can be partially
offset. Before calculation, gray-scale and brightness correction need to be carried out to reduce the
influence of local shadow and light changes in the image. Meanwhile, to some extent, the interference
of noise is suppressed. Then, to obtain a histogram of gradient, the horizontal and the vertical gradients
of the image are calculated by filtering the image with the kernel matrix. Next, the magnitude and
direction of each pixel are calculated. Then, each cell consists of 4 × 4 pixels, and the histograms of
gradients are counted for each pixel in the cell. To make the generated feature robust to light, shadow,
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and edge changes, it is also necessary to normalize the HOG features of the block. Finally, a block
is denoted by 4 × 4 cells and the features of the block are concatenated to get the final feature of the
image, which is employed for subsequent classification.

As shown in Figure 2, visual images of the true and fake feature fingerprints using the HOG
method are given. For these features extracted by HOG, the genuine fingerprint features are evenly
distributed, while the fake ones are damaged more with stains and other fuzzy states.
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Figure 2. True and fake fingerprints and their visualizations using histograms of oriented
gradients (HOG): (a) true fingerprint; (b) true fingerprint visualization; (c) fake fingerprint; (d) fake
fingerprint visualization.

2.2. Feature Fusion Rule

As we know, the fusion forms of different features are diverse. To better represent the differences
between genuine and fake fingerprints, we construct feature fusion rules to concatenate extracted
features. Firstly, different feature extractors make the dimensions of feature vectors different.
For example, in our method, feature dimension extracted by SIFT is 128, feature dimension extracted by
HOG is 379, and feature dimension extracted by LBP is 312. Thus, it is difficult to directly splice them.
To fuse these different features and unify their feature dimensions, next, we need to make up 0 for the
features of different dimensions before concatenation. That is, before performing the splicing operation,
the dimension of the final features is made the same by filling the end of the feature vector with 0,
i.e., in our method, all of them are 379. Then, we design five feature fusion rules, namely, addition
operation, maximum operation, minimum operation, average operation and concatenation operation.

Table 1 reports the specific operation for each feature fusion rule, where Fx denotes the
corresponding feature using different feature extractor (x is SIFT, LBP, or HOG), and addition
operation, maximum operation, minimum operation, average operation, and concatenation operation
are abbreviated as Add, Max, Min, Ave, and Con, respectively. Please refer to the algorithm 1 process
for the detailed operation process of different feature fusion.

Table 1. Feature fusion rules of different fusion operations.

Operation Addition Maximum Minimum Average Concatenation

Rule Add(FSIFT, FLBP, FHOG) Max(FSIFT, FLBP, FHOG) Min(FSIFT, FLBP, FHOG) Ave(FSIFT, FLBP, FHOG) Con(FSIFT, FLBP, FHOG)
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Algorithm 1. Proposed feature fusion rules.

Input: Given fingerprint training set
{(

Fk, y
}
, k ∈ (1, M) , y ∈ {−1, +1}, k is the kth image, and y is label;

Output: The classification results of different feature fusion operations;
Step 1: Extract feature of the image Fk using corresponding feature extractor x (x is SIFT, LBP or HOG,
respectively), which denotes Fk

x;
Step 2: Set String[] ope; ope [0] = “Add”, ope [1] = “Max”, ope [2] = “Min”, ope [3] = “Ave”, ope [4] = “Con”
While i < ope.length do

Step 3: Fill the end of feature Fk
x with 0 to make the dimension of the feature vectors equal.

Step 4: For the kth image, implement feature fusion via matrix operation: ope[i]
(
Fk

SIFT, Fk
LBP, Fk

HOG

)
.

Step 5: Use SVM to train the fused features ope[i]
(
Fk

SIFT, Fk
LBP, Fk

HOG

)
.

Step 6: Use testing set to validate the performance of the model classifier.
Step 7: Repeat steps 3 to 6 (ope.length – 1) times, obtain classification accuracies for feature
fusion operation.

End while

2.3. Parameter Optimization

After fusing the features using our proposed rules, the generated features are fed into an SVM
classifier for the subsequent training and testing.

