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Abstract: The concept of bipolar fuzziness is of relatively recent origin where in addition to the
presence of a property, which is done in fuzzy theory, the presence of its counter-property is also
taken into consideration. This seems to be much natural and realistic. In this paper, an attempt
has been made to incorporate this bipolar fuzziness in topological perspective. This is done by
introducing a notion of bipolar gradation of openness and to redefine the bipolar fuzzy topology.
Furthermore, a notion of bipolar gradation preserving map is given. A concept of bipolar fuzzy
closure operator is also introduced and its characteristic properties are studied. A decomposition
theorem involving our bipolar gradation of openness and Chang type bipolar fuzzy topology is
established. Finally, some categorical results of bipolar fuzzy topology (both Chang type and in our
sense) are proved.

Keywords: bipolar gradation of openness; bipolar gradation of closedness; bipolar fuzzy topology;
bipolar gradation preserving map

1. Introduction

From the very beginning of the invention of fuzzy sets by Zadeh [1], many authors have
contributed towards fuzzifying the topological concept. Fuzzy topology was first introduced by
Chang [2] in 1968. Since then, fuzzy topology had drawn the attention of many mathematicians and
a foundation of systematic research began. Fuzzy topology, L-fuzzy topology, interval-valued fuzzy
topology, and intuitionistic fuzzy topology ([3–6]) laid the foundation of new topological structures
on some non-crisp sets. The lack of fuzziness in fuzzy topology was still a drawback to some extent.
The Chang fuzzy topology is a crisp family of fuzzy subsets satisfying the properties of topology over
some domain. However, a crisp collection never looked good for a proper justification for fuzzifying
the topological concept. This absence of fuzziness in Chang fuzzy topology was pointed out by
Sostak [7], Ying [8], Chattopadhyay et al. [9], Gregoroi [10], and Mondal [11]. Chattopadhyay et al. [12]
introduced a notion of gradation, where every fuzzy set was associated with some grade of openness
or closedness. With the concept of gradation of openness, they further studied fuzzy closure operator,
gradation preserving maps, fuzzy compactness, and fuzzy connectedness ([9,12,13]). This concept
of gradation has been used widely instead of direct fuzzification of some mathematical structures
mainly in the field of topology by many researchers. Samanta [14] and Ghanim et al. [15] introduced
gradation of uniformity and gradation of proximity, Thakur et al. [16] studied gradation of continuity,
and Mondal et al. ([11,17–19]) introduced intuitionistic gradation and L-fuzzy gradation.
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Bipolar fuzzy set (BFS), a generalized concept of fuzzy set, has already found its way in the
field of research as bipolarity in decisions often occurs in many practical problems. Unlike fuzzy set,
the range of membership lies in [−1,1], where the range of membership (0,1] for some element is an
indication of the satisfaction of the property, whereas the range of membership [−1,0) is an indication
of the satisfaction of the counter-property. Some basic operations on bipolar fuzzy sets can be found
in ([20,21]). Applications of bipolar fuzzy sets can be found in ([22–24]). Bipolar fuzzy topology (BFT )
studied by Azhagappan et al. [25] and Kim et al [26] are of Chang type. For a universal set X, BF (X)

is the collection of all bipolar fuzzy sets of X and a bipolar fuzzy topology τ on X is a collection
from BF (X) containing the null bipolar fuzzy set, absolute bipolar fuzzy set, finite intersection, and
arbitrary union. Thus, for a bipolar fuzzy topological space (BFT S) (X, τ), τ+ = {µ+ ∈ IX ; µ ∈ τ}
and τ− = {−µ− ∈ IX ; µ ∈ τ} are fuzzy topologies of Chang type. In addition, (X, τ+, τ−) is a fuzzy
bitopological space deduced from the bipolar fuzzy topology τ. Therefore, the study on bipolar fuzzy
topology looks quite logical in the context of fuzzy topology as fuzzy topology can be considered as a
special case of BFT and a BFT induces a special type of fuzzy bitopology. However the definition of
a BFT S introduced in [25] looks similar to the definition of Chang fuzzy topological space where
the bipolar fuzzy open sets are considered as a crisp collection over some universe. This looks to
be a drawback in proper bifuzzification of the topological concept. Fuzzy set is a particular case of
bipolar fuzzy set where the counter-property is absent i.e., counter-property takes the value 0 only—for
example, “sweet and sour”, “good and bad”, “beauty and ugly”, “matter and anti-matter”, etc. By
incorporating a bipolar gradation in the openness and closedness, we tried to rectify the previous
drawbacks in bifuzzification of topological concept and thus introduce a modified definition of bipolar
fuzzy topological space.

In this paper, we introduce a definition of bipolar gradation of openness of bipolar fuzzy subsets
of X and give a new definition of bipolar fuzzy topological spaces. In our definition of bipolar fuzzy
topology, each bipolar fuzzy subset is associated with a definite bipolar gradation of openness and
non-openness. We have shown that the set of all bipolar fuzzy topologies in our sense form a complete
lattice with an order relation defined in Definition 9. We also introduce bipolar gradation preserving
maps and a decomposition theorem involving bipolar fuzzy topology in our sense and the same in
Chang’s sense is proved. Bipolar fuzzy closure operator is introduced and some of their characteristic
properties are dealt with. Lastly, it is shown that the bipolar fuzzy topologies in our sense and the
bipolar gradation preserving mapping is a topological category.

