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Abstract: In this paper, we study the qualitative behavior of solutions for a general class of
difference equations. The criteria of local and global stability, boundedness and periodicity character
(with period 2k) of the solution are established. Moreover, by applying our general results on a
population model with two age classes, we establish the qualitative behavior of solutions of this
model. To support our results, we introduce some numerical examples.
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1. Introduction

The difference equations appear when modeling many natural phenomena in many branches
of science. In fact, there are numerous applications for difference equations in queuing problems,
statistical problems, combinatorial analysis, stochastic time series, number theory, geometry, electrical
networks, probability theory, quanta in radiation, psychology, genetics in biology, sociology, economics,
see References [1–8].

One interesting example for both facts is Riccati difference equations

Jn+1 =
a + bJn

c + dJn
,

where a, b, c, d and J0 are real numbers. The richness of the dynamics of Riccati equations is very
well-known [9], and a specific case of these equations provides the classical Beverton-Holt model on
the dynamics of exploited fish populations [10]. As an example of a map generated by a simple model
for frequency dependent natural selection, May [11] introduced the difference equation

Jn+1 =
Jneµ(1−2Jn)

1− Jn + Jneµ(1−2Jn)
, (1)
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where µ ∈ (0, ∞). May studied the local stability of the positive equilibrium point J∗ = 1/2. Moreover,
Kocic et al. [12] investigated the oscillation and the global asymptotic stability of Equation (1).

Furthermore, in Reference [13], Franke studied the global attractively and convergence to a
two-cycle of the population model with two age classes{

In+1 = Jn

Jn+1 = Jn−1er−(In+κ Jn),
(2)

where r, κ ∈ (0, ∞), and he proved that equilibrium point of system (2) is a global attractor if r ≤ 1
and κ < 1. He also proved that every solution of system (2) is periodic with period two if r ≤ 1 and
κ = 1. In view of this, Kulenovic et al. [14] established the following conjecture:

Definition 1. Assume that r ∈ (0, ∞). Every positive solution of the population model

Jn+1 = Jn−1er−(Jn−1+Jn) (3)

converges to a period-two solution.

For many results, applications and open problems on higher-order equations and difference
systems, see References [1–37].

This paper is concerned with investigation of the asymptotic behavior of the solutions of a general
class of difference equation

Jn+1 = a Jn−1 e− f (Jn ,Jn−1), (4)

where a is positive real number, the function f (u, v) : (0, ∞)2 → [0, ∞) is continuous real function and
homogenous with degree one and the initial conditions J−1, J0 are positive real numbers.

The main reason for studying this general Equation is that its solutions have a peculiar periodicity
character (with period-even) and it also involves a population model with two age classes (3), as a
special case. One purpose of this paper is to further complement the results of Reference [13] for
periodic solutions of the population model (2). In Section 3, we state a new necessary and sufficient
condition for locally asymptotically stable of the population model (2). Also, we will confirm that
the population model (2) has periodic solutions of a prime period 2k, k = 0, 1, . . . , (this means that
Definition 1 is not accurate).

Furthermore, we introduce general theorems in order to study the asymptotic behavior of
Equation (4). Namely, we give a complete picture regarding the local stability of equilibrium point, and
we study the global stability and boundedness nature of the solutions. Also, we study the existence of
periodic solutions of a prime period 2k. Moreover, we apply our results on the population model (2).
Finally, we gave many numerical examples to support our results.

Consider the the difference equation

Jn+1 = φ (Jn, Jn−1) , (5)

where φ (x, y) : (0, ∞)2 → [0, ∞) is continuous real function and J−1, J0 are positive real numbers.
The linearized Equation associated with (5) about the equilibrium point J∗

zn+1 = pzn + qzn−1.

Theorem 1. Assume that λ1 and λ2 are roots of the quadratic equation

λ2 − pλ− q = 0.
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We have one of the following cases for stability:

(a) If |λ1| < 1 and |λ2| < 1, then J∗ is locally asymptotically stable;
(b) If either |λ1| > 1 or |λ2| > 1, then J∗ is unstable;
(c) The point J∗ is locally asymptotically stable and sink if and only if (a) halds and |p| < 1− q < 2;
(d) The point J∗ is a repeller, that is |λ1| > 1 and |λ2| > 1, if and only if |q| > 1 and |p| < |1− q|;
(e) The point J∗ is a saddle point, that is only one of |λ1| > 1 and |λ2| > 1 is holds, if and only is p2 + 4q > 0

and |p| > |1− q|;
(f) The point J∗ is a nonhyperbolic point, that is either |λ1| = 1 or |λ2| = 1, if and only if |p| = |1− q| or

q = −1 and |p| ≤ 2.

