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Abstract: We are interested in fast and stable iterative regularization methods for image deblurring
problems with space invariant blur. The associated coefficient matrix has a Block Toeplitz Toeplitz
Blocks (BTTB) like structure plus a small rank correction depending on the boundary conditions
imposed on the imaging model. In the literature, several strategies have been proposed in the
attempt to define proper preconditioner for iterative regularization methods that involve such linear
systems. Usually, the preconditioner is chosen to be a Block Circulant with Circulant Blocks (BCCB)
matrix because it can efficiently exploit Fast Fourier Transform (FFT) for any computation, including
the (pseudo-)inversion. Nevertheless, for ill-conditioned problems, it is well known that BCCB
preconditioners cannot provide a strong clustering of the eigenvalues. Moreover, in order to get an
effective preconditioner, it is crucial to preserve the structure of the coefficient matrix. On the other
hand, thresholding iterative methods have been recently successfully applied to image deblurring
problems, exploiting the sparsity of the image in a proper wavelet domain. Motivated by the results
of recent papers, the main novelty of this work is combining nonstationary structure preserving
preconditioners with general regularizing operators which hold in their kernel the key features of the
true solution that we wish to preserve. Several numerical experiments shows the performances of
our methods in terms of quality of the restorations.
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1. Introduction

In image deblurring we are concerned in reconstructing an approximation of an image from
blurred and noisy measurements. This process can be modeled by an integral equation of the form

g(x, y) = (κ ∗ f )(x, y) =
+∞∫
−∞

+∞∫
−∞

κ(x, y, x′, y′) f (x′, y′) dx′ dy′ + η(x, y), (x, y) ∈ Ω ⊂ R2, (1)

where f : R2 → R is the original image and g : R2 → R is the observed imaged which is obtained
from a combination of an (Hilbert-Schmidt) integral operator, represented by κ : R4 → R, and the
add of some (unavoidable) noise η : R2 → R coming from, e.g., perturbations on the observed data,
measurement errors, and approximation errors. By assuming the kernel κ to be compactly supported
and considering the ideal case η = 0 Equation (1) becomes

g = K · f ,
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where K is a compact linear operator. In this contest, κ is generally called point spread function (PSF).
Considering an uniform grid, images are represented by their color intensities measured on the grid

(pixels). In this paper, for the sake of simplicity, we will deal only with square and gray-scale images,
even if all the techniques presented here carry over to images of different sizes and colors as well.

Collected images are available only in a finite region, the field of view (FOV), and the measured
intensities near the boundary are affected by data which lie outside the FOV; see Figure 1 for an
illustration.

Figure 1. Field of view. We see what is inside the square box.

Denoting by g and f the stack ordered vectors corresponding to the observed image and the true
image, respectively, the discretization of (1) becomes

g = Kf + η, (2)

where the matrix K is of size m2 × k2, being m and k the dimensions (in pixels) of the original picture.
The matrix K is often called the blurring matrix. When imposing proper Boundary Conditions (BCs),
the matrix K becomes square m2 ×m2 and in some cases, depending on the BCs and the symmetry
of the PSF, it can be diagonalized by discrete trigonometric transforms. Indeed, specific BCs induce
specific matrix structures that can be exploited to lessen the computational costs using fast algorithms.
Of course, since BCs are artificially introduced, their advantages could come with drawbacks in terms
of reconstruction accuracy, depending on the type of problem. The BCs approach forces a functional
dependency between the elements of f external to the FOV and those internal to this area. If the BC
model is not a good approximation of the real world outside the FOV, the reconstructed image can be
severely affected by some unwanted artifacts near the boundary, called ringing effects; see, e.g., [1].

The choice of the different BCs can be driven by some additional knowledge on the true image
and/or from the availability of fast transforms to diagonalize the matrix K within O(m2 log(m))

arithmetic operations. Indeed, the matrix-vector product can be always computed by the 2D FFT, after
a proper padding of the image to convolve, (see, e.g., [2]), while the availability of fast transforms to
diagonalize the matrix K depends on the BCs. Among the BCs present in the literature, we consider:
Zero (Dirichlet), Periodic, Reflective and Anti-Reflective, but our approach can be extended to other BCs
like, e.g., synthetic BCs [3] or high order BCs [4,5]. See Figure 2 for an illustration of the described BCs.

On the other hand, since Equation (2) is the product of the discretization of a compact operator,
K is severely ill-conditioned and may be singular. Such linear systems are commonly referred to as
linear discrete ill-posed problems; see, e.g., [6] for a discussion. Therefore a good approximation of f
cannot be obtained from the algebraic solution (e.g., the least-square solution) of (2), but regularization
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methods are required. The basic idea of regularization is to replace the original ill-conditioned problem
with a nearby well-conditioned problem, whose solution approximates the true solution. One of the
popular regularization techniques is Tikhonov regularization and it amounts in solving

min
f
{‖Kf− g‖2

2 + µ‖f‖2
2}, (3)

where ‖ · ‖2 denotes the vector 2-norm and µ > 0 is a regularization parameter to be chosen. The first
term in (3) is usually refereed to as fidelity term and the second as regularization term. This translates
into solving a linear problem for which many efficient methods have been developed for computing
its solution and for estimating the regularizing parameter µ, see [6]. This approach unfortunately
comes with a drawback: the edges of restored images are usually over-smoothed. Therefore, nonlinear
strategies have been employed, in order to overcome this unpleasant property, like total variation
(TV) [7] and thresholding iterative methods [8,9]. That said, typically many nonlinear regularization
methods have an inner step that apply a least-square regularization and therefore can benefit from
strategies previously developed for such simpler model.

Zero Dirichlet Periodic

Reflective Antireflective

Figure 2. Examples of boundary conditions.