2. Preliminaries

Throughout the paper, the fuzzy topological space (FT S) is considered in Chang’s sense.
Gradation of openness, gradation of closedness, and gradation preserving map will be called GO, GC,
and GP map, respectively. Some straightforward proofs are omitted and some preliminary results
related to this work are not discussed, which can be found in ([2,25–27]).

Definition 1 ([27]). Let X be a non-empty set. Then, a pair µ = (µ−, µ+) is called a BFS in X, where
µ− : X → [−1, 0] and µ+ : X → [0, 1] are two mappings. The positive membership function µ+(x)
denotes the satisfaction degree of an element x corresponding to the BFS µ and the negative membership
function µ−(x) denotes the satisfaction degree of an element x to the counter-property corresponding to the
BFS µ. In particular, a BFS is said to be a null-BFS [25], denoted by 0̃, where 0̃ = (0−, 0+) and
0−(x) = 0, 0+(x) = 0, for all x ∈ X. A BFS is said to be an absolute BFS [25], denoted by 1̃, where
1̃ = (1−, 1+) and 1−(x) = −1, 1+(x) = 1, for all x ∈ X.

Definition 2 ([27]). Let X be a non-empty set and µ, λ ∈ BF (X).

(1) µ is said to be a subset of λ, denoted by µ ⊂ λ, if, for each x ∈ X, µ+(x) ≤ λ+(x) and µ−(x) ≥ λ−(x).
(2) The complement of µ, denoted by µc = ((µc)−, (µ)c)+), is a bipolar fuzzy set in X, defined as for each

x ∈ X, µc(x) = (−1− µ−(x), 1− µ+(x)).
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(3) The intersection of µ and λ, denoted by µ ∩ λ, is a bipolar fuzzy set in X, defined as for each x ∈
X, (µ ∩ λ)(x) = (µ−(x) ∨ λ−(x), µ+(x) ∧ λ+(x)).

(4) The union of µ and λ, denoted by µ ∪ λ is a bipolar fuzzy set in X, defined for each x ∈ X, (µ ∪ λ)(x) =
(µ−(x) ∧ λ−(x), µ+(x) ∨ λ+(x)).

Definition 3 ([25]). Let X be a non-empty set. A collection of bipolar fuzzy subsets τ of BF (X) is said to be a
BFT on X, if it satisfies the following conditions:

(1) 0̃, 1̃ ∈ τ,
(2) if µ, λ ∈ τ, then µ ∩ λ ∈ τ,
(3) if µi ∈ τ, for each i ∈ ∆, then ∪

i∈∆
µi ∈ τ.

Definition 4 ([26]). Let (X, τ1) and (Y, τ2) be two bipolar fuzzy topological spaces. Then, a mapping f :
(X, τ1)→ (Y, τ2) is said to be continuous, if f−1(V) ∈ τ1 for each V ∈ τ2.

Definition 5 ([12]). Let X be a non-empty set and τ : IX → [0, 1] be a mapping. Then, τ is said to be a GO on
X, if it satisfies the following conditions:

(1) τ(0̃) = τ(1̃) = 1,
(2) τ(µ1 ∩ µ2) ≥ τ(µ1) ∧ τ(µ2),
(3) τ

(
∪

i∈∆
µi

)
≥ ∧

i∈∆
τ(µi ).

Definition 6 ([12]). Let X be a non-empty set and F : IX → [0, 1] be a mapping. Then, F is said to be a GC on
X, if it satisfies the following conditions:

(1) F(0̃) = F(1̃) = 1,
(2) F(µ1 ∪ µ2) ≥ F(µ1) ∧ F(µ2),
(3) F

(
∩

i∈∆
µi

)
≥ ∧

i∈∆
F(µi ).

Remark 1 ([12]). The set of all FT S on X along with the order relation ” ≤ ” forms a complete lattice.

Definition 7 ([12]). Let (X, τ) and (Y, τ′) be two FT S and f : X → Y be a mapping. Then, f is said to be a
GP map if for each µ ∈ IY, τ′(µ) ≤ τ

(
f−1(µ)

)
Definition 8 ([13]). Let (X,F) be a FT S with F being a GC on X. For each r ∈ [0, 1] and for each λ ∈ IX,
the fuzzy closure of λ is defined as follows:

cl(λ, r) = ∩{µ ∈ IX : µ ⊇ λ, F(µ) ≥ r}.

3. Bipolar Gradation of Openness

In this section, we define bipolar gradation of openness (bipolar GO), bipolar gradation of
closedness (bipolar GC) and prove some subsequent results.

Definition 9. For any (r1 , s1), (r2 , s2) ∈ [−1, 0]× [0, 1], and for {(ri , si ), i ∈ ∆}, define

(1) (r1 , s1) � (r2 , s2) if r1 ≤ r2 and s1 ≥ s2 ,
(2) (r1 , s1) � (r2 , s2) if r1 < r2 and s1 > s2 ,
(3) (r1 , s1) ≺ (r2 , s2) if r1 > r2 and s1 < s2 ,
(4) ∧

i∈∆
(ri , si ) = ( ∨

i∈∆
ri , ∧i∈∆

si ),

(5) ∨
i∈∆

(ri , si ) = ( ∧
i∈∆

ri , ∨i∈∆
si )
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Definition 10. Let X be a non-empty set. Then, a mapping τ : BF (X) → [−1, 0]× [0, 1] is said to be a
bipolar GO on X, if it satisfies the following properties:

(1) τ(0̃) = τ(1̃) = (−1, 1),
(2) τ(µ1 ∩ µ2) � τ(µ1) ∧ τ(µ2),
(3) τ

(
∩

i∈∆
µi

)
� ∧

i∈∆
τ(µi ).