2. Dynamics of Equation (4)

2.1. Stability and Boundedness of Equation (4)

In the next, we state a necessary and sufficient condition for locally asymptotically stable of
equilibrium point of Equation (4). For our next considerations, we define the function Φ : (0, ∞)2 →
(0, ∞) by

Φ (u, v) := a v e− f (u,v). (6)

An equilibrium point of Equation (6) is a point J∗ such that J∗ = Φ (J∗, J∗). Then, the equilibrium
point of Equation (4) is given by J∗ = a J∗ e−J∗ f (1,1). Hence

J∗
(

1− a e−J∗ f (1,1)
)
= 0,

which means that
J∗ = 0 or J∗ =

1
f (1, 1)

ln (a) , a > 1. (7)

The linearized Equation of (4) of J∗ is

zn+1 − µuzn − µvzn−1 = 0, (8)

where µs = Φs (J∗, J∗) , s = u, v. A linear Equation will be called stable, asymptotically stable, or
unstable provided that the zero equilibrium has that property. From (6), we get

Φu (u, v) = −a v e− f (u,v) fu (u, v) (9)

and
Φv (u, v) = (1− v fv (u, v)) a e− f (u,v). (10)

In the next theorems, we study the asymptotic stability for (4).

Theorem 2. For local stability of the equilibrium point J∗ = 0 of Equation (4), we have the following cases:

(1) If a < 1, then J∗ is locally asymptotically stable and sink;
(2) If a > 1, then J∗ is unstable and repeller;
(3) If a = 1, then J∗ is nonhyperbolic point.

Proof. If we put J∗ = 0 in (9) and (10), then we have µu = 0 and µv = a. Thus, the roots of characteristic
Equation λ2 − a = 0 of Equation (8) is λ1,2 = ±

√
a. Then, from Reference ([14], Theorem 1.1.1), we

have that (1)–(3) hold.

Theorem 3. For local stability of the equilibrium point J∗ = 1
f (1,1) ln (a) , a > 1, of Equation (4), we have the

following cases:
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(1) Equilibrium point J∗ is locally asymptotically stable and sink if and only if

|α| < (γ− α) <
2

ln (a)
γ; (11)

(2) Equilibrium point J∗ is unstable saddle point if and only if

α > max
{

2γ
ln(a)

(√
ln (a)− 1

)
, |γ− α|

}
or

α < −min
{

2γ
ln(a)

(√
ln (a)− 1

)
, |γ− α|

}
;

(12)

(3) Equilibrium point J∗ is unstable and repeller if and only if α− |α| > γ, or

ln (a) >
2γ

γ− α
and |α|+ α < γ; (13)

(4) Equilibrium point J∗ is nonhyperbolic point if and only if α = 1
2 γ, or

ln (a) =
2γ

γ− α
and α ≤ 1

2
γ, (14)

where α = fu (1, 1) and γ = f (1, 1).

Proof. Since f homogenous with degree one, we have from Reference [19] that fu and fv homogenous
with degree zero and hence

µu = −a J∗ e−J∗ f (1,1) fu (1, 1) = − fu (1, 1)
f (1, 1)

ln (a) = − α

γ
ln (a) (15)

and

µv =

(
1− β

γ
ln (a)

)
, (16)

where β = fv (1, 1). Thus, the characteristic Equation of (8) is

λ2 − µuλ− µv = 0. (17)

Also, from Euler’s homogeneous function theorem, we have u fu + v fv = f , and hence α + β = γ

(at (u, v) = (1, 1)).

For Case (1), we assume that (11) holds. Then

|α|
γ

ln (a) <
β

γ
ln (a) < 2.

Combining (15) and (16), we obtain

|µu| < 1− µv < 2.