The basic model of SVM is a binary classification model, which is suitable for binary fingerprint
liveness detection. Due to the high dimension of the fusion feature, it is linearly indivisible in
the low dimensional space, so we choose an RBF (radial basis function) [21] kernel function to
realize the nonlinear mapping. SVM is a kind of model classifier using the criterion of structural
risk minimization [22,23], and is divided into two categories depending on the common nuclear
function: linear or nonlinear. To eliminate the adverse effects caused by outliers’ dimensions, first,
a standardization operation is performed. Then, to obtain a robust and effective model classifier,
two parameters, C penalty coefficient and gamma, should be found. Parameter C, which is common
in all SVM kernels, competes with the simplicity of the decision surface and performs a valuable
conversion of misclassification of training samples. A smaller C makes the decision surface smoother,
while a higher C is designed to correctly classify all training samples. The parameter gamma defines
how much impact a single training sample can have. A larger gamma would affect other samples more.
The gamma parameter can be considered as the inverse of the radius of the influence of the sample
selected by the model support vector. Finally, using the above optimal parameter pair <C, gamma>,
we get the model classifier and test the performance of model classifier using the testing samples.

3. Experiments

3.1. Databases

The performance of our proposed method is evaluated using the benchmark fingerprint datasets
LivDet 2011 [13], 2013 [24], and 2015 [6], which were derived from 2011, 2013 and 2015 FLD competitions,
respectively, and publicly downloaded after registration. Each set consists of real and fake fingerprints
and is procured using four different flat optical sensors. Each real or fake dataset also consists of two
parts: a training set and a testing set. The detailed description of LivDet 2011, 2013, and 2015 datasets
is given in Tables 2–4. From Tables 2–4, we can clearly observe the distribution of fingerprint images.
It is worth emphasizing that there is no overlap between them.
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Table 2. The image distribution of the LivDet 2011 dataset.

Dataset ID Sensor Size
Samples in Training Set Samples in Testing Set

Live Spoof Live Spoof

Liv2011-1 Biometrika 315 × 372 1000 1000 1000 1000
Liv2011-2 Digital Persona 355 × 391 1004 1000 1000 1000
Liv2011-3 ItalData 640 × 480 1000 1000 1000 1000
Liv2011-4 Sagem 352 × 384 1008 1008 1000 1036

Table 3. The image distribution of the LivDet 2013 dataset.

Dataset ID Sensor Size
Samples in Training Set Samples in Testing Set

Live Spoof Live Spoof

Liv2013-1 Biometrika 352 × 384 1000 1000 1000 1000
Liv2013-2 CrossMatch 800 × 750 1250 1000 1250 1000
Liv2013-3 ItalData 480 × 640 1000 1000 1000 1000
Liv2013-4 Swipe 1500 × 208 1221 979 1153 1000

Table 4. The image distribution of the LivDet 2015 dataset.

Dataset ID Sensor Size
Samples in Training Set Samples in Testing Set

Live Spoof Live Spoof

Liv2015-1 CrossMatch 800 × 750 1510 1473 1500 1448
Liv2015-2 Digital_Persona 252 × 324 1000 1000 1000 1500
Liv2015-3 GreenBit 500 × 500 1000 1000 1000 1500
Liv2015-4 Hi_Scan 1000 × 1000 1000 1000 1000 1500

3.2. Experimental Process and Evaluation Metrics

First, we adopt an image gray processing operation to eliminate the influence of light and other
factors on the fingerprints. Then, the features of the fingerprints are extracted via three classical
feature extraction algorithms, namely, SIFT, LBP, and HOG. However, the detection performance of the
fingerprint liveness based on a single feature method is unsatisfactory, and our experimental results
also confirm this. To solve the problem, one possible solution is to fuse the features to make up for the
shortcomings of a single feature algorithm, thereby further enhancing the final performance.

Because of the difference between the three algorithms, the dimensions of the features extracted
are inconsistent. To successfully perform the five feature fusion operations in Section 2.2, insufficient
parts need to be filled with 0. Since the distributions and ranges of each feature are different, it is
necessary to map these features extracted to the same interval using normalization operations to make
the components of features consistent. Moreover, rescaling to the appropriate range can make training
and testing faster. Then, it is necessary to optimize parameters to find the best C and gamma, which
are employed for the subsequent model training. Finally, the classification result is obtained using a
trained model classifier.

In order to verify the performance of the feature extraction algorithm in the paper, we adopt the
average classification error (ACE) [24–26] as the metric of performance evaluation. The formula is
defined as follows:

ACE =
FAR + FRR

2
, (5)

where FAR (false accept rate) denotes the ratio of a fake fingerprint being mistaken as a genuine one,
while FRR (false reject rate) is the probability of a genuine fingerprint being improperly rejected as a
fake fingerprint; these can be expressed as follows:
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FAR =
the number o f misclassi f ied genuine ones

total genuine images
× 100, (6)

FRR =
the number o f misclassi f ied f ake ones

total genuine images
× 100. (7)

The outcome of fingerprint liveness detection may be any value between 0 and 100. Finally,
we can obtain the performance of our proposed algorithm using Equation (5). The smaller the ACE,
the better the detection performance of the algorithm.