Example 1. Let X = R be the set of all real numbers. Let T be the usual topology on R and T′ be the topology
generated by B = {(a, b] : a < b}. For A ⊆ R let χA denote the characteristic function of A. Define
χ∗A = (−χA, χA). Define a mapping τ : BF (X)→ [−1, 0]× [0, 1] by for each χ∗A ∈ BF (X),

τ(χ∗A) =


(−1, 1) if A ∈ T
(− 1

2 , 1
2 ) if A ∈ T′\T

(0, 0) otherwise.

Then, τ is a bipolar GO on X.

Definition 11. A mapping F : BF (X)→ [−1, 0]× [0, 1] is said to be a bipolar GC, if it satisfies the following
properties:

(1) F(0̃) = F(1̃) = (−1, 1),
(2) F(µ1 ∪ µ2) � F(µ1) ∧ F(µ2),
(3) F

(
∩

i∈∆
µi

)
� ∧

i∈∆
F(µi ).

Proposition 1. Let τ be a bipolar GO on X. Then, a mapping Fτ : BF (X) → [−1, 0]× [0, 1] defined by
Fτ(µ) = τ(µc), for all µ ∈ BF (X), is a bipolar GC on X.

Proof. We have Fτ(0̃) = τ((0̃)c) = τ(1̃) = (−1, 1). Similarly, Fτ(1̃) = (−1, 1).

Fτ(µ1 ∪ µ2) = τ((µ1 ∪ µ2)
c)

= τ(µc
1
∩ µc

2
)

� τ(µc
1
) ∧ τ(µc

2
)

= Fτ(µ1) ∧ Fτ(µ2),

Fτ

(
∩

i∈∆
µi

)
= τ

(
( ∩

i∈∆
µi )

c)
=

(
τ( ∪

i∈∆
µc

i
)
)

� ∧
i∈∆

τ(µc
i
)

= ∧
i∈∆

Fτ(µi ).

Consequently, the proof completes.
For a mapping f : BF (X)→ [−1, 0]× [0, 1], let f− = π1 ◦ f and f+ = π2 ◦ f . Then, f is a bipolar

GO, (GC) iff f+,− f− are GO, (GC) on X.

Proposition 2. Let F be a bipolar GC on X. Then, a mapping τF : BF (X) → [−1, 0]× [0, 1] defined by
τF(µ) = F(µc), for all µ ∈ BF (X), is a bipolar GO on X.

Definition 12. Let {τk : k ∈ ∆} be a family of bipolar GO on X. Then, τ = ∩
k∈∆

τk is defined as, τ(µ) =

∧
k∈∆

τk (µ).

Proposition 3. Arbitrary intersection of a family of bipolar GO is a bipolar GO.
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Proof. Suppose that {τk : k ∈ ∆} is a family of bipolar GO on X and τ = ∩
k∈∆

τk . Clearly, we have

τ(0̃) = τ = (1̃) = (−1, 1):

τ(µ1 ∩ µ2) = ∩
k∈∆

τk (µ1 ∩ µ2)

� ∩
k∈∆

(
τk (µ1) ∧ τk (µ2)

)
� ∩

k∈∆
τk (µ1) ∧ ∩k∈∆

τk (µ2)

= τ(µ1) ∧ τ(µ2)

and
τ(∪

i
µi ) = ∩

k
τk (∪i µi )

� ∩
k

∧
i

τk(µi )

=
∧
i
∩
k

τk(µi )

=
∧
i

τ(µi ).

Hence, τ is a bipolar GO on X.

Remark 2. Let X be a non-empty set. Define τ◦, τ1 : BF (X) → [−1, 0] × [0, 1] by τ◦(0̃) = τ◦(1̃) =

(−1, 1), τ◦(µ) = (0, 0), for all µ ∈ BF (X)\{0̃, 1̃} and τ1(µ) = (−1, 1), ∀µ ∈ BF (X). Then, τ◦, τ1 are
bipolar GO on X such that, for any bipolar GO τ on X, τ1 � τ � τ◦ i.e for any µ ∈ BF (X), τ1(µ) �
τ(µ) � τ◦(µ).

Proposition 4. Let MBF (X) denote the collection of all bipolar GO on X. Then, (MBF (X),�) is a
complete lattice.

The proof follows from Proposition 3 and Remark 2.

Proposition 5. Let (X, τ) be a BFT S , where τ is a bipolar GO on X. Then, for each (r, s) ∈ [−1, 0] ×
[0, 1], τr,s = {µ ∈ BF (X) : τ(µ) � (r, s)} is a is a Chang type BFT on X.

Proof. We have τ(0̃) = τ(1̃) = (−1, 1) � (r, s), for all (r, s) ∈ [−1, 0] × [0, 1]. Therefore, we get
0̃, 1̃ ∈ τr,s. Let µ1 , µ2 ∈ τr,s. Then, we have

τ(µ1) � (r, s) and τ(µ2) � (r, s)
τ(µ1 ∩ µ2) � τ(µ1) ∧ τ(µ2) � (r, s) ∧ (r, s) = (r, s).

