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Abstract: The existence of infinitely many homoclinic solutions for the fourth-order differential
equation

(
ϕp (u′′ (t))

)′′
+ w

(
ϕp (u′ (t))

)′
+ V(t)ϕp (u (t)) = a(t) f (t, u(t)), t ∈ R is studied in the

paper. Here ϕp(t) = |t|p−2 t, p ≥ 2, w is a constant, V and a are positive functions, f satisfies some
extended growth conditions. Homoclinic solutions u are such that u(t)→ 0, |t| → ∞, u 6= 0, known in
physical models as ground states or pulses. The variational approach is applied based on multiple
critical point theorem due to Liu and Wang.

Keywords: homoclinic solutions; fourth-order p-Laplacian differential equations; minimization
theorem; Clark’s theorem

1. Introduction

In this paper, we study the existence of infinitely many nonzero solutions homoclinic solutions
for the fourth-order p-Laplacian differential equation

(
ϕp
(
u′′ (t)

))′′
+ w

(
ϕp
(
u′ (t)

))′
+ V(t)ϕp (u (t)) = a(t) f (t, u(t)), (1)

where t ∈ R, w is a constant, ϕp(t) = |t|p−2 t, for p ≥ 2, V is a positive bounded function, a is a positive
continuous function and f ∈ C1(R,R) satisfies some growth conditions with respect to p. As usual,
we say that a solution u of (1) is a nontrivial homoclinic solution to zero solution of (1) if

u 6= 0, u(t)→ 0, |t| → ∞. (2)

They are known in phase transitions models as ground states or pulses (see [1]). The existence
of homoclinic and heteroclinic solutions of fourth-order equations is studied by various authors
(see [2–12] and references therein). Sun and Wu [4] obtained existence of two homoclinic solutions for
a class of fourth-order differential equations:

u(4) + wu′′ + a(t)u = f (t, u) + λh(t) |u|p−2 u, t ∈ R,

where w is a constant, λ > 0, 1 ≤ p < 2, a ∈ C (R,R+) and h ∈ L
2

2−p (R) by using mountain
pass theorem.

Yang [8] studies the existence of infinitely many homoclinic solutions for a the fourth-order
differential equation:

u(4) + wu′′ + a(t)u = f (t, u), t ∈ R,

where w is a constant, a ∈ C (R) and f ∈ C (R×R,R). A critical point theorem, formulated in
the terms of Krasnoselskii’s genus (see [13], Remark 7.3), is applied, which ensures the existence of
infinitely many homoclinic solutions.
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We suppose the following conditions on the functions a, f and V.
(A) a ∈ C(R,R+) and a(t)→ 0 as |t| → +∞.
(F1) There are numbers p and q s.t. 1 < q < 2 ≤ p and for f ∈ C1(R,R)

u f (t, u) ≤ qF(t, u), ∀u ∈ R, u 6= 0,

where F(t, u) =
∫ u

0 f (t, x)dx.
(F2) | f (t, u)| ≤ b(t)|u|q−1, ∀(t, u) ∈ R×R, where b is a positive function, s.t. b ∈

Lr(R)
⋂

L
p

2−q (R), where r = p
p−q .

(F3) There exists an interval J ⊂ R and a constant c > 0 s. t. F(t, u) ≥ c|u|q, ∀(t, u) ∈ J ×R.
(F4) F(t,−u) = F(t, u) for all (t, u) ∈ R×R.
(V) There exist positive constants v1 and v2 such that 0 < v1 ≤ V(t) ≤ v2, ∀t ∈ R.
Let

w∗ = inf
u 6=0

∫
R
(
|u′′(t)|p + |u(t)|p

)
dt∫

R |u′(t)|
p dt

.

Denote by X the Sobolev’s space

X := W2,p (R) = {u ∈ Lp(R) : u′ ∈ Lp(R), u′′ ∈ Lp(R)},

equipped by the usual norm

||u||X :=
(∫

R

(∣∣u′′(t)∣∣p + ∣∣u′(t)∣∣p + |u(t)|p) dt
)1/p

.