In the present paper, both the regularization strategies that we propose share two common
ingredients: wavelet decomposition and `1-norm minimization on the regularization term. This is
motivated by the fact that the wavelet coefficients (under some basis) of most real images are usually
very sparse. In particular, here we consider the tight frame systems used in [10–12], but the result
can be easily extended to any framelet/wavelet system. Let W∗ be a wavelet or tight-frame synthesis
operator (W∗W = I), the wavelets or tight-frame coefficients of the original image f are x such that

f = W∗x, and the blurring operator becomes A = KW∗.
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Within this frame set, the model Equation (2) translates into

g = Ax. (4)

Recently, in [13], a new technique was proposed which directly applies a single preconditioning
operator P to Equation (4). The new preconditioned system becomes

Pg = PAx.

Combining this approach with a soft-thresholding technique such as the modified linearized
Bregman splitting algorithm [14], in order to mimic the `1-norm minimization, leads to the following
preconditioned iterative scheme

xn+1 = xn + τP(g− ASµ(xn)),

where τ is a positive relaxation parameter and Sµ(·) is the soft-thresholding function as defined in 6.
Hereafter we will put τ = 1: this is justified by applying an implicit rescaling of the preconditioned
system matrix PA.

The paper is organized as follows: in Section 2 we propose a generalization of an approximated
iterative Tikhonov scheme that was firstly introduced in [15] and then developed and adapted into
different settings in [16,17]. Here the preconditioner P takes the form

P = B∗ (BB∗ + αnΛΛ∗)−1 ,

where B is an approximation of A, in the sense that B = CW∗ with C the discretization of the same
problem (1) as the original blurring matrix K but imposing Periodic BCs. The operator ΛΛ∗ can be
a function of CC∗ or the discretization of a differential operator. The method is nonstationary and
the parameter αn is computed by solving a nonlinear problem with a computational cost of O(m2).
Related work on this kind of preconditioner can be found in [18–20]. In Section 3 we define a class
of preconditioners P endowed with the same structure of the system matrix A, as initially proposed
in [21] and then further developed in [22]. It is called structure preserving reblurring preconditioning
strategy and we combine it with the generalized regularization filtering approach of the preceding
Section 2. The idea is to preserve both the informations carried over by the spectra of the operator A
and the structure itself of the operator induced by the best fitting BCs. Section 4 contains a selection of
significant numerical examples which confirm the robustness and quality of the proposed regularization
schemes. Section 5 provides a summary of the techniques presented in this work and draws some
conclusions. Finally, in Appendix A are provided proofs of convergence and regularization properties
of the proposed algorithms.

2. Preconditioned Iterated Soft-Thresholding Tikhonov with General Regularizing Operator

2.1. Preliminary Definitions

Before proceeding further, let us introduce here some definitions and notations that will be used
in the forthcoming sections. We consider

K :
(
Rm2

, ‖ · ‖
)
→
(
Rm2

, ‖ · ‖
)

to be the discretization of a compact linear operator

g = Kf,

where the Euclidean 2-norm ‖ · ‖ is induced by the standard Euclidean inner product
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〈f(1), f(2)〉Rm2 =
m2

∑
j=1

f (1)j f (2)j .

Hereafter, we will specify the vector space where the inner product 〈·, ·〉 acts only whenever it is
necessary for disambiguation. The analysis that will follow in the next sections will be performed
generally on a perturbed data gδ, namely

gδ = Kf,

with gδ = g + η, and where η is a noise vector such that ‖η‖ = δ, δ is called the noise level.
Let

C :
(
Rm2

, ‖ · ‖
)
→
(
Rm2

, ‖ · ‖
)

be the discretization of a compact linear operator that approximates K, in a sense that will be specified
later. Let

W :
(
Rm2

, ‖ · ‖
)
→ (Rs, ‖ · ‖)

be such that
W∗W = I,

where W∗ : Rs → Rm2
indicates the adjoint operator of W, i.e., 〈Wf, u〉Rs = 〈f, W∗u〉Rm2 for each pair

f ∈ Rm2
, u ∈ Rs. We define

x = Wf, A = KW∗, B = CW∗.

Let us introduce the following matrix norm. Given a generic linear operator

L : (Rs, ‖ · ‖∞)→
(
Rm2

, ‖ · ‖
)

,

where ‖ · ‖∞ is the sup norm, let us define the matrix norm |||·||| as

|||L||| := sup
‖x‖∞≡1

‖Lx‖2. (5)

Finally, let µ ≥ 0 and let Sµ : Rs → Rs be such that

[Sµ(u)]i = Sµ(ui), (6)

with Sµ the soft-thresholding function

Sµ(ui) = sgn(ui)max {|ui| − µ, 0} .

2.2. General Regularization Operator as h(CC∗)

Let h : [0, ‖CC∗‖2]→ R be a continuous function such that

0 < c1 ≤ h(σ2) ≤ c2,

where c1, c2 are positive constants, and define c := c1/c2. By the continuity of h and by well-known
facts from functional analysis [23] we can write h(CC∗) as the operator defined by

h(CC∗)[f] :=
∫

h(σ2)dEσ2(f) =
∞

∑
k=1

h(σ2
k )〈f, uk〉uk,

where {Eσ2}σ2∈σ(CC∗) is the spectral decomposition of a (generic) self-adjoint operator CC∗ and
(σk, vk, uk)k∈N is the singular value expansion of C. We summarize the computations in Algorithm 1.
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Algorithm 1 PISTAh

Fix z0 ∈ Rs, δ > 0 and set x0 = Sµ(z0), r0 = g− Ax0.
Set ρ ∈ (0, c/2) and q ∈ (2ρ, c).
Compute τ = 1+2ρ

c−2ρ and rn = g− Axn.
while ‖rn‖ > τδ do

Compute τn := ‖rn‖/δ.
Compute qn := max{q, 2ρ + (1 + ρ)/τn}.
Compute αn such that

αn‖(CC∗ + αnh (CC∗))−1rn‖ = qn

c1
‖rn‖. (7)

Compute

hn = WC∗(CC∗ + αnh (CC∗))−1rn. (8)

Compute {
zn+1 = zn + hn,
xn+1 = Sµ(zn+1).

A rigorous and full detailed analysis of the preceding algorithm will be performed in Appendix A.
In order to prove all the desired properties we will need a couple of assumptions on the operators K ,
C, and on the parameter µ, that we present here below.

