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Abstract

:

In this paper, using a new shrinking projection method, we deal with the strong convergence for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points of a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we get well-known and new strong convergence theorems in a Hilbert space.
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1. Introduction


Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Let   T : C → H   be a mapping. Then we denote by   F ( T )   the set of fixed points of T. For a real number t with   0 ≤ t < 1  , a mapping   U : C → H   is said to be a t-strict pseudo-contraction [1] if


    ∥ U x − U y ∥  2  ≤   ∥ x − y ∥  2  + t   ∥ x − U x −  ( y − U y )  ∥  2   








for all   x , y ∈ C  . In particular, if   t = 0  , then U is nonexpansive, i.e.,


  ∥ U x − U y ∥ ≤ ∥ x − y ∥ ,  ∀ x , y ∈ C .  











If U is a t-strict pseudo-contraction and   F ( U ) ≠ ∅  , then we get that, for   x ∈ C   and   p ∈ F ( U )  ,


    ∥ U x − p ∥  2  ≤   ∥ x − p ∥  2  + t   ∥ x − U x ∥  2  .  











From this inequality, we get that


    ∥ U x − x ∥  2    + ∥ x − p ∥  2  + 2  〈 U x − x , x − p 〉  ≤   ∥ x − p ∥  2  + t   ∥ x − U x ∥  2  .  











Then we get that


  2  〈 x − U x , x − p 〉  ≥    ( 1 − t )  ∥ x − U x ∥  2  .  



(1)







A mapping   U : C → H   is said to be generalized hybrid [2] if there exist real numbers   α , β   such that


    α ∥ U x − U y ∥  2    +  ( 1 − α )  ∥ x − U y ∥  2  ≤   β ∥ U x − y ∥  2  +  ( 1 − β )    ∥ x − y ∥  2   








for all   x , y ∈ C  . Such a mapping U is said to be ( α ,  β )-generalized hybrid. The class of generalized hybrid mappings covers several well-known mappings. A (1,0)-generalized hybrid mapping is nonexpansive. For   α = 2   and   β = 1  , it is nonspreading [3,4], i.e.,


    2 ∥ U x − U y ∥  2  ≤   ∥ U x − y ∥  2  +   ∥ U y − x ∥  2  ,  ∀ x , y ∈ C .  











For   α =  3 2    and   β =  1 2   , it is also hybrid [5], i.e.,


    3 ∥ U x − U y ∥  2  ≤   ∥ x − y ∥  2    + ∥ U x − y ∥  2  +   ∥ U y − x ∥  2  ,  ∀ x , y ∈ C .  











In general, nonspreading mappings and hybrid mappings are not continuous; see [6]. If U is a generalized hybrid and   F ( U ) ≠ ∅  , then we get that, for   x ∈ C   and   p ∈ F ( U )  ,


    α ∥ p − U x ∥  2    +  ( 1 − α )  ∥ p − U x ∥  2  ≤   β ∥ p − x ∥  2  +  ( 1 − β )    ∥ p − x ∥  2   








and hence     ∥ U x − p ∥  2  ≤   ∥ x − p ∥  2  .   From this, we have that


  2  〈 x − p , x − U x 〉  ≥   ∥ x − U x ∥  2  .  



(2)







We also know that such a mapping exists in a Banach space. Let E be a smooth Banach space and let G be a maximal monotone mapping with    G  − 1   0 ≠ ∅  . Then, for the metric resolvent   J λ   of G for a positive number   λ > 0  , we obtain from [7,8] that, for   x ∈ E   and   p ∈  G  − 1   0 = F  (  J λ  )   ,


  〈  J λ  x − p , J  ( x −  J λ  x )  〉 ≥ 0 .  











Then we get


  〈  J λ  x − x + x − p , J  ( x −  J λ  x )  〉 ≥ 0  








and hence


   〈 x − p , J  ( x −  J λ  x )  〉  ≥   ∥ x −  J λ  x ∥  2  ,  



(3)




where J is the duality mapping on E. Motivated by (1), (2) and (3), Takahashi [9] introduced a nonlinear mapping in a Banach space as follows: Let C be a nonempty, closed, and convex subset of a smooth Banach E and let  η  be a real number with   η ∈ ( − ∞ , 1 )  . A mapping   U : C → E   with   F ( U ) ≠ ∅   is said to be  η -demimetric if, for   x ∈ C   and   p ∈ F ( U )  ,


  2  〈 x − p , J  ( x − U x )  〉  ≥    ( 1 − η )  ∥ x − U x ∥  2  .  