The functional I : X → R is defined as follows

I(u) =
∫
R
(Φp(u′′(t))− wΦp(u′(t)) + V(t)Φp(u(t)))dt−

∫
R

a(t)F(t, u(t)dt, (3)

where Φ(t) = |t|p
p for p ≥ 2.

Under conditions (A), (F1)− (F3) and V the functional I is differentiable and for all u, v ∈ X
we have 〈

I′(u), v
〉

=
∫
R

(
ϕp
(
u′′ (t)

)
v′′(t)− wϕp

(
u′ (t)

)
v′(k)

)
dt + V(t)ϕp (u(t)) v(t)dt

−
∫
R

a(t) f (t, u(t)) v(t)dt.

where 〈., .〉means the duality pairing between X and it’s dual space X∗. The homoclinic solutions of
the Equation (1) are the critical points of the functional I, i.e., u0 is a homoclinic solution of the problem
if 〈I′(u0), v〉 = 0 for every v ∈ X (see [6,11,12]).

Let v0 = min{1, v1}, where v1 is the positive constant from condition (V). Our main result is:

Theorem 1. Let p ≥ 2, w < v0w∗ and the functions a, f and V satisfy the assumptions (A), (F1)− (F3)

and (V) . Then the Equation (1) has at least one nonzero homoclinic solution u0 ∈ X. Additionally if (F4) holds,
the Equation (1) has infinitely many nonzero solutions uj such that ||uj||∞ → 0 as j→ ∞.

Remark 1. An example of a function f (t, u), which satisfies the assumptions (F1) − (F4) is as follows.
Let p = 3, q = 3

2 and f (t, u) = α(t)|u|1/2u, where

α(t) =

{
3−t2

2 , |t| ≤ 1,
1
|t| , |t| ≥ 1.
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We have that r = p
p−q = 2, p

2−q = 6 and b(t) = α(t) ∈ L2(R) ∩ L6(R), because
∞∫
1

1
t2 dt = 1 and

∞∫
1

1
t6 dt = 1

5 . Moreover α(t) ≥ 1 if t ∈ (−1, 1) = J. Next, we have

| f (t, u)| = α(t)|u|3/2,

F(t, u) =
2
5

α(t)|u|5/2,

and F(t, u) ≥ 2
5 |u|5/2, t ∈ J = (−1, 1).

As an open problem we state the existence of weak solutions of the problem when 1 < q < p < 2.
This paper is organized as follows. In Section 2 we present the variational formulation of the

problem and critical point theorems used in the proof of the main result. In Section 3, we give the
proof of Theorem 1.

2. Preliminaries

In this section we give the variational formulation of the problem and present two critical point
theorems.

Let X1 be the Sobolev’s space

X1 := {u ∈ X :
∫
R

(∣∣u′′(t)∣∣p − w
∣∣u′(t)∣∣p + V(t) |u(t)|p

)
dt < ∞},

equipped by the norm

||u|| :=
(∫

R

(∣∣u′′(t)∣∣p − w
∣∣u′(t)∣∣p + V(t) |u(t)|p

)
dt
)1/p

.

Denote

w∗ = inf
u 6=0

∫
R
(
|u′′(t)|p + |u(t)|p

)
dt∫

R |u′(t)|
p dt

.

and v0 = min{1, v1}. The next lemma shows that under condition (V) for w < v0w∗ the norms ||.||
and ||.||X are equivalent and X = X1.

Lemma 1. Let w < v0w∗. Then, there exists a constant C > 0 such that∫
R

(∣∣u′′(t)∣∣p − w
∣∣u′(t)∣∣p + V(t) |u(t)|p

)
dt ≥ C ‖u‖p

X , ∀u ∈ X. (4)

Proof of Lemma 1. In view of Lemma 4.10 in [14], there exists a positive constant K = K(p) depending
only on p such that ∫

R

∣∣u′(t)∣∣p dt ≤ K
∫
R

(∣∣u′′(t)∣∣p + |u(t)|p) dt.