Assumption 1.
‖ (C− K) f‖ ≤ ρ‖Kf‖, ∀ f ∈ Rm2

, (9a)

and
µ ≤ ρδ

|||B||| , (9b)

with a fixed 0 < ρ < c/2, where δ = ‖η‖ is the noise level and where |||·||| is the operator norm defined in (5).

Let us observe that Equation (9a) translates into

‖(B− A)u‖ ≤ ρ‖Au‖, ∀ u ∈ Rs. (10)

Let us spread some light on the preceding conditions. Assumption (9a), or equivalently (10), is a strong
assumption. It may be hard to satisfy it for every specific problem, as it implies

(1− ρ) ‖Kv‖ ≤ ‖Cv‖ ≤ (1 + ρ) ‖Kv‖ for all v ∈ Rm2
,

or equivalently
(1− ρ) ‖Au‖ ≤ ‖Bu‖ ≤ (1 + ρ) ‖Au‖ for all u ∈ Rs, (11)

that is, K and C are spectrally equivalent. Nevertheless, in image deblurring the boundary conditions
have a very local effect, i.e., the approximation error C− K can be decomposed as

C− K = E + R,

where E is a matrix of small norm (and the zero matrix if the PSF is compactly supported), and R is a
matrix of small rank, compared to the dimension of the problem. This suggests that Assumption (9a)
needs to be satisfied only in a relatively small subspace, supposedly being a zero measure subspace.
In particular only for every en

δ , with n ≥ N and N fixed, such that Proposition A1 in Appendix A



Mathematics 2020, 8, 468 7 of 22

could hold. All the numerical experiments are consistent with this observation but for a deeper
understanding and a full treatment of this aspect we refer the reader to ([15], Section 4).

On the other hand instead, Assumption (9b) is quite natural. It is indeed equivalent to require
that

‖B
(
u− Sµ(u)

)
‖ ≤ ρδ

that is, the soft-thresholding parameter µ = µ(δ) is continuously noise-dependent and it holds that
µ(δ)→ 0 as δ→ 0.

2.3. General Regularization Operator as ΛΛ∗

In image deblurring, in order to better preserve the edges of the reconstructed solution, it is
usually introduced a differential operator ΛΛ∗, where Λ : X → Y is chosen as a first or second order
differential operator which holds in its kernel all these functions which posses the key features of
the true solution that we wish to preserve. In particular, since we are interested to recover the edges
and curves of discontinuities of the true image, it is a common choice to rely on the Laplace operator
with Neumann BCs, see [24]. In these recent papers [25,26], observing the spectral distribution of the
Laplacian, it was proposed to substitute ΛΛ∗ with

h(CC∗) =
(

I − CC∗

‖CC∗‖

)j
,

with j ∈ N.
Adding some new assumptions, we propose a modified version of the preceding Algorithm 1

that can take into account directly the operator Λ.

Assumption 2.
Ker(K) ∩Ker(Λ) = {0};

C|Ker(Λ) = K|Ker(Λ);

C and Λ are diagonalized by the same unitary transform.

We summarize the computations in Algorithm 2.

Algorithm 2 PISTAΛ

Fix z0 ∈ Rs, δ > 0 and set x0 = Sµ(z0), r0 = g− Ax0.
Set ρ ∈ (0, 1/2) and q ∈ (2ρ, 1).
Compute τ = 1+2ρ

1−2ρ and rn = g− Axn.
while ‖rn‖ > τδ do

Compute τn := ‖rn‖/δ.
Compute qn := max{q, 2ρ + (1 + ρ)/τn}.
Compute αn such that

αn‖(CC∗ + αnΛΛ∗)−1rn‖ = qn‖rn‖.

Compute

hn = WC∗(CC∗ + αnΛΛ∗)−1rn. (12)

Compute {
zn+1 = zn + αnhn,
xn+1 = Sµ(zn+1).
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We skip all the proofs of convergence since they can be recovered easily adapting the proofs in
Appendix A with ([16], Section 4).

3. Structured PISTA with General Regularizing Operator

The structured case is a generalization of what was developed in [21,22], merging these ideas with
the general approach described in Section 2. We skip some details since they can be easily recovered
from the aforementioned papers.

The blurring matrix K is made by two parts: the PSF and the BCs inherited by the discretization.
Different types of structured matrices are given rise by this latter choice. Without loosing generality
and for the sake of simplicity, we consider a square PSF Hκ ∈ Rk×k and we suppose that the center of
the PSF is known.

Consider the pixels κi,j of the PSF, we can define the following generating function κ : R2 → C

κ(x1, x2) =
m−1

∑
i,j=−m+1

κi,jeı̂(ix1+jx2) , (13)

where ı̂2 = −1 and we assumed that κi,j = 0 if the entry (κi,j) does not belong to Hκ [5]. Observe that
κj,j can be seen as the Fourier coefficients of κ ∈ span{eı̂(ix1+jx2), i, j = −k, . . . , k}, so that the same
information is contained in the generating function κ and in Hκ .

Summarizing the notation that we set in the Introduction about the BCs, we have

Zero BCs: K = Tm(κ),
Periodic BCs: K = Cm(κ) = Tm(κ) + BCm(κ),
Reflective BCs: K = Rm(κ) = Tm(κ) + BRm (κ),
Anti-Reflective BCs: K = ARm(κ) = Tm(κ) + BARm (κ).

We notice that, since the continuous operator is shift-invariant, in all these four cases K has a Toeplitz
structure Tm(κ) which depends on κ plus a correction term BXm (κ), X = C,R,AR which depends on
the chosen BCs.

In conclusion, we employ the unified notation K =Mm(κ), whereM(·) can be any of the classes
of matrices just introduced (i.e., T , C,R, AR). With this notation we wish to highlight the two crucial
elements that determine K: the blurring phenomenon associated with the PSF described by κ and the
chosen BCs represented byM.