Therefore, by using Reference ([14], Theorem 1.1.1-(c)), we have that J∗ is a locally asymptotically
stable and sink.
For Case (2), we let (12) holds. If α > 0, we get

α ln (a) > 2γ

(√
ln (a)− 1

)
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and so, α ln (a) + 2γ > 2γ
√

ln (a). Therefore

0 < α2 ln2 (a) + 4γ2 + 4αγ ln (a)− 4γ2 ln (a)

= α2 ln2 (a) + 4γ2 + 4 (α− γ) γ ln (a)

= α2 ln2 (a) + 4
(

γ2 − βγ ln (a)
)

,

or
α2

γ2 ln2 (a) + 4
(

1− β

γ
ln (a)

)
> 0. (18)

From (12), we see also that α > |γ− α|. Hence |α| > |β| which implies that

α

γ
ln (a) >

∣∣∣∣1−(1− β

γ
ln (a)

)∣∣∣∣ . (19)

From (18) and (19), we get µ2
u + 4µv > 0 and |µu| > |1− µv|. The case α < 0 can be proved,

similarly. Therefore, by Reference ([14], Theorem 1.1.1-(e)), we have that J∗ is an unstable
saddle point.
For Case (3), we suppose that (13) holds. If β > 0, then β = γ − α > 2γ

ln(a) and so, |µv| > 1.
Also, |α| < γ− α = β. This implies |µv| > 1 and |µu| < |1− µv|. The case β < 0 can be proved,
similarly. Therefore, and from Reference ([14], Theorem 1.1.1-(d)), we have that J∗ is an unstable
and repeller.
For Case (4), we assume that α = 1

2 γ = β. Then, from (15) and (16), we obtain |µu| = |1− µv|.
On the other hand, if (14) holds, then γ− α = β = 2γ

ln(a) and hence µv = −1. Also, α ≤ β = 2γ
ln(a)

and so, |µu| ≤ 2 . From Reference ([14], Theorem 1.1.1-(f)), we have that J∗ is a nonhyperbolic
point. The proof of the theorem is complete.

In the following theorems, we study the boundedness of the solutions of Equation (4).

Theorem 4. Assume that a ∈ (0, 1]. Then every solution of Equation (4) is bounded and

0 < Jn ≤ max {J−1, J0} , (20)

for all n > 0.

Proof. Assume that {Jn}∞
n=−1 is a solution of Equation (4). From (4) and f (u, v) ≥ 0, we note that

Jn+1 = a Jn−1e− f (Jn ,Jn−1) ≤ a Jn−1.

Since a ≤ 1, we get Jn+1 ≤ Jn−1. Thus, we can divide the sequence {Jn}∞
n=−1 to two bounded

above subsequence by the initial conditions as

J−1 ≥ J1 ≥ . . . ≥ J2n−1 ≥ J2n+1 ≥ . . . ,

J0 ≥ J2 ≥ . . . ≥ J2n ≥ J2n+2 ≥ . . . .

Hence, we see that Jn ≤ max {J−1, J0} for all n > 0. The proof of the theorem is complete.

Theorem 5. Assume that there exists a constant δ > 0 such that f (u, v) ≥ δv. Then every solution of
Equation (4) is bounded and

0 < Jn ≤
a

δe
, (21)
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for all n > 0.

Proof. Assume that {Jn}∞
n=−1 is a solution of Equation (4). By using the fact that ue−λu < 1/λe and

f (u, v) ≥ δv, we obtain

Jn+1 = aJn−1e− f (Jn ,Jn−1) ≤ aJn−1e−δJn−1 ≤ a
δe

,

for all n > −1. Then every solution of Equation (4) is bounded. The proof of the theorem
is complete.

Theorem 6. Assume that there exists a constant δ > 0 such that f (u, v) ≥ δv, fu (u, v) < 0 and fv (u, v) <
δe/a. Then every positive solution of Equation (4) converges to J∗.

Proof. First, we consider the function Φ : (0, ∞)2 → (0, ∞) defined as (6). From (9) and (10), if fu < 0
and fv < δe/a, then we conclude that Φ (u, v) is non-decreasing in each of its arguments. Now, we
will verify that the function Φ satisfies the negative feedback condition

(J − J∗) (Φ (J, J)− J) < 0 for all J ∈ (0, ∞) \ {J∗} . (22)

Let J < J∗, then
J f (1, 1) < ln a

and so,
a e−J f (1,1) > 1. (23)

Since f (u, v) homogenous with degree one, we have J f (1, 1) = f (J, J) and hence (23) becomes

Φ (J, J)− J > 0.