According to this definition, we have that a t-strict pseudo-contraction U with   F ( U ) ≠ ∅   is t-demimetric, an ( α ,  β )-generalized hybrid mapping U with   F ( U ) ≠ ∅   is 0-demimetric and the metric resolvent   J λ   with    G  − 1   0 ≠ ∅   is   ( − 1 )  -demimetric. On the other hand, we know the shrinking projection method which was defined by Takahashi, Takeuchi, and Kubota [10] for finding fixed points of nonexpansive mappings in a Hilbert space. They proved the following strong convergence theorem [10].



Theorem 1

([10]).Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let   U : C → C   be a nonexpansive mapping. Assume that   F ( U ) ≠ ∅   . For    x 1  ∈ C   and    C 1  = C   , let   {  x n  }   be a sequence defined by


        y n  =  ( 1 −  λ n  )   x n  +  λ n  U  x n  ,        C  n + 1    = { z ∈   C n   : ∥   y n   − z ∥ ≤ ∥   x n  − z  ∥ }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  n = 1 , 2 , … . ,       








where a real number a and    {  λ n  }  ⊂  ( 0 , ∞ )    satisfy the following inequalities:


   0 < a ≤  λ n  ≤ 1 ,  n = 1 , 2 , … .   











Then the sequence   {  x n  }   converges strongly to   u ∈ F ( U )   , where   u =  P  F ( U )    x 1    and   P  F ( U )    is the metric projection of H onto   F ( U )   .





In this paper, using a new shrinking projection method, we prove a strong convergence theorem for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points for a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we obtain well-known and new strong convergence theorems in a Hilbert space. In particular, using the shrinking projection method, we prove a strong convergence theorem for a finite family of generalized hybrid mappings with the variational inequalty problem in a Hilbert space.




2. Preliminaries


Throughout this paper, let H be a real Hilbert space with inner product    ·  ,  ·    and norm    ·    and let  N  and  R  be the sets of positive integers and real numbers, respectively. When   {  x n  }   is a sequence in H, we denote by    x n  → x   the strong convergence of   {  x n  }   to   x ∈ H   and by    x n  ⇀ x   the weak convergence. We have from [11,12] that, for   x , y ∈ H   and   α ∈ R  ,


    ∥ α x +  ( 1 − α )  y ∥  2  =   α ∥ x ∥  2  +    ( 1 − α )  ∥ y ∥  2  − α  ( 1 − α )    ∥ x − y ∥  2  .  



(4)







Furthermore, we have that, for   x , y , u , v ∈ H  ,


  2  〈 x − y , u − v 〉  =   ∥ x − v ∥  2    + ∥ y − u ∥  2    − ∥ x − u ∥  2  −   ∥ y − v ∥  2  .  



(5)







Let C be a nonempty, closed and convex subset of H. A mapping   U : C → H   with   F ( U ) ≠ ∅   is said to be quasi-nonexpansive if   ∥ U x − p ∥ ≤ ∥ x − p ∥   for all   x ∈ C   and   p ∈ F ( U )  . If   U : C → H   is quasi-nonexpansive, then   F ( U )   is closed and convex; see [12,13]. For a nonempty, closed, and convex subset D of H, the nearest point projection of H onto D is denoted by   P D  , that is,


   x −  P D  x  ≤  x − y  ,  ∀ x ∈ H ,   y ∈ D .  



(6)







A mapping   P D   is said to be the metric projection of H onto D. The inequality (6) is equivalent to


   x −  P D  x , y −  P D  x  ≤ 0 ,  ∀ x ∈ H ,   y ∈ D .  



(7)







We obtain from (7) that   P D   is firmly nonexpansive, that is,


     P D  x −  P D  y  2  ≤  〈  P D  x −  P D  y , x − y 〉  ,  ∀ x , y ∈ H .  











In fact, from (7) we have that, for   x . y ∈ H  ,


   x −  P D  y +  P D  y −  P D  x ,  P D  y −  P D  x  ≤ 0  








and hence


       P D  x −  P D  y  2     ≤ 〈  P D  x −  P D  y , x −  P D  y 〉          = 〈  P D  x −  P D  y , x − y + y −  P D  y 〉          =  〈  P D  x −  P D  y , x − y 〉  +  〈  P D  x −  P D  y , y −  P D  y 〉           ≤ 〈  P D  x −  P D  y , x − y 〉 .     