Given the generating function κ (13) associated to the PSF Hκ , let us compute the eigenvalues ui,j
of the corresponding BCCB matrix Cm(κ) := C by means of the 2D-FFT, where i, j = 0, · · · , m− 1. Fix
a regularizing (differential) operator ΛΛ∗ as in Section 2, and suppose that the Assumptions 1 and 2
hold. The differential operator can be of the form ΛΛ∗ = h(CC∗), as in Algorithm 1 as well. Let now

vi,j =
ui,j

|ui,j|2 + αn|σi,j|2
,
(
ui,j the complex conjugate of ui,j

)
be the new eigenvalues after the application of the Tikhonov filter to ui,j, where σi,j are the eigenvalues
(singular values) of Λ and αn is computed as in Algorithms 1 and 2. Let us compute now the coefficients
κ̂i,j of

κ̂(x1, x2) =
m−1

∑
i,j=−m+1

κ̂i,jeı̂(ix1+jx2) (14)

by means of the 2D-iFFT and, finally, let us define

P =Mm(κ̂),

whereM(·) corresponds to the most fitting BCs for the model problem (1).
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We are now ready to formulate the last method whose computation are reported in Algorithm 3.

Algorithm 3 Struct-PISTAΛ

Fix Hκ , BCs, Λ.

Set C = Cm(κ).

Get {ui,j}n−1
i,j=0 by computing an FFT of Hκ .

Fix z0 ∈ Rs, δ > 0 and set x0 = Sµ(z0), r0 = g− Kx0.

Set ρ ∈ (0, 1/2) and q ∈ (2ρ, 1).

Compute τ = 1+2ρ
1−2ρ and rn = g− Kxn.

while ‖rn‖ > τδ do

Compute τn := ‖rn‖/δ.

Compute qn := max{q, 2ρ + (1 + ρ)/τn}.
Compute αn such that

αn‖(CC∗ + αnΛΛ∗)−1rn‖ = qn‖rn‖.

Compute vi,j =
ui,j

|ui,j|2+αn |σi,j |2
.

Get the mask H̃ of the coefficients κ̂i,j of κ̂ of (14) by computing an IFFT of {vi,j}m−1
i,j=0.

Generate the matrix P :=Mm(κ̂) from the coefficient mask H̃ and BCs.

Compute

hn = Prn. (15)

Compute {
zn+1 = zn + hn,
xn+1 = Sµ(zn+1).

In the case that ΛΛ∗ = h(CC∗), then the algorithm is modified in the following way:

ρ ∈ (0, c/2), q ∈ (2ρ, c), αn‖(CC∗ + αnΛΛ∗)−1rn‖ = qn

c1
‖rn‖

where 0 < c1 ≤ h(σ2) ≤ c2, c := c1/c2. We will denote this version by Struct-PISTAh. We will not
provide a direct proof of convergence for this last algorithm. Let us just observe that the difference
between (15) and (12)–(8) is just a correction of small rank and small norm.

4. Numerical Experiments

We now compare the proposed algorithms with some methods from the literature. In particular, we
consider the AIT-GP algorithm described in [16] and the ISTA algorithm described in [8]. The AIT-GP
method can be seen as Algorithm 2 with µ = 0, while the ISTA algorithm is equivalent to iterations of
Algorithm 2 without the preconditioner. These comparisons allow us to show how the quality of the
reconstructed solution is improved by the presence of both the soft-thresholding and the preconditioner.

The ISTA method and our proposals require the selection of a regularization parameter. For all
these methods we select the parameter that minimizes the relative restoration error (RRE) defined by

RRE(f) =
‖f− ftrue‖
‖ftrue‖

.
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For the comparison of the algorithms we consider the Peak Signal to Noise Ratio (PSNR) defined by

PSNR(f) = 20 log10

(
mM

‖f− ftrue‖

)
,

where m2 is the the number of elements of f and M denotes the maximum value of ftrue. Moreover,
we consider the Structure Similarity index (SSIM); the definition of the SSIM is involved, here we
recall that this index measures how accurately the computed approximation is able to reconstruct the
overall structure of the image. The higher the value of the SSIM the better the reconstruction is, and
the maximum value achievable is 1; see [27] for a precise definition of the SSIM.

We now describe how we construct the operator W. We use the tight frames determined by
linear B-splines; see, e.g., [28]. For one-dimensional problems they are composed by a low-pass filter
W0 ∈ Rm×m and two high-pass filters W1 ∈ Rm×m and W2 ∈ Rm×m. These filters are determined by
the masks are given by

u(0) =
1
4
[1, 2, 1], u(1) =

√
2

4
[1, 0,−1], u(2) =

1
4
[−1, 2,−1].

Imposing reflexive boundary conditions we determine the analysis operator W so that W∗W = I.
Define the matrices

W0 =
1
4


3 1 0 . . . 0
1 2 1

. . . . . . . . .
1 2 1

0 . . . 0 1 3

 , W1 =

√
2

4


−1 1 0 . . . 0
−1 0 1

. . . . . . . . .
−1 0 1

0 . . . 0 −1 1

 ,

and

W2 =
1
4


1 −1 0 . . . 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 . . . 0 −1 1

 .

Then the operator W is defined by

W =

 W0

W1

W2

 .

To construct the two-dimensional framelet analysis operator we use the tensor products

Wi,j = Wi ⊗Wj, i, j = 0, 1, 2.

The matrix W00 is a low-pass filter; all the other matrices Wij contain at least one high-pass filter. The
analysis operator is given by

W =


W00

W01
...

W22

 .
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In PISTAh, following [26], we set

h(x) =
(

1− x
‖A‖2

)4
+ 10−15.

All the computations were performed on MATLAB R2018b running on a laptop with an Intel
i7-8750H @ 2.20 GHz CPU and 16 GB of RAM.

4.1. Cameraman

We first considered the cameraman image in Figure 3a and we blurred it with the non-symmetric
PSF in Figure 3b. We then added 2% white Gaussian noise obtaining the blurred and noisy image in
Figure 3c. Note that we cropped the boundaries of the image to simulate real data; see [1] for more
details. Since the image was generic we imposed reflexive BCs.

(a) (b) (c)

Figure 3. Cameraman test problem: (a) True image (238× 238 pixels), (b) point spread function (PSF)
(17× 17 pixels), (c) Blurred and noisy image with 2% of white Gaussian noise (238× 238 pixels).