Similarly, if J > J∗, then we have (Φ (J, J)− J) < 0. Thus, the function Φ satisfies the
condition (22). Therefore, from Reference ([14], Theorem 1.4.1), every positive solution of Equation (4)
converges to J∗. The proof of the theorem is complete.

2.2. The Existence of Periodic Solutions

Here, we investigate the periodicity character of the solution for Equation (4).

Lemma 1. Assume that {Jn}∞
n=−1 is a solution of Equation (4). Then,

Jm+2k = ak Jm exp

(
−

k−1

∑
i=0

f (Jm+2i+1, Jm+2i)

)
. (24)

Proof. Let {Jn}∞
n=−1 is a solution of Equation (4). From Equation (4), we have

Jm+2k = a Jm+2k−2 exp (− f (Jm+2k−1, Jm+2k−2))

= a2 Jm+2k−4 exp (− f (Jm+2k−3, Jm+2k−4)− f (Jm+2k−1, Jm+2k−2))

and so on, we find

Jm+2k = ak Jm exp

(
−

k−1

∑
i=0

f (Jm+2i+1, Jm+2i)

)
.

The proof of the lemma is complete.
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Theorem 7. Assume that a > 1, {Jn}∞
n=−1 is a solution of Equation (4) and there exists a couple of integers

η ≥ −1 and k > 0 such that

(δ1,k)
k−2

∑
i=0

f
(

Jε+η+2i+1, Jε+η+2i
)
+ D = k ln (a) , for ε = 0, 1, (25)

where

D = f
(

Jη+(1−ε)(2k−1), Jη+2k−2+ε

)
and δ1,k =

{
1 k 6= 1
0 k = 1

.

Then {Jn}∞
n=−1 is an eventually periodic solution with period 2k.

Proof. Assume that there exists an integer number η ≥ −1 such that (25) holds. First, from (25),
we have

k−1

∑
i=0

f
(

Jη+2i+1, Jη+2i
)
= k ln (a) (26)

and
k−2

∑
i=0

f
(

Jη+2i+2, Jη+2i+1
)
+ f

(
Jη , Jη+2k−1

)
= k ln (a) . (27)

Now, from Lemma 1, we get

Jη+2k = ak Jη exp

(
−

k−1

∑
i=0

f
(

Jη+2i+1, Jη+2i
))

= Jη exp

(
k ln (a)−

k−1

∑
i=0

f
(

Jη+2i+1, Jη+2i
))

.

Using (26), we obtain Jη+2k = Jη . Also, from Lemma 1, we see that

Jη+2k+1 = ak Jη+1 exp

(
−

k−2

∑
i=0

f
(

Jη+2i+2, Jη+2i+1
)
− f

(
Jη+2k, Jη+2k−1

))
.

Since Jη+2k = Jη and from (27), we get

Jη+2k+1 = Jη+1 exp

(
k ln (a)−

k−2

∑
i=0

f
(

Jη+2i+2, Jη+2i+1
)
− f

(
Jη , Jη+2k−1

))
= Jη+1.

Similarly, we can prove that

Jη+2νk+s = Jµ+s for all s = 0, 1, . . . , (2k− 1) and ν = 1, 2, . . . .

Thus, the sequence {Jn}∞
n=−1 converges to a prime period 2k solutions. The proof of the theorem

is complete.

Corollary 1. Assume that {Jn}∞
n=−1 is a solution of Equation (4). If

f (J0, J−1) = f (J−1, J0) = ln a,

then {Jn}∞
n=−1 is an eventually periodic solution with period 2k.
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In the next theorem, we state a new necessary and sufficient condition for periodic solutions of a
period two.

Theorem 8. Equation (4) has a period two solution {. . . , tσ, σ, tσ, σ, . . .} if and only if

f (t, 1) = f (1, t) =
1
σ

ln (a) . (28)

Proof. Let Equation (4) has a solution of period two . . . , ρ, σ, ρ, σ, . . . . Hence, we have

ρ = Φ (σ, ρ) = a ρe− f (σ,ρ)

σ = Φ (ρ, σ) = a σe− f (ρ,σ).