Hence, we obtain µ1 ∩ µ2 ∈ τr,s. Similarly, it can be shown that τr,s is closed under arbitrary union.
Therefore, for each (r, s) ∈ [−1, 0]× [0, 1], τr,s is a Chang type BFT on X.

Definition 13. For each (r, s) ∈ [−1, 0]× [0, 1], τr,s is called the (r-s)-th level BFT on X with respect to the
bipolar GO τ.

Definition 14. The family {τr,s : (r, s) ∈ [−1, 0]× [0, 1]} is said to be a descending family if any (r1 , r2) �
(s1 , s2) implies τr1 ,r2

⊂ τs1 ,s2
.

Proposition 6. Let (X, τ) be a BFT S , where τ is a bipolar GO on X and {τr,s : (r, s) ∈ [−1, 0]× [0, 1]}
be the family of all (r-s)-th level BFT on X with respect to the bipolar GO τ. Then, this family is descending
family and and for each (r1 , r2) ∈ [−1, 0]× [0, 1],

τr1 ,r2
= ∩

(r1 ,r2 )�(s1 ,s2 )
τs1 ,s2

.
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Proof. Clearly, if (r1 , r2) � (s1 , s2), then τr1 ,r2
⊂ τs1 ,s2

. Hence, {τr,s : (r, s) ∈ [−1, 0] × [0, 1]} is a
descending family of BFT s on X.

Obviously, τr1 ,r2
⊆ ∩

(r1 ,r2 )�(s1 ,s2 )
τs1 ,s2

.

Next, let µ ∈ ∩ τs1 ,s2
, ∀(r1 , r2) � (s1 , s2). Then, τ(µ) � (s1 , s2), ∀(r1 , r2) � (s1 , s2). Then, τ(µ) �

∨{(s1 , s2); (r1 , r2) � (s1 , s2)} ⇒ τ(µ) � (r1 , r2) ⇒ µ ∈ τr1 ,r2
. Therefore, ∩

(r1 ,r2 )�(s1 ,s2 )
τs1 ,s2

⊆ τr1 ,r2
.

Hence, τr1 ,r2
= ∩

(r1 ,r2 )�(s1 ,s2 )
τs1 ,s2

.

Proposition 7. Let {Tr,s : (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)} be a non-empty descending family of Chang
type BFT s on X. Let τ : BF (X) → [−1, 0]× [0, 1] be a mapping defined by τ(µ) = ∨{(r, s) ∈ [−1, 0]×
[0, 1]\{(0, 0)}; µ ∈ Tr,s}. Then, τ is a bipolar GO on X. Furthermore, if, for any (r1 , r2) ∈ [−1, 0] ×
[0, 1]\{(0, 0)}

Tr1 ,r2
= ∩

(r1 ,r2 )�(s1 ,s2 )
Ts1 ,s2

, (1)

then τr,s = Tr,s holds for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Proof. From the definition of τ, it is clear that τ(0̃) = τ(1̃) = (−1, 1). Let µ1 , µ2 ∈ BF (X) and let
τ(µi ) = (li , ki ), i = 1, 2. If (li , ki ) = (0, 0) for some i, then τ(µ1 ∩ µ2) � τ(µ1) ∧ τ(µ2). Without loss
of generality, suppose li < 0 and ki > 0. Let li ≤ s1 and ki ≥ s2 , i = 1, 2. Then, for any ε > 0 with
li + ε > 0, there exist r1 , r2 ∈ [−1, 0) and t1 , t2 ∈ (0, 1] such that µi ∈ Tri ,ti

and li ≤ ri < li + ε and
ki − ε < ti ≤ ki and ki − ε > 0 for i = 1, 2. Now, let

r = max{r1 , r2}, l = max{l1 , l2},
t = min{t1 , t2}, k = min{k1 , k2}.

Then, µ1 ∩ µ2 ∈ Tr,t implies that τ(µ1 ∩ µ2) � (r, t) � (l + ε, k − ε). Since ε > 0 is arbitrary,
it follows that τ(µ1 , µ2) � τ(µ1) ∧ τ(µ2).

Let µi ∈ BF (X), for all i ∈ ∆. Suppose that τ(µi ) = (li , ki ), for all i ∈ ∆. Let l = ∨
i∈∆

li , k = ∧
i∈∆

ki .

W.l.o.g, suppose l < 0 and k > 0. Let ε > 0 be any number such that k > ε and l + ε < 0. Then,
0 < k − ε < ki and l + ε > li for all i ∈ ∆. Therefore, we have µi ∈ Tl+ε, k−ε, for all i ∈ ∆. Then,
τ
(
∪

i∈∆
µi

)
� (l + ε, k− ε). Since ε > 0 is arbitrary, it follows that τ

(
∪

i∈∆
µi

)
� (l, k). This implies that

τ is a bipolar GO on X.
In order to show the next part, assume that {Tr,s : (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)} satisfies the

condition (1). Let µ ∈ Tr1 ,r2
. Then, τ(µ) � (r1 , r2), so µ ∈ τr1 ,r2

and, consequently, Tr1 ,r2
⊂ τr1 ,r2

.
Next, suppose that µ ∈ τr1 ,r2

. Then, τ(µ) � (r1 , r2). Let ∧{l : µ ∈ Tl ,k} = s1 ≤ r1 and ∨{k : µ ∈
Tl ,k} = s2 ≥ r2 . If r1 = 0, r2 > 0, then, for ε > 0 with r2 − ε > 0, µ ∈ Tr1 ,r2−ε. Since ε > 0 is arbitrary,
µ ∈ ∩

ε>0
Tr1 ,r2−ε = Tr1 ,r2

. Similarly, other cases can be dealt with. Thus, τr,s = Tr,s

Remark 3. The family {τr,s : (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}} of Proposition 7 is called the family of BFT s
associated with the bipolar GO, τ.