Then
1
K
≤ w∗ = inf

u 6=0

∫
R
(
|u′′(t)|p + |u(t)|p

)
dt∫

R |u′(t)|
p dt

.

Let
C0 =

v0w∗ − w
(K + 1)v0w∗

and C = v0C0. We have
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∫
R

(∣∣u′′(t)∣∣p − w
∣∣u′(t)∣∣p + V(t) |u(t)|p

)
dt

≥ v0

∫
R

(∣∣u′′(t)∣∣p − w
v0

∣∣u′(t)∣∣p + |u(t)|p) dt

= v0((1−
w

v0w∗
)
∫
R

(∣∣u′′(t)∣∣p + |u(t)|p) dt

+
w

v0w∗

∫
R

(∣∣u′′(t)∣∣p − w∗
∣∣u′(t)∣∣p + |u(t)|p) dt)

≥ v0(1−
w

v0w∗
)
∫
R

(∣∣u′′(t)∣∣p + |u(t)|p) dt

= v0C0(K + 1)
∫
R

(∣∣u′′(t)∣∣p + |u(t)|p) dt

≥ v0C0

∫
R

(∣∣u′′(t)∣∣p + ∣∣u′(t)∣∣p + |u(t)|p) dt = C||u||pX ,

which completes the proof.

By Brezis [15], Theorem 8.8 and Corollary 8.9 for u ∈ X and s > p

||u||∞ : = ||u||L∞(R) ≤ C1||u||X ,∫
R
|u(t)|sdt ≤ ||u||s−p

∞ ||u||pX ,

and lim
|t|→∞

u(t) = 0.

We consider the functional I : X → R

I(u) =
∫
R
(Φp(u′′(t))− wΦp(u′(t)) + V(t)Φp(u(t)))dt−

∫
R

a(t)F(t, u(t)dt, (5)

where Φ(t) = |t|p
p for p ≥ 2.

One can show that under conditions (A), (F1)− (F3) and V the functional I is differentiable and
for all u, v ∈ X we have〈

I′(u), v
〉
=
∫
R

(
ϕp
(
u′′ (t)

)
v′′(t)− wϕp

(
u′ (t)

)
v′(k)

)
dt + V(t)ϕp (u(t)) v(t)dt

−
∫
R

a(t) f (t, u(t)) v(t)dt. (6)

Let Lp
a (R), p ≥ 1 be the weighted Lebesque space of functions u : R→ R with norm ||u||p,a :=(∫

R
a(t)|u(t)|pdt

)1/p

. We have

Lemma 2. Assume that the assumptions (A) and (V) hold. Then, the inclusion X ⊂ Lp
a (R) is continuous

and compact.

Proof of Lemma 2. The embedding X ⊂ Lp
a (R) is continuous by the boundedness of the function

a by (A). We show that the inclusion is compact. Let
{

uj
}
⊂ X be a sequence such that ||uj|| ≤ M

and uj ⇀ u weakly in X. We’ll show that uj → u strongly in Lp
a (R). Without loss of generality we

can assume that u = 0, considering the sequence
{

uj − u
}

. By (A) for any ε > 0, there exists R > 0,
such that for |t| ≥ R

0 ≤ a(t) ≤ ε

2(1 + Mp)
.
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Then ∫
|t|≥R

a(t)|uj(t)|pdt ≤ εMp

2(1 + Mp)
.

By Sobolev’s imbedding theorem uj → 0 strongly in C([−R, R]) and there exists j0 such that for
j > j0 : ∫

|t|≤R

a(t)|uj(t)|pdt <
ε

2(1 + Mp)
.

Then, for j > j0 we have
∫
R

a(t)|uj(t)|pdt < ε, which shows that uj → 0 strongly in Lp
a (R).