4. Results and Data Analysis

4.1. Parameter Optimization

Before training using an SVM with an RBF, to obtain a model classifier with better robustness,
it is necessary to find the optimal parameter pair <C, gamma>. For the parameter pair <C, gamma>,
we directly use the grid.py program in the libsvm [23] toolkit to train the classifier, and take the
corresponding <C, gamma> with the highest classification accuracy as the optimization. Figures 3–5
provides the visual images of optimal parameter pairs in the LivDet 2011 dataset from Digital, the
LivDet 2013 dataset from Biometrika, and the LivDet 2015 dataset from Hi_Scan. At the top of each
panel, the optimal parameter pairs <C, gamma> are given and input into the SVM for subsequent
model training. In our experiments, the optimal values of parameter pairs <C, gamma> in Figure 3a–e
are <8, 0.03125>, <8, 0.03125>, <128, 0.03125>, <32, 0.03125>, and <8, 0.0078125>, respectively, and
the optimal values of parameter pairs <C, gamma> in Figure 4a–e are <8, 0.0078125>, <32, 0.0078125>,
<0.03125, 0.0078125 >, <32, 0.03125>, and <32, 0.00049>, respectively. The optimal values <C, gamma>

in Figure 5a–e are <32, 0.0078125>, <32, 0.0078125>, <32, 0.0078125>, <32, 0.0078125>, and <8,
0.0078125>, respectively.
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4.2. Classification Accuracy Discussion

In this section, we first analyze and evaluate the performance of our method within LivDet 2011,
LivDet 2013, and LivDet 2015 datasets when adopting different feature fusion rules, and the detailed
results are reported in Tables 5–7. According to the observations in Tables 5–7, in general, the detection
results after feature fusion are better than those of a single feature algorithm, and the time required to
test all datasets is acceptable. Moreover, testing a fingerprint can be done without individuals knowing
it, which indicates that our method is also applicable to real life.

Table 5. Average classification accuracy and testing time of different feature fusions in the LivDet 2011
fingerprint set.

Feature Fusion
Average Classification Correct Accuracy (%) Testing Time (s)

Biometrika Digital Italdata Sagem Biometrika Digital Italdata Sagem

SIFT 85.0 87.8 85.9 92.3 7 7 11 9
LBP 84.5 91.2 93.4 99.8 12 14 19 15

HOG 79.3 92.1 66.5 99.9 60 30 66 10
SIFT + LBP 87.1 93.8 95.0 99.9 42 61 78 8

SIFT + HOG 83.6 96.9 82.7 99.9 62 40 67 43
LBP + HOG 85.7 96.6 94.0 98.0 26 19 18 21

Add (SIFT, LBP, HOG) 86.3 95.9 94.5 99.9 32 29 43 6
Max (SIFT, LBP, HOG) 75.0 87.5 61.2 99.9 6 5 6 1
Min (SIFT, LBP, HOG) 64.8 73.6 60.8 78.7 6 4 5 6
Ave (SIFT, LBP, HOG) 74.2 87.0 71.0 99.9 5 4 5 1
Con (SIFT, LBP, HOG) 89.0 97.4 95.3 99.9 65 99 128 14

Table 6. Average classification accuracy and testing time of different feature fusions in the LivDet 2013
fingerprint set.

Feature Fusion
Average Classification Correct Accuracy (%) Testing Time (s)

Biometrika Crossmatch Italdata Swipe Biometrika Crossmatch Italdata Swipe

SIFT 86.7 88.8 85.2 91.2 9 19 15 12
LBP 94.0 90.6 90.6 93.3 23 10 73 43

HOG 93.8 90.5 96.6 92.3 42 9 37 59
SIFT + LBP 84.9 93.6 95.6 97.9 33 45 62 25

SIFT + HOG 78.4 86.4 85.9 95.7 13 25 33 11
LBP + HOG 99.9 84.0 91.5 96.2 20 34 54 15

Add (SIFT, LBP, HOG) 99.6 92.4 94.3 96.5 12 22 25 10
Max (SIFT, LBP, HOG) 98.8 83.9 95.0 96.6 3 21 24 9
Min (SIFT, LBP, HOG) 98.1 56.5 72.3 79.3 15 7 10 7
Ave (SIFT, LBP, HOG) 95.4 94.2 94.7 93.7 14 17 17 14
Con (SIFT, LBP, HOG) 99.9 94.0 94.9 97.3 19 51 45 12
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Table 7. Average classification accuracy and testing time of different feature fusions in the LivDet 2015
fingerprint set.