In Table 1 we report the results obtained with the different methods. We can observe that
Struct-PISTAh provided the best reconstruction of all considered algorithms. Moreover, we can
observe that, in general, the introduction of the structured preconditioner improved the quality of the
reconstructed solutions, especially in terms of SSIM. From the visual inspection of the reconstructions in
Figure 4 we can observe that the introduction of the structured preconditioner allowed us to evidently
reduce the boundary artifacts as well as avoid the amplification of the noise.

(a) (b) (c)

Figure 4. Cameraman test problem reconstructions: (a) ISTA, (b) PISTAh, (c) Struct-PISTAh.

4.2. Grain

We now considered the grain image in Figure 5a and blurred it with the PSF, obtained by the
superposition of two motions PSF, in Figure 5b. After adding 3% of white Gaussian noise and cropping
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the boundaries we obtained the blurred and noisy image in Figure 5c. According to the nature of the
image we used reflexive bc’s.

(a) (b) (c)

Figure 5. Grain test problem: (a) True image (246× 246 pixels), (b) PSF (9× 9 pixels), (c) Blurred and
noisy image with 3% of white Gaussian noise (246× 246 pixels).

Again in Table 1 we report all the results obtained with the considered methods. In this case ISTA
provided the best reconstruction in terms of RRE and PSNR. However, Struct-PISTAh provided the
best reconstruction terms of SSIM and very similar results in term of PSNR and RRE. In Figure 6 we
report some of the reconstructed solution. From the visual inspection of these reconstruction we can
see that the introduction of the structured preconditioner reduced the ringing and boundary effects in
the computed solutions.

(a) (b) (c)

Figure 6. Grain test problem reconstructions: (a) ISTA, (b) PISTAΛ, (c) Struct-PISTAΛ.

4.3. Satellite

Our final example is the atmosphericBlur30 from the MATLAB toolbox RestoreTools [2]. The
true image, PSF, and blurred and noisy image are reported in Figures 7a–c, respectively. Since we knew
the true image we could estimate the noise level in the image, which was approximately 1%. Since this
was an astronomical image we imposed zero bc’s.

From the comparison of the computed results in Table 1 we can see that the Struct-PISTAh method
provided the best reconstruction among all considered methods. We can observe that, in this particular
example, ISTA provided a very low quality reconstruction both in term of RRE and SSIM. We report in
Figure 8 some reconstructions. From the visual inspection of the computed solutions we can observe
that both the approximations obtained with PISTAh and Struct-PISTAh did not present heavy ringing
effects, while the reconstruction obtained by AIT-GP presented very heavy ringing around the “arms”
of the satellite. This allowed us to show the benefits of introducing the soft-thresholding into the
AIT-GP method.
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(a) (b) (c)

Figure 7. Satellite test problem: (a) True image (256× 256 pixels), (b) PSF (256× 256 pixels), (c) Blurred
and noisy image with ≈1% of white Gaussian noise (256× 256 pixels).

(a) (b) (c)

Figure 8. Satellite test problem reconstructions: (a) AIT-GP, (b) PISTAh, (c) Struct-PISTAh.

Table 1. Comparison of the quality of the reconstructions for all considered examples. We highlight in
boldface the best result.

Example Method RRE PSNR SSIM

Cameraman

AIT-GP 0.111024 24.7798 0.729095
ISTA 0.090921 26.5149 0.763217
PISTAh 0.096558 25.9924 0.790363
PISTAΛ 0.094853 26.1471 0.795061
Struct-PISTAh 0.088796 26.7203 0.840145
Struct-PISTAΛ 0.090182 26.5857 0.834532

Grain

AIT-GP 0.183796 25.9571 0.731407
ISTA 0.160655 27.1259 0.845816
PISTAh 0.195516 25.4202 0.737254
PISTAΛ 0.181727 26.0554 0.748582
Struct-PISTAh 0.161715 27.0688 0.859284
Struct-PISTAΛ 0.168472 26.7133 0.830990

Satellite

AIT-GP 0.222783 26.6708 0.742416
ISTA 0.286179 24.4956 0.657111
PISTAh 0.192146 27.9558 0.928584
PISTAΛ 0.193730 27.8844 0.916993
Struct-PISTAh 0.187970 28.1466 0.934876
Struct-PISTAΛ 0.189147 28.0924 0.924931

5. Conclusions

This work develops further and brings together all the techniques studied in [16,17,21,22,29].
The idea is to combine thresholding iterative methods, an approximate Tikhonov regularization scheme



Mathematics 2020, 8, 468 14 of 22

depending on a general (differential) operator and a structure preserving approach, with the main
goal in mind to reduce the boundary artifacts which appear in the resulting de-blurred image when
imposing artificial boundary conditions. The numerical results are promising and show improvements
with respect to known state-of-the-art deblurring algorithms. There are still open problems, mainly
concerning the theoretical assumptions and convergence proofs which will be furtherly investigated in
future works.
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Appendix A. Proofs

Hereafter we analyze Algorithm 1, aiming to prove its convergence. The techniques carried out in
the proofs of most of the following results can be tracked down to the papers [15–17], therefore bringing
not many mathematical novelties other than the results themselves. Nevertheless, since the proofs are
very technical such that even a slight change can produce non trivial difficulties, we will present a full
treatment leaving no details, in order to make this paper self-contained and easily readable.

Following up Section 2.1, we need to set some more notations. Let us consider the singular value
decomposition (SVD) of C as the triple (U, V, Σ) such that

C = UΣV∗,

U, V ∈ O(m2,R), Σ = diagj=1,··· ,m2(σj) with 0 ≤ σm2 ≤ · · · ≤ σ1,

where O(m2,R) is the orthonormal group and V∗ is the adjoint of the operator V, i.e., 〈Vf1, f2〉 =
〈f1, V∗f2〉 for every pair f1, f2 ∈ Rm2

. We will denote the spectrum of CC∗ by

σ(CC∗) = {0} ∪
m2⋃
j=1

{σ2
j }.

Hereafter, without loss of generality we will assume that

‖C‖ = 1 and ‖h(CC∗)‖ = max
σ2∈[0,1]

h(σ2) = 1.