Then, we obtain f (ρ, σ) = f (σ, ρ) and hence (28) holds, where t = ρ/σ. Next, if (28) holds, then
we choose J−1 = t ln (a) / f (t, 1) , J0 = ln (a) / f (1, t) , t ∈ (0, ∞) and t 6= 1. Thus,

f (J0, J−1) = f
(

ln (a)
f (1, t)

,
t ln (a)
f (t, 1)

)
= f

(
ln (a)
f (1, t)

,
t ln (a)
f (1, t)

)
=

ln (a)
f (1, t)

f (1, t) = ln (a) .

Similarly, we can prove that f (J−1, J0) = ln (a). Hence, by Corollary 1, it is clear that {Jn}∞
n=−1

converges to a prime period two solution. The proof of the theorem is complete.

3. A Population Model

Difference equations have been widely used as mathematical models for describing real life
situations in biology. In this section, we study the discrete model with two age classes, adults and
juveniles (2) where r, κ ∈ (0, ∞). Expression exp (r− (In + αJn)) represents reproduction rate and is
a decreasing exponential which captures the over crowding phenomenon as the population grows.
To apply our results, we set system (2) as the following

Jn+1 = Jn−1er−(κ Jn+Jn−1). (29)

By compared with (4), we note that a = er and f (u, v) = κu + v. Thus, we have that γ =

f (1, 1) = κ + 1, α = fu (1, 1) = κ. Equilibrium points of Equation (29) are J∗ = 0 and positive
equilibrium J∗ = r/ (κ + 1). From Theorem 2, J∗ = 0 is an unstable and repeller where a = er > 1 for
r > 0.

For locally asymptotically stable of equilibrium point J∗ = r/ (κ + 1) of Equation (29), we have
the next theorem.

Corollary 2. We have the following cases:

1. Equilibrium point J∗ is locally asymptotically stable and sink if and only if κ < 1 < 2
r (κ + 1).

2. Equilibrium point J∗ is unstable saddle point if and only if κ > 1.
3. Equilibrium point J∗ is unstable and repeller if and only if κ < 1 and r > 2 (κ + 1).
4. Equilibrium point J∗ is nonhyperbolic point if and only if κ = 1, or κ < 1 and r = 2 (κ + 1).

Proof. The proof is immediate (from Theorem 3) and hence is omitted.

Corollary 3. Every solution of Equation (2) is bounded and 0 < Jn ≤ er−1,for all n > 0.

Proof. Since f (u, v) = κu + v ≥ v for all u ∈ [0, ∞), we have that, from Theorem 5, every solution of
Equation (2) is bounded and 0 < Jn ≤ a/e = er−1, and hence the proof is complete.
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Now, we give the periodicity character of the solution for Equation (29).

Corollary 4. Assume that {Jn}∞
n=−1 is a solution of Equation (29) and κ = 1. If there exists a positive integer

number η such that
2k−1

∑
i=0

Jη+i = kr, (30)

then {Jn}∞
n=−1 converges to a prime period 2k solution.

Remark 1. Note that, from Corollary 4, if J−1 + J0 = r, then the solution {Jn}∞
n=−1 of Equation (4) is a

period-two solution.

Theorem 9. If the solution {Jn}∞
n=−1 of Equation (29) when κ = 1, converges to a period-two

{. . . , λ, r− λ, λ, r− λ, . . .} then

J0 =
r− λ

λ
J−1eλ−J−1 , (31)

where λ ∈ (0, r).

Proof. From (29), we have

Jn+1 = Jn−1 exp (r− (Jn + Jn−1))

= Jn−3 exp (2r− (Jn + Jn−1 + Jn−2 + Jn−3))

and so on, we obtain that

Jn+1 = Jn−2β+1 exp
(

βr−
(

Jn + Jn−1 + . . . + Jn−2β+1
))

= Jn−2β+1 exp

(
βr−

2β−1

∑
i=0

Jn−i

)
, β = 0, 1, . . . ,

[n
2

]
+ 1 . (32)

Assume that (4) has a period two solution . . . , p, q, p, q, . . . [from Corollary 4, we have (p + q) = r].
If J−1 + J0 = r, then by choosing λ = J−1, we get that (7) holds. Now, we assume that J−1 + J0 6= r,
Jη 6= q, Jη+1 = p and Jη+2 = q (η even). From (32), we have

Jη+1 = Jη−2β+1 exp

(
βr−

2β−1

∑
i=0

Jη−i

)
.