Feature Fusion
Average Classification Correct Accuracy (%) Testing Time (s)

CrossMatch Digital_Persona GreenBit Hi_Scan CrossMatch Digital_Persona GreenBit Hi_Scan

SIFT 90.9 83.2 79.3 85.0 7 8 9 8
LBP 99.9 90.6 95.3 98.8 51 47 63 103

HOG 60.9 77.8 72.6 75.8 61 58 63 47
SIFT + LBP 99.9 90.7 94.4 98.7 14 33 44 93

SIFT + HOG 91.4 85.5 78.7 84.1 49 60 71 62
LBP + HOG 99.9 92.4 94.1 98.8 78 88 98 110

Add (SIFT, LBP, HOG) 99.9 89.1 92.8 99.2 38 34 40 82
Max (SIFT, LBP, HOG) 76.5 90.7 93.6 85.4 157 61 78 171
Min (SIFT, LBP, HOG) 99.8 75.7 70.1 99.2 59 48 125 146
Ave (SIFT, LBP, HOG) 99.9 90.3 92.2 98.5 77 36 59 108
Con (SIFT, LBP, HOG) 99.9 91.8 93.8 98.4 20 64 83 127

As shown in Table 5, in the LivDet 2011 dataset from Digital, the classification accuracies of SIFT,
LBP, and HOG are 87.8%, 91.2%, and 92.1%, respectively. After performing feature fusion operation,
the classification accuracy of SIFT + HOG is 96.9%. The detection accuracy of the algorithm is improved
significantly after fusion features. In the LivDet 2011 dataset from Sagem, the classification accuracies
of SIFT, LBP, and HOG are 92.3%, 99.8%, and 99.9%, respectively. After performing the feature fusion
operation, the classification accuracies of Add, Max, Ave, and Con are all 99.9%. The maximum
operations, minimum operations, and average operations run more quickly than the algorithm for a
single feature. The same conclusion can be drawn from the Biometrika and Italdata sensors. However,
abnormal results may also occur. For example, in Digital, the detection results of feature fusion
operations Max, Min, and Ave are weaker than those of a single feature. Based on our analysis, it is
possible that the more expressive texture features are discarded after the three matrix operations,
resulting in weaker final classification performance. Looking at the fusion operation Con, the results are
the best. Although there are some outliers, the overall situation shows that the detection performance
of the operation after feature fusion is higher than that of the single feature.

As shown in Table 6, for the Biometrika scanner on the LivDet 2013 dataset, the classification
accuracies of SIFT, LBP, and HOG are 86.7%, 94.0%, and 93.8%, respectively. After carrying out the
feature fusion operation, the classification accuracy of LBP + HOG is 99.9%. Thus, feature fusion
can improve the identification performance of genuine and fake fingerprints. In the CrossMatch
scanner on the LivDet 2013 dataset, the classification results of SIFT, LBP, and HOG are 88.8%, 90.6%,
and 90.5%, respectively. After performing the feature fusion operation, the classification accuracy of
SIFT + LBP is 93.6. The results once again show that the proposed feature fusion method can improve
the performance of fingerprint liveness detection.

As shown in Table 7, in the Hi_Scan sensor on the LivDet 2015 fingerprint set, the average
classification correct accuracies of SIFT, LBP, and HOG are 85.0%, 98.8%, and 75.8%, respectively, while
the classification accuracies of addition and minimum operations are both 99.2%, slightly higher than
the classification accuracy rate of a single algorithm. In the Digital-Persona dataset, the classification
accuracies of SIFT, LBP, and HOG are 83.2%, 90.6%, and 77.8%, respectively. The average classification
correct accuracies of SIFT + LBP and LBP + HOG are 90.7% and 92.4%, respectively, higher than that of
single feature method. The same problem occurs in Table 7. There are some outliers, but the overall
situation still suggests that the detection performance of the operation after feature fusion is higher
than that of the single feature.

In addition, the time required for testing all datasets is also listed in Tables 5–7, and is acceptable.
Moreover, under testing a fingerprint, it is basically done without our even knowing it, which indicates
that our proposed method is also applicable to real life.