The first issue we have to consider is the existence of the sequence {αn}.

Lemma A1. Let ‖rn‖ > τδ. Then for every fixed n there exists αn that satisfies (7). It can be computed by the
following iteration

αk+1
n :=

(
αk

n

)2
Φ′(αk

n)

αk
nΦ′(αk

n) + Φ(αk
n)− q2

n‖rn‖
, (A1)

where

Φ(α) := ‖α(CC∗ + αh (CC∗))−1rn‖2,

Φ′(α) := ‖
√

2αCC∗(CC∗ + αh (CC∗))−3/2rn‖2.
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The convergence is locally quadratic. The existence of the regularization parameter αn and the locally quadratic
convergence of the algorithm above are independent and uniform with respect to the dimension m2.

Proof. The existence of α is an easy consequence of the monotonicity of

φα(σ
2) = α

(
σ2 + αh(σ2)

)−1

with respect to α. Indeed, let us rewrite (7) as follows

α2‖(CC∗ + αh (CC∗))−1rn‖2 = ‖φα(CC∗)rn‖2

=
∫
[0,1]

φ2
α(σ

2)d‖rn‖(σ)

=
∫
[0,1]

α2

(σ2 + αh(σ2))
2 d‖rn‖(σ)

=
q2

n

c2
1

∫
[0,1]

d‖rn‖(σ), (A2)

where d‖rn‖(·) is the discrete spectral measure associated to rn with respect to the SVD of C and
σ ∈ σ(C) are the singular values of the spectrum of C. Since dφα

dα > 0 for every α ≥ 0, then by monotone
convergence it holds that

lim
α→∞

∫
[0,1]

α2

(σ2 + αh(σ2))
2 d‖rn‖(σ) =

∫
[0,1]

lim
α→∞

α2

(σ2 + αh(σ2))
2 d‖rn‖(σ)

≥ ‖rn‖2 >
q2

n

c2
1
‖rn‖2.

Indeed, it is not difficult to prove that qn/c1 < 1 whenever ρ ∈ (0, c1/2) and ‖rn‖ > τδ, as assumed in
the hypothesis. Since for α = 0 the left hand-side of (A2) is zero, then we conclude that there exists an
unique αn > 0 such that equality holds in (7). Due to the generality of our proof and the fact that we
could pass the limit under the sign of integral, the existence of such an αn is granted uniformly with
respect to the dimension m2.

Since
φα(σ

2) = α
(

σ2 + αh(σ2)
)−1

=
(

α−1σ2 + h(σ2)
)−1

,

fixing γ = α−1, let us now define the following function

ψγ(σ
2) =

(
γσ2 + h(σ2)

)−1
.

Since
∂ψ2

γ(σ
2)

∂γ
= −2σ2

(
γσ2 + h(σ2)

)−3
,

∂2ψ2
γ(σ

2)

∂γ2
= 6σ4

(
γσ2 + h(σ2)

)−4
, (A3)

then there exist two constants d1, d2 independents of γ such that∣∣∣∣∣∂ψ2
γ(σ

2)

∂γ

∣∣∣∣∣ ≤ d1,

∣∣∣∣∣∂2ψ2
γ(σ

2)

∂γ2

∣∣∣∣∣ ≤ d2,

and in particular d1, d2 ∈ L1([0, 1], d‖rn‖) for every n and m. Therefore, if we define

Ψ(γ) := ‖ψγ(CC∗)rn‖2,
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it holds that

Ψ′(γ) = ∂
∂γ

∫
[0,1] ψ2

γ(σ
2)d‖rn‖(σ) =

∫
[0,1]

∂ψ2
γ(σ

2)

∂γ
d‖rn‖(σ), (A4)

Ψ′′(γ) = ∂
∂γ

∫
[0,1]

∂ψ2
γ(σ

2)

∂γ
d‖rn‖(σ) =

∫
[0,1]

∂2ψ2
γ(σ

2)

∂
γ2

d‖rn‖(σ). (A5)

Then the Newton iteration applied to Ψ(γ) = q2
n‖rn‖2 yields the iteration

γk+1
n = γk

n +
q2

n‖rn‖2 −Ψ(γk
n)

Ψ′(γk
n)

, k ≥ 0.

By (A3), Ψ(γ) is a decreasing convex function in γ. Since γn = limk→∞ γk+1
n = 1/αn, obviously we

have that

Ψ(γn) =
q2

n

c2
1
‖rn‖2. (A6)

If
Ψ′(γn) = −‖

√
2(CC∗)(γnCC∗ + h(CC∗))−3/2rn‖2 = 0,

then necessarily we would have that CC∗rn = 0. Hence, (γnCC∗ + h(CC∗))−1 rn = h(CC∗)rn, and
consequently

Ψ(γn) = ‖h(CC∗)rn‖2.

From (A6) we would deduce that qn ≥ c1, but this is absurd since as already observed above, qn < c1

if ‖rn‖ > τδ. Therefore Ψ′(γn) 6= 0 and by standard properties of the Newton iteration, γk
n converges

to the minimizer γn from below and the convergence is locally quadratic. Finally, defining

Φ(α) = Ψ(1/α),

then we get (A1), αk
n converges monotonically from above to αn and the convergence is locally quadratic.

Again, thanks to (A4) and (A5), the rate of convergence is uniform with respect to the dimension
of Y .

From now on, instead of working with the error en
δ = x− xn

δ , in order to simplify the following
proofs and notations, it is useful to consider the partial error with respect to zn

δ , namely

ẽn
δ = x− zn

δ . (A7)

This will not affect the generality of our proofs, thanks to the continuity of Sµ(·) with respect to the
noise level δ.

Proposition A1. Under the assumptions (9), if ‖rn
δ‖ > τδ and we define τn = ‖rn

δ‖/δ, then it follows that

‖rn
δ − Bẽn

δ‖ ≤
(

ρ +
1 + 2ρ

τn

)
‖rn

δ‖ < (1− ρ)‖rn
δ‖, (A8)

where ẽn is defined in (A7).