Furthermore, using (7) and (5), we have that


   ∥   P D    x − y ∥  2   + ∥   P D    x − x ∥  2  ≤   ∥ x − y ∥  2  ,  ∀ x ∈ H ,  y ∈ D .  



(8)







Let C be a nonempty, closed, and convex subset of H. A mapping   A : C → H   is said to be  α -inverse strongly monotone if there exists   α > 0   such that


   〈 x − y , A x − A y 〉  ≥   α ∥ A x − A y ∥  2  ,  ∀ x , y ∈ C .  











If A is an  α -inverse-strongly monotone mapping and   0 < μ ≤ 2 α  , then we obtain from [12] that   I − μ A : C → H   is nonexpansive, i.e.,


  ∥ ( I − μ A ) x − ( I − μ A ) y ∥ ≤ ∥ x − y ∥ ,  ∀ x , y ∈ C .  



(9)







For more results of inverse strongly monotone mappings, see also [12,14,15]. The variational inequalty problem for a nonlinear mapping   A : C → H   is to find an element   w ∈ C   such that


  〈 A w , x − w 〉 ≥ 0 ,  ∀ x ∈ C .  



(10)







The set of solutions of (10) is denoted by   V I ( C , A )  . We also have that, for   μ > 0  ,   w =  P C   ( I − μ A )  w   if and only if   w ∈ V I ( C , A )  . In fact, let   μ > 0  . Then, for   w ∈ C  ,


     w =  P C   ( I − μ A )  w     ⟺ 〈 ( I − μ A ) w − w , w − y 〉 ≥ 0 ,  ∀ y ∈ C          ⟺ 〈 − μ A w , w − y 〉 ≥ 0 ,  ∀ y ∈ C          ⟺ 〈 A w , w − y 〉 ≤ 0 ,  ∀ y ∈ C          ⟺ 〈 A w , y − w 〉 ≥ 0 ,  ∀ y ∈ C          ⟺ w ∈ V I ( C , A ) .     



(11)







Let G be a multi-valued mapping from H into H. The effective domain of G is denoted by   dom ( G )  , i.e.,   dom ( G ) = { x ∈ H : G x ≠ ∅ }  . A multi-valued mapping   G ⊂ H × H   is called a monotone mapping on H if    x − y , u − v  ≥ 0   for all   x , y ∈ dom ( G )  ,   u ∈ G x  , and   v ∈ G y  . A monotone mapping G on H is said to be maximal if its graph is not properly contained in the graph of any other monotone mapping on H. For a maximal monotone mapping G on H, we may define a single-valued mapping    J r  =   ( I + r G )   − 1   : H → dom  ( G )   , which is said to be the resolvent of G for   r > 0  . We denote by    A r  =  1 r   ( I −  J r  )    the Yosida approximation of G for   r > 0  . We get from [8] that


   A r  x ∈ G  J r  x ,  ∀ x ∈ H ,   r > 0 .  



(12)







For a maximal monotone mapping G on H, let    G  − 1   0 =  { x ∈ H : 0 ∈ G x }  .   It is known that    G  − 1   0 = F  (  J r  )    for all   r > 0   and the resolvent   J r   is firmly nonexpansive:


   ∥   J r  x −  J r    y ∥  2  ≤  〈  J r  x −  J r  y , x − y 〉  ,  ∀ x , y ∈ H .  



(13)







Takahashi, Takahashi, and Toyoda [16] proved the following result.



Lemma 1

([16]).Let G be a maximal monotone mapping on a Hilbert space H. For   r > 0   and   x ∈ H   , define the resolvent    J r  x   . Then the following inequality holds:


     s − t  s   〈  J s  x −  J t  x ,  J s  x − x 〉  ≥   ∥  J s  x −  J t  x ∥  2    








for all   s , t > 0   and   x ∈ H   .





From Lemma 1, we get that, for   s , t > 0   and   x ∈ H  ,


       ∥  J s  x −  J t  x ∥  2  ≤   | s − t |  s   ∥   J s  x −  x ∥ ∥   J s  x −  J t   x ∥      








and hence


   ∥  J s  x −  J t  x ∥  ≤   | s − t |  s   ∥  J s  x −  J t  x ∥  .  



(14)







Using the ideas of [17,18], Alsulami and Takahashi [19] proved the following lemma.