Lemma 3. Let assumptions (A), (F1)− (F3) and (V) hold. If uj ⇀ u weakly in X, there exists a subsequence
of the sequence

{
uj
}

, still denoted by
{

uj
}

such that f (t, uj)→ f (t, u) in Lp
a (R).

Proof of Lemma 3. Let uj ⇀ u weakly in X. By Banach-Steinhaus theorem there exists M1 > 0,
such that ||uj|| ≤ M1 and ||u|| ≤ M1. By the elementary inequality for a > 0, b > 0, p > 1

(a + b)p ≤ 2p−1(ap + bp),

and (F2) we have

| f (t, uj)− f (t, u)|p ≤ 2p−1(| f (t, uj)|p + | f (t, u)|p)

≤ 2p−1|b(t)|p(|uj|p(q−1) + |u|p(q−1)).

Let 0 < a(t) ≤ A. Then, by Hölder inequality and b ∈ L
p

2−q (R) it follows that

∫
R

a(t)| f (t, uj(t))− f (t, u(t))|pdt

≤ 2p−1 A
∫
R
|b(t)|p(|uj|p(q−1) + |u|p(q−1))dt

≤ 2p−1 A(
∫
R
|b(t)|

p
2−q )2−q((

∫
R
|uj(t)|pdt)q−1 + (

∫
R
|u(t)|pdt)q−1)

≤ 2p A||b||p
L

p
2−q (R)

Mp(q−1)
1 .

By Lemma 2, uj ⇀ u weakly in X implies that there exists a subsequence {uj}, such that uj → u
strongly in Lp

a (R). By analogous way as above we have that there exists B > 0, such that∫
R
| f (t, uj(t))− f (t, u(t))|pdt ≤ B.

Let ε > 0, R > 0 are s.t. 0 < a(t) < ε
2B for |t| ≥ R by (A). Then∫

|t|≥R
a(t)| f (t, uj(t))− f (t, u(t))|pdt <

ε

2
. (7)

Let 0 < aR < a(t) ≤ A for |t| ≤ R. By uj → u strongly in Lp
a (R) it follows that∫

|t|≤R
a(t)|uj(t)− u(t)|pdt ≥ aR

∫
|t|≤R

|uj(t)− u(t)|pdt→ 0
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and uj(t)− u(t)→ 0 a.e. in |t| ≤ R. Then, by Lebesque’s dominated convergence theorem

IR :=
∫
|t|≤R

a(t)| f (t, uj(t))− f (t, u(t))|pdt→ 0.

Let j0 is sufficiently large, such that for j > j0, 0 ≤ IR < ε
2 . Then by (7) for j > j0 we have∫

R
a(t)| f (t, uj(t))− f (t, u(t))|pdt < ε,

which completes the proof.

Next we have:

Lemma 4. Under assumptions (A), (F1)− (F3), (V) the functional I ∈ C1(X,R) and the identity (6) holds
for all u, v ∈ X. holds.

It can be proved in a standard way using Lemma 3 (see Yang [8], Tersian, Chaparova [6]).

Lemma 5. Under assumptions (A), (F1)− (F3) and (V) the functional I satisfies the (PS) condition.

Proof of Lemma 5. Let {uj} be a sequence such that {I(uj)} is bounded in X and I′(uj) → 0 in X∗.
Then, there exists a constant C1 > 0, s.t.

||I(uj)|| ≤ C1, ||I′(uj)||X∗ ≤ C1.

By (F2) we have

C1 +
C1

q
||uj|| ≥

1
q
< I′(uj), uj > −I(uj)

=

(
1
q
− 1

p

)
||uj||p +

∫
R

a(t)(F(t, uj(t))−
1
q

f (t, uj(t))uj(t))dt

≥
(

1
q
− 1

p

)
||uj||p.