Proof. In the free noise case we have g = Kx. As a consequence

rn
δ − Bẽn

δ = gδ − Kxn
δ − B(x− zn

δ ) + Bxn
δ − BSµ(zn

δ )

= gδ − g + (K− B)en
δ + B(zn

δ − Sµ(zn
δ )).
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Using now assumptions (9), in particular (10), and ‖gδ − g‖ ≤ δ, we derive the following estimate

‖rn
δ − Bẽn

δ‖ ≤ ‖gδ − g‖+ ‖(K− B)en
δ‖+ ‖B(zn

δ − Sµ(zn
δ ))‖

≤ ‖gδ − g‖+ ρ‖Ken
δ‖+ ρδ

≤ ‖gδ − g‖+ ρ(‖rn
δ‖+ ‖gδ − g‖+ δ)

≤ (1 + 2ρ)δ + ρ‖rn
δ‖.

The first inequality in (A8) now follows from the hypothesis δ = ‖rn
δ‖/τn. The second inequality

follows from ρ + 1+2ρ
τn

< ρ + 1+2ρ
τ .

Combining the preceding proposition with (7), we are going to show that the sequence ‖ẽn
δ‖ is

monotonically decreasing. We have the following result.

Proposition A2. Let ẽn
δ be defined in (A7). If the assumptions (9) are satisfied, then ‖ẽn

δ‖ of Algorithm 1
decreases monotonically for n = 0, 1, . . . , nδ − 1. In particular, we deduce

‖ẽn
δ‖2 − ‖ẽn+1

δ ‖2 ≥ 8ρ2

1 + 2ρ
‖(CC∗ + αnh (CC∗))−1rn

δ‖‖rn
δ‖ > 0. (A9)

Proof. Recalling that WC∗ = B∗ and that BB∗ = CC∗, we have

‖ẽn
δ‖2 − ‖ẽn+1

δ ‖2 = 2〈ẽn
δ , hn〉 − ‖hn‖2

= 2〈Bẽn
δ , (CC∗ + αnh (CC∗))−1rn

δ 〉 − 〈rn
δ , CC∗(CC∗ + αnh (CC∗))−2rn

δ 〉
= 2〈rn

δ , (CC∗ + αnh (CC∗))−1rn
δ 〉 − 〈rn

δ , CC∗(CC∗ + αnh (CC∗))−2rn
δ 〉

− 2〈rn
δ − Bẽn

δ , (CC∗ + αnh (CC∗))−1rn
δ 〉

≥ 2〈rn
δ , (CC∗ + αnh (CC∗))−1rn

δ 〉 − 2〈rn
δ , CC∗(CC∗ + αnh (CC∗))−2rn

δ 〉
− 2〈rn

δ − Bẽn
δ , (CC∗ + αnh (CC∗))−1rn

δ 〉
= 2αn〈rn

δ , h (CC∗) (CC∗ + αnh (CC∗))−2rn
δ 〉

− 2〈rn
δ − Bẽn

δ , (CC∗ + αnh (CC∗))−1rn
δ 〉

≥ 2αn〈rn
δ , h (CC∗) (CC∗ + αnh (CC∗))−2rn

δ 〉
− 2‖rn

δ − Bẽn
δ‖‖(CC∗ + αnh (CC∗))−1rn

δ‖

≥ 2‖(CC∗ + αnh (CC∗))−1rn
δ‖
(
‖c1αn(CC∗ + αnh (CC∗))−1rn

δ‖

− ‖rn
δ − Bẽn

δ‖)

≥ 2‖(CC∗ + αnh (CC∗))−1rn
δ‖ ·

(
qn‖rn

δ‖ −
(

ρ +
1 + 2ρ

τn

)
‖rn

δ‖
)

≥ 8ρ2

1 + 2ρ
‖(CC∗ + αnh (CC∗))−1rn

δ‖‖rn
δ‖ > 0,

where the relevant inequalities are a consequence of Equation (7) and Proposition A1. The last
inequality follows from (7) and τn > τ = (1 + 2ρ)/(1− 2ρ) for ‖rn

δ‖ > τδ.

Corollary A1. Under the assumptions (9), there holds

‖ẽ0
δ‖ ≥

8ρ2

1 + 2ρ

nδ−1

∑
n=0
‖(CC∗ + αnh (CC∗))−1rn

δ‖‖rn
δ‖ ≥ c

nδ−1

∑
n=0
‖rn

δ‖2 (A10)

for some constant c > 0, depending only on ρ and q in (7).
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Proof. The first inequality follows by taking the sum of the quantities in (A9) from n = 0 up to
n = nδ − 1.

For the second inequality, note that for every

α >
qn

c1 − qn

and every σ ∈ σ(C) ⊂ [0, 1], we have

α

σ2 + αh(σ2)
≥ α

1 + α
= (1 + 1/α)−1 >

qn

c1
,

and hence,
α‖(CC∗ + αh (CC∗))−1rn

δ‖ >
qn

c1
‖rn

δ‖,

as ‖rn
δ‖ > 0 for n < nδ. This implies that αn in (7) satisfies 0 < αn ≤ qn

c1−qn
, thus

‖(CC∗ + αnh (CC∗))−1rn
δ‖ =

qn

c1αn
‖rn

δ‖ ≥ (c1 − qn)‖rn
δ‖.

According to the choice of parameters in Algorithm 1, we deduce

c1 − qn = min{c1 − q, c1 − 2ρ− (1 + ρ)/τn},

and
c1 − 2ρ− (1 + ρ)/τn =

1 + 2ρ

τ
− 1 + ρ

τn
>

1 + 2ρ

τ
− 1 + ρ

τ
=

ρ

τ
.

Therefore, there exists c > 0, depending only on ρ and q such that

c1 − qn ≥ c
(

8ρ2

1 + 2ρ

)−1

,

and

‖(CC∗ + αnh (CC∗))−1rn
δ‖ ≥ c

(
8ρ2

1 + 2ρ

)−1

‖rn
δ‖ for n = 0, 1, · · · , nδ − 1.

Now the second inequality follows immediately.