Remark 4. Two bipolar GO τ and τ′ on X is equal iff τr,s = τ′r,s, for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Proposition 8. Let (X, T) be a Chang type BFT S . For each (r, s) ∈ [−1, 0]× [0, 1]\(0, 0), define a mapping
Tr,s : BF (X)→ [−1, 0]× [0, 1] by the rule

Tr,s(µ) =


(−1, 1) i f µ = 0̃, 1̃
(r, s) i f µ ∈ T\{0̃, 1̃}
(0, 0) otherwise.
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Then, Tr,s is a bipolar GO on X such that (Tr,s)r,s = T

Definition 15. Let T be a Chang type BFT on X; then, Tr,s is called an (r-s)-th bipolar GO on X and
(X, Tr,s) is called the (r-s)-th graded BFT S .

4. Bipolar Gradation Preserving Mapping

In a bipolar fuzzy setting, the continuity concept of a mapping is formulated in this section by
introducing bipolar gradation preserving maps. Some of its properties are also studied.

Definition 16. Let (X, τ) and (Y, τ′) be two BFT Ss, where τ and τ′ are bipolar GO on X and Y, respectively,
and f : X → Y be a mapping. Then, f is called a bipolar gradation preserving map (bipolar GP map ) if, for
each µ ∈ BF (Y), τ

(
f−1(µ)

)
� τ′(µ).

In the following Proposition, a relation between bipolar gradation preserving property with the
continuity for a mapping over bipolar fuzzy topological spaces is established.

Proposition 9. Let (X, τ) and (Y, τ′) be two BFT Ss, where τ and τ′ are bipolar GO on X and Y, respectively.
Then, a mapping f : X → Y is a bipolar GP map iff f : (X, τr,s) → (Y, τ′r,s) is continuous for all (r, s) ∈
[−1, 0]× [0, 1]\{(0, 0)}.

Proof. Suppose that f is a bipolar GP map and µ ∈ τ′r,s. Then, τ′(µ) � (r, s). Since f is a bipolar GP
map, it follows that τ

(
f−1(µ)

)
� τ′(µ) � (r, s). Hence, we get f−1(µ) ∈ τr,s. Thus, f : (X, τr,s) →

(Y, τ′r,s) is continuous for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.
Conversely, suppose that f is continuous for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}. Let µ ∈ BF (Y).

If τ′(µ) = (0, 0), then τ
(

f−1(µ)
)
� τ′(µ). Let τ′(µ) = (r, s), where (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Then, µ ∈ τ′r,s. Since f is continuous, it follows that f−1(µ) ∈ τr,s. This implies that τ
(

f−1(µ)
)
�

(r, s) = τ′(µ). Consequently, f is a bipolar GP map.

Proposition 10. Let (X, T) and (Y, T′) be two Chang type BFT Ss and f : X → Y be a mapping. Then, f is
continuous iff f : (X, Tr,s)→ (Y, (T′)r,s) is a bipolar GP map for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Proof. Suppose that f : (X, T)→ (Y, T′) is continuous. Take µ ∈ BF (Y). Then, we have the following
possibilities:

Case (1) If µ = 0̃ or 1̃, then f−1(0̃) = 0̃ and f−1(1̃) = 1̃ and hence (Tr,s)
(

f−1(µ)
)
� (T′)r,s(µ).

Case (2) If µ ∈ T′, then (T′)r,s(µ) = (r, s). By continuity of f : (X, T) → (Y, T′), f−1(µ) ∈ T.
Therefore, we get (Tr,s)

(
f−1(µ)

)
= (r, s). Thus, (Tr,s)

(
f−1(µ)

)
� (T′)r,s(µ).

Case (3) If µ /∈ T′, then (T′)r,s(µ) = (0, 0) and so (Tr,s)
(

f−1(µ)
)
� (T′)r,s(µ). Hence, f :

(X, Tr,s)→ (Y, (T′)r,s) is a bipolar GP map.
The converse follows from Propositions 8 and 9.

Proposition 11. Let (X, τ), (Y, τ′), (Z, τ′′) be three BFT Ss, where τ, τ′, τ′′ are bipolar GO on X, Y and
Z respectively. If f : (X, τ)→ (Y, τ′) and g : (Y, τ′)→ (Z, τ′′) are bipolar GP map, then g ◦ f : (X, τ)→
(Z, τ′′) is a bipolar GP map.

Proposition 12. Let (X, τ) be a BFT S and f : X → Y be a mapping. Let {τ′r,s : (r, s) ∈ [−1, 0] ×
[0, 1]\{(0, 0)}} be a descending family of Chang type BFT Ss on Y. Let τ′ be the bipolar GO generated by
this family. Suppose that, for each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}, Br,s be the base and ξr,s be the subbase of
τ′r,s. Then,

(1) f : (X, τ) → (Y, τ′) is a bipolar GP map iff τ
(

f−1(µ)
)
� (r, s), for all µ ∈ τ′r,s and (r, s) ∈

[−1, 0]× [0, 1]\{(0, 0)}.
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(2) f : (X, τ) → (Y, τ′) is a bipolar GP map iff τ
(

f−1(µ)
)
� (r, s), for all µ ∈ Br,s and (r, s) ∈

[−1, 0]× [0, 1]\{(0, 0)}.
(3) f : (X, τ) → (Y, τ′) is a bipolar GP map iff τ

(
f−1(µ)

)
� (r, s), for all µ ∈ ξr,s and (r, s) ∈

[−1, 0]× [0, 1]\{(0, 0)}.