If we put β = η
2 + 1, we find

Jη+1 = J−1 exp

((η

2
+ 1
)

r−
η

∑
i=−1

Ji

)
. (33)

Also,

Jη+2 = J0 exp

((η

2
+ 1
)

r−
η+1

∑
i=0

Ji

)
. (34)

Combining (33) and (34), we obtain

η

∑
i=−1

Ji =
(η

2
+ 1
)

r− ln
(

p
J−1

)
(35)
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and
η+1

∑
i=0

Ji =
(η

2
+ 1
)

r− ln
(

q
J0

)
. (36)

Therefore, by (35) and (36), we get

η+1

∑
i=0

Ji −
η

∑
i=−1

Ji = ln
(

p
J−1

)
− ln

(
q
J0

)
and so,

Jη+1 − J−1 = ln
(

pJ0

qJ−1

)
.

Hence,

J0 =
r− p

p
J−1ep−J−1 .

The proof of the theorem is complete.

4. Numerical Examples

In order to support our results, we are to consider some numerical examples which illustrate
many types of solutions to the Equation (4) and the behavior of these solutions.

Example 1. Consider the equation

Jn+1 = aJn−1 exp
(

Jn Jn−1

Jn + Jn−1

)
, (37)

where a > 0. From Theorem 3, the positive equilibrium point J∗ = 2 ln a, a > 1, is a nonhyperbolic point. Also,
Equation (37) has a prime period 2 solution when a = 2, J−1 = 5 and J0 = 3, see Figure 1, and prime period 4
solution when a = 8, J−1 = 20 and J0 = 30, see Figure 2.

Example 2. Consider the Equation (29), if r = 2 and k = 0.5, then equilibrium point J∗ = 4/3 is a locally
asymptotically stable, see Figure 3a. On the other hand, if r = 9 and k = 1, then equilibrium point J∗ = 4/3 is
an unstable saddle point, see Figure 3b.

Example 3. From Theorem 4, Equation (29) has a prime period 2k solution. For example,

(a) If r = 3, κ = 1, J−1 = 1 and J0 = 2.5, then Equation (29) has a prime period 2 solution, see Figure 4.
Note that,

- p = 0.6700597859, q = 2.329940214 and p + q = 3 = r, (according to Corollary 4).
- J0 = 2.5 = r−p

p J−1ep−J−1 , (according to (31) in Theorem 9).

(b) If r = 5, κ = 1, J−1 = 2 and J0 = 2.5, then Equation (29) has a prime period 6 solution. Note that,
p1 = 0.1481492419, p2 = 2.052733018, p3 = 2.434113484, p4 = 3.429195147, p5 = 1.026622191,
p6 = 5.909186918 and ∑6

i=1 pi = 15 = 3r.
(c) If r = 5, κ = 1, J−1 = 2.5 and J0 = 2.2, then Equation (29) has a prime period 8 solution.
(d) If r = 5, κ = 1, J−1 = 19.6e−3.9 and J0 = 4.9, then Equation (29) has a prime period 12 solution.
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Figure 1. Prime period 2 solution.

Figure 2. Prime period 4 solution.

Figure 3. (a) Locally asymptotically stable, (b) unstable saddle point.

Figure 4. Prime period 2 solution.
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5. Conclusions

Difference equations have been widely used as mathematical models for describing real life
situations in biology. So, this paper is concerned with the qualitative behavior of the solution of the
general class of the nonlinear difference equations which involves a population model with two age
classes, as a special case. For general equation, we studied the stability (local and global), boundedness
and periodicity character (with period 2k) of the solution. Moreover, by applying our general results
on a population model with two age classes, adults and juveniles Jn+1 = Jn−1er−(κ Jn+Jn−1), where
expression exp (r− (In + αJn)) represents reproduction rate and is a decreasing exponential which
captures the over crowding phenomenon as the population grows, we give a complete picture applying
the local stability of equilibrium point of population model and we study the boundedness of soluations.
Furthermore, we studied the existence of periodic solutions of a prime period-even of this model, as
improved and complemented of results of Franke 1999 and conjecture of Kulenovic 2001. In order to
support our results, we introduced some numerical examples. Further, we can try to get a necessary
and sufficient condition for global stability as well as bifurcation behavior for (4) in the future work.
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