Lemma 2

([19]).Let C be a nonempty, closed and convex subset of a Hilbert space H. Let   G ⊂ H × H   be a maximal monotone mapping and let    J λ  =   ( I + λ G )   − 1     be the resolvent of G for   λ > 0   . Let   κ > 0   and let   U : C → H   be a κ-inverse strongly monotone mapping. Suppose that    G  − 1   0 ∩  U  − 1   0 ≠ ∅   . Let   λ , r > 0   and   z ∈ C   . Then the following are equivalent:




	(i) 

	
   z =  J λ   ( I − r U )  z   ;




	(ii) 

	
   0 ∈ U z + G z   ;




	(iii) 

	
   z ∈  G  − 1   0 ∩  U  − 1   0   .











When a Banach space E is a Hilbert space, the definition of a demimetric mapping is as follows: Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let   η ∈ ( − ∞ , 1 )  . A mapping   U : C → H   with   F ( U ) ≠ ∅   is said to be  η -demimetric [9] if, for   x ∈ C   and   q ∈ F ( U )  ,


   〈 x − q , x − U x 〉  ≥   1 − η  2    ∥ x − U x ∥  2  .  











The following lemma which was essentially proved in [9] is important and crucial in the proof of the main result. For the sake of completeness, we give the proof.



Lemma 3

([9]).Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let η be a real number with   η ∈ ( − ∞ , 1 )   and let U be an η-demimetric mapping of C into H. Then   F ( U )   is closed and convex.





Proof. 

Let us show that   F ( U )   is closed. For a sequence   {  q n  }   such that    q n  → q   and    q n  ∈ F  ( U )   , we have from the definition of U that


  2  〈 q −  q n  , q − U q 〉  ≥  ( 1 − η )    ∥ q − U q ∥  2  .  











From    q n  → q  , we have   0 ≥    ( 1 − η )  ∥ q − U q ∥  2   . From   1 − η > 0  , we have   ∥ q − U q ∥ = 0   and hence   q = U q  . This implies that   F ( U )   is closed.



Let us prove that   F ( U )   is convex. Let   p , q ∈ F ( U )   and set   z = α p + ( 1 − α ) q  , where   α ∈ [ 0 , 1 ]  . Then we have that


  2  〈 z − p , z − U z 〉  ≥    ( 1 − η )  ∥ z − U z ∥  2   and  2  〈 z − q , z − U z 〉  ≥  ( 1 − η )    ∥ z − U z ∥  2  .  











From   α ≥ 0   and   1 − α ≥ 0  , we also have that


  2  〈 α z − α p , z − U z 〉  ≥   α  ( 1 − η )  ∥ z − U z ∥  2   








and   2  〈  ( 1 − α )  z −  ( 1 − α )  q , z − U z 〉  ≥    ( 1 − α )   ( 1 − η )  ∥ z − U z ∥  2  .   > From these inequalities, we get that


  0 = 2  〈 z − z , z − U z 〉  ≥    ( 1 − η )  ∥ z − U z ∥  2  .  











From   1 − η > 0   we get that   ∥ z − U z ∥ = 0   and hence   z = U z  . This means that   F ( U )   is convex. ☐





Takahashi, Wen, and Yao [20] proved the following lemma which is also used in the proof of the main result.



Lemma 4

([20]).Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let   η ∈ ( − ∞ , 1 )   and let a mapping   T : C → H   with   F ( T ) ≠ ∅   be η-demimetric. Let μ be a real number with   0 < μ ≤ 1 − η   and define   U = ( 1 − μ ) I + μ T   . Then U is a quasi-nonexpansive mapping of C into H.






3. Main Result


In this section, using a new shrinking projection method, we obtain a strong convergence theorem for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points for a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Let C be a nonempty, closed and convex subset of a Hilbert space H. Then a mapping   T : C → H   is said to be demiclosed if, for a sequence   {  x n  }   in C such that    x n  ⇀ w   and    x n  − T  x n  → 0  ,   w = T w   holds; see [21].



Theorem 2.

Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let   {  k 1  , … ,  k M  }  ⊂  ( − ∞ , 1 )   and   {  μ 1  , … ,  μ N  }  ⊂  ( 0 , ∞ )   . Let   {  T j  }   j = 1  M  be a finite family of  k j  -demimetric and demiclosed mappings of C into itself and let   {  B i  }   i = 1  N  be a finite family of  μ i  -inverse strongly monotone mappings of C into H. Let A and G be maximal monotone mappings on H and let   J r  =   ( I + r A )   − 1    and   Q λ  =   ( I + λ G )   − 1    be the resolvents of A and G for  r > 0   and   λ > 0  , respectively. Assume that


  Ω =  A  − 1   0 ∩  (  ∩  j = 1  M  F  (  T j  )  )  ∩  (  ∩  i = 1  N    (  B i  + G )   − 1   0 )  ≠ ∅ .  