Then, {uj} is a bounded sequence in X and up to a subsequence, still denoted by {uj}, uj ⇀ u
weakly in X. There exists M2 > 0, such that ||uj|| ≤ M2, ||u|| ≤ M2. By Lemma 2, um → u in L2

a(R)
and by Lemma 3, f (t, um(t))→ f (t, u(t)) in L2

a(R) . By Hölder inequality we have:

Ij :=
∫
R

a(t)( f (t, uj(t))− f (t, u(t)))(uj(t)− u(t))dt

=
∫
R

a
p−1

p (t)( f (t, uj(t))− f (t, u(t)))a
1
p (t)(uj(t)− u(t))dt

≤ A
p−1

p

∫
R

a(t)|uj(t)− u(t)|pdt
(∫

R
| f (t, uj(t))− f (t, u(t))|

p
p−1 dt

) p−1
p

.

As in the proof of Lemma 3, by assumption (F2), b ∈ L
p

p−q (R) and Hölder inequality we have for
p1 = p

p−1 > 1:
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∫
R
| f (t, uj(t))− f (t, u(t))|p1 dt

≤ 2p1−1
∫
R
|b(t)|p1 |

(
|uj(t)|(q−1)p1 + |u(t)|(q−1)p1

)
dt

≤ 2p1−1
(∫

R
|b|

p
p−q dt

) p−q
p−1

(∫
R
|uj|pdt

) q−1
p−1

+

(∫
R
|u|pdt

) q−1
p−1


≤ 2p1 ||b||p1

L
p

p−q
M(q−1)p1

2 .

Then, by uj → u in L2
a(R) it follows that Ij → 0 as j→ ∞. Next, we have

||uj − u||p ≤< I′(uj)− I′(u), uj − u > +Ij,

which shows that uj → u in X.

Next, we recall a minimization theorem which will be used in the proof of Theorem 1. (see [16],
Theorem 2.7 of [13]).

Theorem 2. (Minimization theorem) Let E be a real Banach space and J ∈ C1(E,R) satisfying (PS) condition.
If J is bounded below, then c = infE I is a critical value of J.

We will use also the following generalization of Clark’s theorem (see Rabinowitz [13], p. 53) due
to Z. Liu and Z. Wang [17]:

Theorem 3. (Generalized Clark’s theorem, [17]) Let E be a Banach spa ce, J ∈ C1(E,R). Assume that J
satisfies the (PS) condition, it is even, bounded from below and J(0) = 0. If for any k ∈ N, there exists
a k−dimensional subspace Ek of E and ρk > 0 such that supEk∩Sρk

J < 0, where Sρ = {u ∈ E , ‖u‖E = ρ},
then at least one of the following conclusions holds:

1. There exists a sequence of critical points {uk} satisfying J(uk) < 0 for all k and limk→∞ ‖uk‖E = 0.
2. There exists r > 0 such that for any 0 < α < r there exists a critical point u such that ‖u‖E = α and

J(u) = 0.

Note that Theorem 3 implies the existence of infinitely many pairs of critical points (uk,−uk),
uk 6= 0 of J, s.t. J(uk) ≤ 0, limk→+∞ J(uk) = 0 and limk→+∞ ‖uk‖E = 0.

Lemma 6. Assume that assumptions (A), (F2) and (V) hold. Then the functional I is bounded from below.

Proof of Lemma 6. By (F2) and the proof of Lemma 3 we have

|F(t, u)| ≤ 1
q

b(t)|u|q.

and

I(u) =
1
p
||u||p −

∫
R

a(t)F(t, u(t))dt

≥ 1
p
||u||p − A

q

∫
R

b(t)|u(t)|qdt

≥ 1
p
||u||p − A

q

(∫
R
|b(t)|

p
p−q dt

) p−q
p
(∫

R
|u(t)|pdt

) q
p

≥ 1
p
||u||p − A

q
||b||

L
p

p−q
||u||q.
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By p > q it follows that I is bounded from below functional.