Existing FLD methods are based on known fake fingerprint materials. However, the type of fake
fingerprint material is not known when testing it in reality. Thus, we also carried out a cross-material
evaluation of the fingerprint image sets used in this paper. For each dataset, we extracted the features
of fake fingerprints made by different materials for the training set and the testing set, and compared
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the accuracy of our feature fusion method with Nogueira et al. [25]. Table 8 provides the results, where
the ‘-’ indicates that the experiment was not performed in [25]. Regarding the results of other sensors
described above, the experiment shows that the detection accuracy of feature fusion is higher than that
of a single feature when performing blind material detection; that is, if we do not know what the fake
fingerprint was made of, the accuracy rate and the error rate are equal. Using the method proposed
in this work, the experiments indicate that the results are more accurate than those obtained simply
by guessing.

Table 8. Accuracy of different fake fingerprint materials in different datasets.

Datasets

Materials Used to Fabricate Fake
Fingerprints

Nogueira
et al. [24] Feature Fusion

Materials in
Training Set

Materials in
Testing Set CNN-VGG SIFT LBP HOG SIFT +

LBP
SIFT +
HOG

LBP +
HOG

SIFT +
LBP +
HOG

Bio2011 EcoFlex, Gelatine,
Latex

Silgum, Wood
Glue 10.1 28.6 15.5 4.3 15.0 8.1 13.7 14.5

Dig2011 Gelatin, Latex,
Play-Doh

Silicone,
Wood Glue - 19.7 9.1 8.0 8.0 4.3 4.2 3.2

Ita2011 EcoFlex, Gelatine,
Latex

Silgum, Wood
Glue, Other 22.1 27.7 7.6 33.1 7.4 26.5 6.3 5.5

Sag2011 Gelatin, Latex,
Play-Doh

Silicone,
Wood Glue - 19.0 20.0 0.1 15.5 0.1 0.1 2.0

Bio2013 Modalsil, Wood
Glue

EcoFlex,
Gelatine,

Latex
4.9 23.7 8.8 0.1 8.5 0.1 0.1 0.1

Cro2013 BodyDouble, Wood
Glue

Play-Doh,
Latex - 14.8 15.1 44.3 6.1 14.9 14.8 6.3

Ita2013 Modalsil, Wood
Glue

EcoFlex,
Gelatine,

Latex
6.3 20.2 1.8 38.4 5.4 21.0 6.5 5.8

Swi2013 BodyDouble, Wood
Glue

Play-Doh,
Latex - 17.1 3.0 2.9 2.3 2.2 1.1 1.1

HiS2015 EcoFlex, Gelatine,
Latex, Wood Glue

Liquid
Ecoflex, RTV 5.64 17.8 1.2 25.6 1.3 15.2 15.2 1.8

GreB2015 EcoFlex, Gelatine,
Latex, Wood Glue

Liquid
Ecoflex, RTV 4.6 23.5 6.2 24.9 5.3 22.2 5.6 5.8

DigP2015 EcoFlex, Gelatine,
Latex, Wood Glue

Liquid
Ecoflex, RTV 6.28 28.7 9.6 12.4 10.9 12.0 6.5 6.5

Cro2015 EcoFlex, Body
Double, Play-Doh

OOMOO,
Gelatine 1.9 5.8 0.1 39.1 0.1 6.0 0.1 0.1

4.3. Comparisons of Algorithms

Tables 9–11 list the detailed comparison results when we perform the concatenation operation.
To provide a clear comparison of each algorithm, the optimal results for each fingerprint sensor are
described in bold in each row. The smaller the ACE, the better the proposed method. The results for
each table are described below.

Table 9. The comparisons of the average classification error (ACE) of different algorithms in the LivDet
2011 dataset.

Algorithm Name
Average Classification Error Rate ACE in (%)

Biometrika Digital Italdata Sagem Average

Feature fusion 11.0 2.6 4.7 0.1 4.6
ULBP [26] 10.68 46.09 13.7 14.35 21.21

HIG-MC [27] 4.3 39.96 10.6 32.41 21.92
UniNap [28] 4.7 31.2 3.5 14.07 13.37
HIG-BP [27] 3.9 34.13 8.3 14.44 15.19
PHOG [29] 3.87 9.92 6.7 9.05 7.24

MSDCM [29] 3.55 20.84 2.35 5.25 7.59
Winner [28] 4.7 31.2 3.5 14.07 13.37
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Table 10. The comparisons of the ACE of different algorithms in the LivDet 2013 dataset.