For    x 1  ∈ C   and    C 1  = C   , let   {  x n  }   be a sequence defined by


        y n  =  ∑  j = 1  M   ξ j   (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  ,        z n  =  ∑  i = 1  N   σ i   Q  η n    ( I −  η n   B i  )   y n  ,        u n  =  J  r n    z n  ,        C  n + 1   = { z ∈  C n   : ∥   y n   − z ∥ ≤ ∥   x n  −  z ∥ ,   ∥   z n   − z ∥ ≤ ∥   y n   − z ∥                      a n d    〈  z n  − z ,  z n  −  u n  〉  ≥   ∥  z n  −  u n  ∥  2  } ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,       








where    {  λ n  }  ,  {  η n  }  ,  {  r n  }  ⊂  ( 0 , ∞ )    ,    {  ξ 1  , … ,  ξ M  }  ,  {  σ 1  , … ,  σ N  }  ⊂  ( 0 , 1 )    and   a , b , c ∈ R   satisfy the following:




	(1) 

	
   0 < a ≤  λ n  ≤ min  { 1 −  k 1  , … , 1 −  k M  }  ,  ∀ n ∈ N   ;




	(2) 

	
   0 < b ≤  η n  ≤ 2 min  {  μ 1  , … ,  μ N  }  ,  ∀ n ∈ N   ;




	(3) 

	
   0 < c ≤  r n  ,  ∀ n ∈ N   ;




	(4) 

	
    ∑  j = 1  M   ξ j  = 1   and    ∑  i = 1  N   σ i  = 1   .









Then   {  x n  }   converges strongly to a point    z 0  ∈ Ω   , where    z 0  =  P Ω   x 1    .





Proof. 

Since a mapping   B i   is   μ i  -inverse strongly monotone for all   i ∈ { 1 , … , N }   and   0 < b ≤  η n  ≤ 2  μ i   , we have that    Q  η n    ( I −  η n   B i  )    is nonexpansive and


  F  (  Q  η n    ( I −  η n   B i  )  )  =   (  B i  + G )   − 1   0  








is closed and convex. Furthermore, we have from Lemma 3 that   F (  T j  )   is closed and convex. We also know that    A  − 1   0   is closed and convex. Then,


  Ω =  A  − 1   0 ∩  (  ∩  j = 1  M  F  (  T j  )  )  ∩  (  ∩  i = 1  N    (  B i  + G )   − 1   0 )   








is nonempty, closed, and convex. Therefore,   P Ω   is well defined.



We have that


      ∥   y n   − z ∥ ≤ ∥   x n   − z ∥  ⟺         ∥  y n  − z ∥  2  ≤   ∥  x n  − z ∥  2         ⟺        ∥  y n  ∥  2  −   ∥  x n  ∥  2  − 2  〈  y n  −  x n  , z 〉  ≤ 0 .     











Similarly, we have that


      ∥   z n   − z ∥ ≤ ∥   y n   − z ∥  ⟺         ∥  z n  ∥  2  −   ∥  y n  ∥  2  − 2  〈  z n  −  y n  , z 〉  ≤ 0 .     











Thus   { z ∈ C : ∥  y n  − z ∥ ≤ ∥  x n  − z ∥   and   ∥  z n  − z ∥ ≤ ∥  y n  − z ∥ }   is closed and convex. We also have that   { z ∈ C :  〈  z n  − z ,  z n  −  u n  〉  ≥ ∥  z n  −  u n   ∥ 2  }   is closed and convex. Then   C n   is closed and convex for all   n ∈ N  . Let us show that   Ω ⊂  C n    for all   n ∈ N  . We have that   Ω ⊂  C 1  = C .   Assume that   Ω ⊂  C k    for some   k ∈ N  . From Lemma 4 we have that, for   z ∈ Ω  ,


      ∥   y k   − z ∥       = ∥   ∑  j = 1  M   ξ j   (  ( 1 −  λ k  )  I +  λ k   T j  )   x k   − z ∥           ≤  ∑  j = 1  M   ξ j   ∥  (  ( 1 −  λ k  )  I +  λ k   T j  )   x k  − z ∥           ≤  ∑  j = 1  M   ξ j   ∥   x k   − z ∥ = ∥   x k   − z ∥ .      