5. Bipolar Fuzzy Closure Operator

A concept of bipolar fuzzy closure operator is introduced in this section and its characteristic
properties are studied. As in the classical case of Kuratowski’s closure operator, here it is shown that
the bipolar fuzzy topology and the bipolar GP map are completely characterized by a bipolar fuzzy
closure operator.

Let (X,F) be a BFT S , where F is a bipolar GC on X. For each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}
and for λ ∈ BF (X), the (r-s)-th graded bipolar fuzzy closure (BFC) of λ is defined by

Cl
(
λ, (r, s)

)
= ∩ {µ ∈ BF (X) : µ ⊇ λ, F(µ) � (r, s)}.

Proposition 13. Let (X,F) be a BFT S , where F is a bipolar GC on X and let Cl : BF (X) × [−1, 0] ×
[0, 1]\{(0, 0)} → BF (X) be a BFC operator on (X,F). Then,

(1) Cl
(
0̃, (r, s)

)
= 0̃, Cl

(
1̃, (r, s)

)
= 1̃, for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

(2) λ ⊆ Cl
(
λ, (r, s)

)
, for all λ ∈ BF (X).

(3) Cl
(
λ, (r1 , s1)

)
⊆ Cl

(
λ, (r2 , s2)

)
if (r2, s2) � (r1 , s1).

(4) Cl
(
λ1 ∪ λ2 , (r, s)

)
= Cl

(
λ1 , (r, s)

)
∪ Cl

(
λ2 , (r, s)

)
, for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

(5) Cl
(
Cl
(
λ, (r, s)

)
, (r, s)

)
= Cl

(
λ, (r, s)

)
, for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

(6) If (r, s) = ∨
i∈∆
{(ri , si ); Cl

(
λ, (ri , si )

)
= λ}, then Cl

(
λ, (r, s)

)
= λ.

Proposition 14. Let Cl : BF (X)× [−1, 0]× [0, 1]\{(0, 0)} → BF (X) be a mapping satisfying (1)− (4) of
Proposition 13. Let F : BF (X)→ [−1, 0]× [0, 1] be a mapping defined by F(λ) = ∨{(r, s); Cl

(
λ, (r, s)

)
=

λ} then F is a bipolar GC on X. Again, Cl = ClF iff the conditions (5) and (6) of Proposition 13 are satisfied
by Cl.

Proof. Clearly, F(0̃) = F(1̃) = (−1, 1) by (1).
Let λ1 , λ2 ∈ BF (X) and F(λ1) = (l1 , k1), F(λ2) = (l2 , k2). For ε > 0, ∃ (ri , si ) ∈ [−1, 0] ×

[0, 1]\{(0, 0)} such that li ≤ ri < li + ε, ki − ε < si ≤ ki and Cl
(
λi , (ri , si )

)
= λi , i = 1, 2. Let

r = r1 ∨ r2 , s = s1 ∧ s2 . Then, (r, s) � (ri , si ), i = 1, 2 and hence Cl
(
λ1 ∪ λ2 , (r, s)

)
= Cl

(
λ1 , (r, s)

)
∪

Cl
(
λ2 , (r, s)

)
= λ1 ∪ λ2 ( By (iii)). Hence, Cl

(
λ1 ∪ λ2 , (r, s)

)
= λ1 ∪ λ2 . Thus, F(λ1 ∪ λ2) � (r, s) �

(r1 , s1) ∧ (r2 , s2) � (l1 ∨ l2 + ε, k1 ∧ k2 − ε). Since ε > 0 is arbitrary, F(λ1 ∪ λ2) � (l1 ∨ l2 , k1 ∧ k2) =

(l1 , k1) ∧ (l2 , k2) = F(λ1) ∧ F(λ2).
Let λi ∈ BF (X) and F(λi ) = (ai , bi ), ∧i∈∆

F(λi ) = (l, k) for all i ∈ ∆ for all i ∈ ∆. Without

loss of generality, assume that (l, k) 6= (0, 0). For ε > 0, ∃ (ri , si ) ∈ [−1, 0] × [0, 1]\{(0, 0)} with
ai ≤ ri < ai + ε, bi − ε < si ≤ bi such that Cl

(
λi , (ri , si )

)
= λi , ∀i ∈ ∆ and ( ∨

i∈∆
ri , ∧i∈∆

si ) 6= (0, 0).