3. Proof of the Main Result

In this section we prove Theorem 1. The proof is based on the minimization Theorem 2 and
multiplicity result Theorem 3. Their conditions are satisfied according to Lemmas 1–6.

Proof of Theorem 1. The functional I satisfies the assumptions of minimization Theorem 2. Let u0 be
the minimizer of I. Since I(0) = 0 to show that u0 6= 0, let us take v ∈W2,p

0 (J), where J is the interval
from condition (F3). Suppose that ||v||∞ ≤ 1. Then for λ > 0 by (F3)

I(λv) =
λp

p
||v||p −

∫
J

a(t)F(t, λv(t))dt

≤ λp

p
||v||p − cλq

∫
J

a(t)|v(t)|qdt.

By 1 < q < p and the last inequality it follows for λ0 sufficiently small and λ0 > λ > 0 I(λv) < 0.
Then I(u0) = min{I(u) : u ∈ X} < I(λv) < 0 and u0 is a nonzero weak solution. Let the condition (F4)

holds additionally. We show that the functional I satisfies the assumptions of Theorem 3. We construct
a sequence of finite dimensional subspaces Xn ⊂ X and spheres Sn−1

rn ⊂ Xn with sufficiently small
radius rn > 0 such that sup{I(u) : u ∈ Sn−1

rn } < 0. Let J = (a, b) ⊂ R and for k ∈ {1, 2, ..., n}
Jk = (xk−1, xk) , where xk = a + k

n (b− a). Next, we choose functions vk ∈ C2
0(Jk) such that ||vk||∞ < ∞

and ||vk||X = 1.
Let Xn be the n− dimensional subspace Xn := span{v1, ..., vk} ⊂ X and

Sn−1
ρ := {u ∈ Xn : ||u||X = ρ}.

For u = ∑n
k=1 ckvk ∈ Xn we have

||u||p =
∫
R

(∣∣u′′(t)∣∣p − w
∣∣u′(t)∣∣p + V(t) |u(t)|p

)
dt

=
n

∑
j=k
|ck|p

∫
Jk

(|v′′k (t)|
p − w|v′k(t)|

p + V(t)|vk(t)|p))dt

=
n

∑
k=1
|ck|p.

By analogous way for γk =
∫

Jk
(|vk(t)|qdt > 0 we have

||u||qn =
n

∑
k=1

γk|ck|q (8)

The space Xn is n-dimensional and the norms ||.|| and ||.||n are equivalent. There are positive
constants d1n and d2n s.t.

d1n||u|| ≤ ||u||n ≤ d2n||u||, ∀u ∈ Xn. (9)

Then, for u ∈ Xn
⋂

Sn−1
1

I(λu) =
λp

p
||u||p −

n

∑
k=1

∫
Jk

a(t)F(t, λckvk(t))dt

≤ λp

p
||u||p − cλq

n

∑
k=1
|ck|q

∫
Jk

a(t)|vk(t)|qdt

≤ λp

p
||u||p − cλqd1n||u||q
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By 1 < q < p and the last inequality it follows that I(v) < 0 for v ∈ Sρ
n−1 := {u ∈ Xn : ||u|| = ρ}.

Finally, all assumptions of Theorem 3 are satisfied and by Remark 1 there exist infinitely many weak
solutions {uj} of the problem (1), such that I({uj}) ≤ 0 and ||uj|| → 0. By imbedding X ⊂ L∞(R) it
follows that ||uj||∞ → 0 as j→ ∞ which completes the proof.

4. Conlusions

In this paper, we obtained the existence of infinitely many homoclinic solutions of Equation (1)
under conditions (A), (F1)− (F4), (V) in the case 1 < q < 2 ≤ p. The equation is an extension of the
stationary Fisher-Kolmogorov equation which appears in the phase transition models. The variational
approach is applied based on the multiple critical point theorem due to Liu and Wang. It will be
interesting to extend the result to the case 1 < q < p < 2.
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