Algorithm Name
Average Classification Error Rate ACE in (%)

Biometrika Crossmatch Italdata Swipe Average

Feature fusion 0.1 6.0 5.1 2.7 3.48
ULBP [26] 10.68 46.09 13.7 14.35 21.21

HIG-MC [27] 4.3 39.96 10.6 32.41 21.92
UniNap [28] 4.7 31.2 3.5 14.07 13.37
HIG-BP [27] 3.9 34.13 8.3 14.44 15.19
PHOG [29] 3.87 9.92 6.7 9.05 7.24

MSDCM [29] 3.55 20.84 2.35 5.25 7.59
Winner [28] 4.7 31.2 3.5 14.07 13.37

Table 11. The comparisons of the ACE of different algorithms in LivDet 2015 dataset.

Algorithm Name
Average Classification Error Rate ACE in (%)

CrossMatch Digital_Persona GreenBit Hi_Scan Average

Feature fusion 0.1 8.2 6.2 1.6 4.03
ULBP [26] 10.68 46.09 13.7 14.35 21.21

HIG-MC [27] 4.3 39.96 10.6 32.41 21.92
UniNap [28] 4.7 31.2 3.5 14.07 13.37
HIG-BP [27] 3.9 34.13 8.3 14.44 15.19
PHOG [29] 3.87 9.92 6.7 9.05 7.24

MSDCM [29] 3.55 20.84 2.35 5.25 7.59
Winner [28] 4.7 31.2 3.5 14.07 13.37

In Table 9, the average classification error (ACE) of our method is the lowest, which is 4.6%.
By observing the results of different scanners, it is found that the result of the Sagem scanner on the
LivDet 2011 is close to 0. That is, when the type of fingerprint scanner is known to be Sagem, we are
99% sure that the fingerprint to be tested is true or fake, and the performance is significantly higher
than other algorithms. Moreover, the ACE of our method is 2.64% lower than the best result of [29].
Although our result for the Biometrika scanner is 7.45% higher than one result of [29], the result of the
Digital sensor is 7.32% lower than that of [29].

In Table 10, the average classification error (ACE) of our method is the lowest, which is 3.48%.
The result of the Biometrika scanner on the LivDet 2013 dataset is close to 0. That is, when the type of
fingerprint scanner is known to be Biometrika, we are 99% sure that the fingerprint to be tested is true
or false, and the performance is significantly higher than other algorithms. Although our result for the
Italdata scanner is 2.75% higher than one result of [29], the ACE of our method is still 3.76% lower than
the best result of [29], and the result for Crossmatch is 3.92% lower than the result of [29].

In Table 11, the average classification error (ACE) of our method is the lowest, which is 4.03%.
The result of the CrossMatch scanner on the LivDet 2015 dataset is close to 0, and the ACE of our
method is still 3.21% lower than the best result of [29]. Although our result for the GreenBit scanner is
3.85% higher than one result of [29], the result for the Hi_Scan sensor is 7.32% lower than that of [29].
To sum up, Tables 9–11 again shows that, to obtain better FLD detection performance, different feature
fusion methods can be used when the types of fingerprint scanners are known.

5. Conclusions

The development of image technology and the application of intelligent devices enable us to
capture many high-resolution images. Among these, intelligent devices with fingerprint identification
are most popular. However, the study found that they are vulnerable to attack by fake fingerprints
made of special materials. To elevate the security of these intelligent devices, in this study we propose
a data analysis method to distinguish genuine fingerprints from fake ones. It is well-known that the
SIFT feature descriptor is characterized by invariance to rotation, scale, and brightness; the HOG
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feature descriptor ignores the influence of light on the image, reducing the dimension of the feature for
the image; and the LBP feature descriptor is insensitive to light and fast to operate. Combining the
advantages of SIFT features, LBP features, and HOG features can make up for the shortcomings of each
algorithm and improve the final detection performance. Finally, the fused features are fed into an SVM
classifier for the subsequent training and testing. From comparison by experiment, the classification
performance based on fused features using SIFT, HOG, and LBP is better than other FLD methods, and
our method is more suitable for fingerprint liveness detection to prevent spoof attacks related to these
artificial replicas.

Since the feature fusion operation can achieve better detection performance than a single feature,
we will try to explore more feature fusion schemes in future work, such as the linear combination of
features, to further improve the FLD performance.
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