Let r = ∨
i∈∆

ri , s = ∧
i∈∆

si . Then, Cl
(
λi , (r, s)

)
= λi , ∀i ∈ ∆ ( since (ri , si ) � (r, s), i ∈ ∆). Thus,

Cl
(
∩

i∈∆
λi , (r, s)

)
⊂ Cl

(
λi , (r, s)

)
= λi , ∀i ∈ ∆ ( by (iv)) and hence Cl

(
∩

i∈∆
λi , (r, s)

)
= ∩

i∈∆
λi . Thus,

F( ∩
i∈∆

λi ) � (r, s) � (l + ε, k− ε), since ε > 0 is arbitrary F( ∩
i∈∆

λi ) � (l, k) � ∧
i∈∆

F(λi ).
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In order to prove the next part, first suppose that Cl satisfies the conditions (1)–(6) of Proposition 13.
Then,

ClF
(
λ, (r, s)

)
= ∩{µ ⊇ λ : F(µ) � (r, s)}
= ∩{µ ⊇ λ : ∨

i∈∆
{(ri , si ); Cl

(
µ, (ri , si )

)
= µ} � (r, s)}

= ∩{µ ⊇ λ : ∀ε > 0, Cl
(
µ, (r + ε, s− ε)

)
= µ}

⊆ Cl
(
λ, (r, s)

)
.

Again, by (2) λ ⊆ Cl
(
λ, (r, s)

)
and Cl

(
λ, (r, s)

)
= Cl

(
Cl
(
λ, (r, s)

)
, (r + ε, s − ε)

) (
by (2), (3),

and (5)
)
. Again, Cl

(
µ, (r + ε, s − ε)

)
= µ ⊇ λ, for all ε > 0, implies, by (6), µ = Cl

(
µ, (r, s)

)
⊇

Cl
(
λ, (r, s)

)
. Thus,

ClF
(
λ, (r, s)

)
= ∩{µ ⊇ λ : ∀ε > 0, Cl

(
µ, (r + ε, s− ε)

)
= µ} ⊇ Cl

(
λ, (r, s)

)
.

Therefore, we conclude that ClF
(
λ, (r, s)

)
= Cl

(
λ, (r, s)

)
.

Next, suppose that ClF
(
λ, (r, s)

)
= Cl

(
λ, (r, s)

)
holds ∀λ ∈ BF (X). Since ClF is the BFC

operator generated by the bipolar GC F, it follows that ClF satisfies conditions (1)–(6) of Proposition 13.
Thus, by assumption, Cl also satisfies conditions (1)–(6) of Proposition 13. This completes the proof.

Remark 5. It can be easily verified that, if Cl : BF (X) × [−1, 0] × [0, 1]\{(0, 0) → BF (X) is a BFC
operator on X, then, for each (r, s) ∈ [−1, 0] × [0, 1]\{(0, 0)}, Clr,s : BF (X) → BF (X) defined by
Clr,s(λ) = Cl

(
λ, (r, s)

)
is a BFC operator of Chang type.

Proposition 15. Let (X, τ) be a Chang type BFT S . Then, Cl : BF (X) × [−1, 0] × [0, 1]\{(0, 0)} →
BF (X) is a BFC operator iff Clr,s : BF (X) → BF (X) is a Chang type BFC operator for the Chang type
BFT S (X, τr,s) for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Proof. Clearly, if Cl is a BFC operator for the BFT S (X, τ), then Clr,s is a Chang type BFC operator
for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}.

Conversely, suppose that Clr,s is a Chang type BFC operator for the Chang type BFT S (X, τr,s)

for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}. Thus, the conditions (1), (2), (4), and (5) of Proposition 13 are
satisfied. If (r1 , s1) � (r2 , s2), then, τr1 ,s1

⊆ τr2 ,s2
. Therefore, condition (3) of Proposition 13 is satisfied.

In order to prove condition (6), suppose that

(r, s) = ∨{(u, v); Cl
(
λ, (u, v)

)
= λ.

Then, λc ∈ τr+ε,s−ε for all ε > 0. Thus, we have λc ∈ ∩
ε>0

τr+ε,s−ε, i.e., λc ∈ τr,s. Therefore, we

have λ ∈ Fr,s and hence we conclude that Cl
(
λ, (r, s)

)
= λ. This completes the proof.

Proposition 16. Let f : (X, τ)→ (Y, τ′) be a mapping between two BFT Ss. Then, f is a bipolar GP map
iff f

(
Cl
(
λ, (r, s)

))
⊆ Cl

(
f (λ), (r, s)

)
.

Proof. By Proposition 9, f is a bipolar GP map iff f : (X, τr,s)→ (Y, τ′r,s) is continuous for all (r, s) ∈
[−1, 0]× [0, 1]\{(0, 0)} iff f

(
Cl
(
λ, (r, s)

))
⊆ Cl

(
f (λ), (r, s)

)
.

6. Category of Bipolar Fuzzy Topology

In this section, categorical behavior of bipolar fuzzy topological spaces is studied.
Let CBFT denote the category of all Chang type BFT Ss and continuous functions; FTop

denotes the category of all BFT Ss and bipolar GP maps in our sense; for each (r, s) ∈ [−1, 0] ×
[0, 1]\{(0, 0)}, F r,s

Top denotes the category of (r-s)-th graded BFT Ss and bipolar GP maps.
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Proposition 17.

(1) F r,s
Top is a full subcategory of FTop.

(2) For each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}, CBFT and F r,s
Top are isometric.

(3) F r,s
Top is a bireflective full subcategory of FTop.