From (A10) it can be seen that the sum of the squares of the residual norms is bounded, and hence,
if δ > 0, there must be a first integer nδ < ∞ such that (A10) is fulfilled, i.e., Algorithm 1 terminates
after finitely many iterations.

Finally, we are ready to prove a convergence and regularity result.

Theorem A1. Assume that z0 is not a solution of the linear system

g = AW∗x, (A11)

and that δm is a sequence of positive real numbers such that δk → 0 as k → ∞. Then, if Assumption 1 is
valid, the sequence {xn(δk)

δk
}k∈N, generated by the discrepancy principle rule (A10), converges as k→ ∞ to the

solution of (A11) which is closest to z0 in Euclidean norm.
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Proof. We are going to show convergence for the sequence {zn(δk)
δk
}k∈N and then the thesis will follow

easily from the continuity of Sµ(δ), i.e.,

lim
k→∞

xn(δk)
δk

= lim
k→∞

Sµ(δk)
(zn(δk)

δk
) = Slimk→∞ µ(δk)

( lim
k→∞

zn(δk)
δk

) = lim
k→∞

zn(δk)
δk

.

The proof of the convergence for the sequence {zn(δk)
δk
} can be divided into two steps: at step one, we

show the convergence in the free noise case δ = 0. In particular, the sequence {zn} converges to a
solution of (A11) that is the closest to z0. At the second step, we show that given a sequence of positive
real numbers δk → 0 as k→ ∞, then we get a corresponding sequence {zn(δk)

δk
} converging as k→ ∞.

Step 1: Fix δ = 0. It follows that rn
δ = rn, and the sequence {zn} will not stop, i.e., n→ ∞, since

the discrepancy principle will not be satisfied by any n, in particular nδ → ∞ for δ→ 0. Set n > l > j,
with n, l, j ∈ N. It holds that

‖zn − zl‖2 = ‖ẽn − ẽl‖2

= ‖ẽn‖2 − ‖ẽl‖2 − 2〈ẽl , ẽn − ẽl〉
= ‖ẽn‖2 − ‖ẽl‖2 + 2〈ẽl , zn − zl〉

= ‖ẽn‖2 − ‖ẽl‖2 + 2
n−1

∑
i=l
〈ẽl , hi〉

= ‖ẽn‖2 − ‖ẽl‖2 + 2
n−1

∑
i=l
〈Bẽl , (CC∗ + αih (CC∗))−1ri〉

≤ ‖ẽn‖2 − ‖ẽl‖2 + 2
n−1

∑
i=l
‖Bẽl‖‖(CC∗ + αih (CC∗))−1ri‖

≤ ‖ẽn‖2 − ‖ẽl‖2 + 2(1 + ρ)
n−1

∑
i=l
‖rl‖‖(CC∗ + αih (CC∗))−1ri‖, (A12)

where the last inequality comes from (11). At the same time, we have that

‖(zl − zk)‖2 = ‖(ẽl − ẽk)‖2

= ‖ẽk‖2 − ‖ẽl‖2 + 2〈ẽl , ẽk − ẽl〉
= ‖ẽk‖2 − ‖ẽl‖2 − 2〈ẽl , zl − zk〉

= ‖ẽk‖2 − ‖ẽl‖2 − 2
l−1

∑
i=k
〈ẽl , hi〉

≤ ‖ẽk‖2 − ‖ẽl‖2 + 2
l−1

∑
i=k
‖Bẽl‖‖(CC∗ + αih (CC∗))−1ri‖

≤ ‖ẽk‖2 − ‖ẽl‖2 + 2(1 + ρ)
l−1

∑
i=k
‖rl‖‖(CC∗ + αih (CC∗))−1ri‖. (A13)

Combining together (A12) and (A13), we obtain that

‖zn − zk‖2 ≤ 2‖zn − zl‖2 + 2‖zl − zk‖2

≤ 2‖ẽn‖2 + 2‖ẽk‖2 − 4‖ẽl‖2 + 4(1 + ρ)
n−1

∑
i=k
‖rl‖‖(CC∗ + αih (CC∗))−1ri‖.



Mathematics 2020, 8, 468 20 of 22

This is valid for every l ∈ {k + 1, · · · , n − 1}. Choosing l such that ‖rl‖ = mini=k+1,··· ,n−1 ‖ri‖, it
follows that

‖zn − zk‖2 ≤ 2‖ẽn‖2 + 2‖ẽk‖2 − 4‖ẽl‖2 + 4(1 + ρ)
n−1

∑
i=k
‖ri‖‖(CC∗ + αih (CC∗))−1ri‖.

From Proposition A2, {‖ẽj‖2}j∈N is a converging sequence, and from Corollary A1

n−1

∑
i=k
‖rl‖‖(CC∗ + αih (CC∗))−1ri‖ → 0 as k, n→ ∞

since it is the tail of a converging series. Therefore,

‖zn − zk‖2 → 0 as k, n→ ∞

and {zn}n∈N is a Cauchy sequence, and then convergent.
Step 2: Let x be the converging point of the sequence {zn}n∈N and let δk > 0 be a sequence of

positive real numbers converging to 0. For every δk, let n = n(δk) be the first positive integer such that
(A10) is satisfied, whose existence is granted by Corollary A1, and let {zn(δk)

δk
} be the corresponding

sequence. For every fixed ε > 0, there exists n = n(ε) such that

‖x− zn‖ ≤ ε/2 for every n > n(ε), (A14)

and there exists δ = δ(ε) for which

‖zn − zn
δ‖ ≤ ε/2 for every 0 < δ < δ, (A15)

due to the continuity of the operator g 7→ zn for every fixed n. Therefore, let us choose k = k(ε) large
enough such that δk < δ and such that n(δk) > n for every k > k. Such k does exists since δk → 0 and
nδ → ∞ for δ→ 0. Hence, for every k > k, we have

‖x− zn(δk)
δk
‖ = ‖ẽn(δk)

δk
‖

≤ ‖ẽn
δk
‖

= ‖x− zn
δk
‖

≤ ‖x− zn‖+ ‖zn − zn
δk
‖ ≤ ε,

where the first inequality comes from Proposition A2 and the last one from (A14) and (A15).
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