Proof. The first two results follow from the facts: (τr,s)r,s = τ if τ is a (r-s)-th bipolar GO; (Tr,s)r,s = T
if T is a Chang type BFT and f : (X, T) → (Y, T′) is continuous w.r.t the Chang type BFT iff
f : (X, Tr,s)→ (Y, (T′)r,s) is a bipolar GP map, for all (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}. To prove (3), let
us take a member (X, τ) of FTop. Then, for each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}, (X, (τr,s)r,s) is a F r,s

Top
member and also IX : (X, τ)→ (X, (τr,s)r,s) is a bipolar GP map. Let (Y, τ′) be a member of F r,s

Top and
f : (X, τ)→ (Y, τ′) be a bipolar GP map. Now, we only need to check whether f : (X, (τr,s)r,s)→ (Y, τ′)

is a bipolar GP map. If µ = 0̃, then τ
(

f−1(0̃)
)
= τ′(0̃). Then, (τr,s)r,s( f−1(0̃)

)
= (τr,s)r,s(0̃) � τ′(0̃).

Similarly, (τr,s)r,s( f−1(1̃)
)
� τ′(1̃). If τ′(µ) = (0, 0), then, obviously (τr,s)r,s( f−1(µ)

)
� τ′(µ). Let

τ′(µ) = (r, s). Then, τ
(

f−1(µ)
)
� τ′(µ) ⇒ f−1(µ) ∈ τr,s. Then, (τr,s)r,s( f−1(µ)

)
� (r, s) = τ′(µ).

Thus, f : (X, (τr,s)r,s)→ (Y, τ′) is a bipolar GP map.

(X, τ) FTop object (Y, τ′) F r,s
Top object

(
X, (τr,s)r,s)

Remark 6. From (2), (3) in Proposition 17 CBFT may be called a bireflective full subcategory of FTop.

Proposition 18. Let {(Xi, τ′
i
) : i ∈ ∆} be a family of BFT Ss and X be a set such that f : X → Xi is a map

for each i ∈ ∆. Then, there exists a bipolar GO τ on X such that the following condition holds:

(1) for each i ∈ ∆, fi : (X, τ)→ (Xi , τ′
i
) is a bipolar GP map.

(2) If (Z, τ′′) is a BFT S , then g : (Z, τ′′)→ (X, τ) is a bipolar GP map iff fi ◦ g is a bipolar GP map for
each i ∈ ∆.

Proof. (1) For each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)} and for each i ∈ ∆, we define

Tr,s
i

= { f−1
i

(µ) : µ ∈ (τ′
i
)r,s},

where (τ′
i
)r,s = {µ ∈ BF (Xi ) : τ′

i
(µ) � (r, s)} is the (r-s)-th level BFT on Xi w.r.t τ′

i
. It can be shown

that Tr,s
i

is a BFT on X. Clearly, {Tr,s
i

: (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}} is a descending family. For
each (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}, we define

∏
r,s

= ∪
j∈∆

Tr,s
i

.

Let Tr,s be the BFT on X generated by ∏
r,s

as a subbase. Then, {Tr,s : (r, s) ∈ [−1, 0] ×

[0, 1]\{(0, 0)}} is a descending family. Then, there exists a bipolar GO τ on X associated with the family
{Tr,s : (r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}}, where τ(µ) = ∨{(r, s) ∈ [−1, 0]× [0, 1]\{(0, 0)}; µ ∈ Tr,s}.
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First, we show that for each i ∈ ∆, fi : (X, τ) → (Xi , τ′
i
) is a bipolar GP map. Let µ ∈ BF (Xi) and

τ′
i
(µ) = (r, s), where (r, s) � (0, 0). Then, f−1

i
(µ) ∈ Tr,s

i
⊂ ∏

r,s
⊂ Tr,s. Thus, τ

(
f−1

i
(µ)
)
� (r, s) = τ′

i
(µ).

Consequently, fi : (X, τ)→ (Xi , τ′
i
) is a bipolar GP map.

(2) If g : (Z, τ′′) is a bipolar GP map and since, for each i ∈ ∆, fi : (X, τ)→ (Xi , τ′
i
) is a bipolar GP

map, by Proposition 11, the composition of two bipolar GP map fi ◦ g is a bipolar GP map for each i ∈ ∆.
Conversely, we have to show that g : (Z, τ′′)→ (X, τ) is a bipolar GP map. Let (r, s) ∈ [−1, 0]×

[0, 1]\{(0, 0)} and µ ∈ ξr,s. Then, µ ∈ Tr,s
i for some i ∈ ∆. Then, there exists λ ∈ (τ′i )r,s such that

f−1
i (λ) = µ. Since fi ◦ g is a bipolar GP map for each i ∈ ∆, it follows that

τ′′
(
( fi ◦ g)−1(λ)

)
� (r, s)⇒ τ′′

(
g−1( f−1

i
(λ)
)
� (r, s)⇒ τ′′

(
g−1(µ)

)
� (r, s).

Hence, the result follows from Proposition 12.

7. Conclusions

The notion of a bipolar fuzzy set is a generalization of a fuzzy set in the sense that a fuzzy set
describes some property in a graded manner from its existence to its non existence by assigning values
from 1 to 0, whereas a bipolar fuzzy set describes the same from the existence to the reverse existence
through non-existence by taking values from 1 to –1 through 0. In this article, this idea of bipolarity is
formalized in the topological sense by introducing a concept of bipolar gradation of openness to redefine
bipolar fuzzy topology. Consequently, we introduce bipolar GO and bipolar GC and studied their
properties. The relation between Chang type BFT and BFT in our sense is established successfully.
The bipolar GP map and bipolar FC operator are studied. In addition, we have shown that the Chang
type BFT and continuous function is a bireflective full subcategory of the topological category of
BFT and bipolar GP maps in our sense. In the upcoming papers, we will study various topological
properties including the compactness and connectedness in this setting.
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