(15)







Furthermore, since    Q  η k    ( I −  η k   B i  )    is nonexpansive and hence quasi-nonexpansive, we have that, for   z ∈ Ω  ,


      ∥   z k   − z ∥       = ∥   ∑  i = 1  N   σ i   Q  η k    ( I −  η k   B i  )   y k   − z ∥           ≤  ∑  i = 1  N   σ i   ∥  Q  η k    ( I −  η k   B i  )   y k  − z ∥           ≤  ∑  i = 1  N   σ i   ∥   y k   − z ∥ = ∥   y k   − z ∥ .      



(16)







Since   J  r k    is the resolvent of A and    u k  =  J  r k    z k   , we also have that


  〈  z k  −  J  r k    z k  ,  J  r k    z k  − z 〉 ≥ 0 ,  ∀ z ∈ Ω .  











From   〈  z k  −  J  r k    z k  ,  J  r k    z k  −  z k  +  z k  − z 〉 ≥ 0  , we have that


   〈  z k  −  J  r k    z k  ,  z k  − z 〉  ≥   ∥  z k  −  J  r k    z k  ∥  2  .  











This implies that


   〈  z k  −  u k  ,  z k  − z 〉  ≥   ∥  z k  −  u k  ∥  2  .  











From these, we have that   Ω ⊂  C  k + 1    . Therefore, we have by mathematical induction that   Ω ⊂  C n    for all   n ∈ N  . Thus    x  n + 1   =  P  C  n + 1     x 1    is well defined.



Since  Ω  is nonempty, closed, and convex, there exists    z 0  ∈ Ω   such that    z 0  =  P Ω   x 1   . By    x  n + 1   =  P  C  n + 1     x 1   , we get that


   ∥   x 1  −  x  n + 1    ∥ ≤ ∥   x 1   − z ∥   








for all   z ∈  C  n + 1    . From    z 0  ∈ Ω ⊂  C  n + 1     we obtain that


   ∥   x 1  −  x  n + 1    ∥ ≤ ∥   x 1  −  z 0   ∥ .   



(17)







This implies that   {  x n  }   is bounded. Since    x n  =  P  C n    x 1    and    x  n + 1   ∈  C  n + 1   ⊂  C n   , we get that


   ∥   x 1  −  x n   ∥ ≤ ∥   x 1  −  x  n + 1    ∥ .   











Thus   { ∥  x 1  −  x n  ∥ }   is bounded and nondecreasing. Then the limit of   { ∥  x 1  −  x n  ∥ }   exists. Put    lim  n → ∞    ∥  x n  −  x 1  ∥  = c  . For any   m , n ∈ N   with   m ≥ n  , we have    C m  ⊂  C n   . >From    x m  =  P  C m    x 1  ∈  C m  ⊂  C n    and (8), we have that


   ∥   x m  −  P  C n    x 1    ∥  2   + ∥   P  C n    x 1  −  x 1    ∥  2  ≤   ∥  x 1  −  x m  ∥  2  .  











This implies that


   ∥   x m  −  x n    ∥  2   ≤ ∥   x 1  −  x m    ∥  2   − ∥   x n  −  x 1    ∥  2  ≤  c 2  −   ∥  x n  −  x 1  ∥  2  .  



(18)







Since    c 2  −   ∥  x n  −  x 1  ∥  2  → 0   as   n → ∞  , we have that   {  x n  }   is a Caushy sequence. Since H is complete and C is closed, there exists a point   u ∈ C   such that    lim  n → ∞    x n  = u  .



Using (18), we have    lim  n → ∞    ∥  x  n + 1   −  x n  ∥  = 0  . By    x  n + 1   ∈  C  n + 1    , we get that


      ∥   y n  −  x n   ∥       ≤ ∥   y n  −  x  n + 1    ∥ + ∥   x  n + 1   −  x n   ∥            ≤ ∥   x n  −  x  n + 1    ∥ + ∥   x  n + 1   −  x n   ∥            ≤ 2 ∥   x n  −  x  n + 1    ∥ .      



(19)







This implies that


   lim  n → ∞    ∥  y n  −  x n  ∥  = 0 .  



(20)







Furthermore, we have from    x  n + 1   ∈  C  n + 1     that    ∥   z n  −  x  n + 1    ∥ ≤ ∥   y n  −  x  n + 1    ∥   . We get from    ∥   y n  −  x  n + 1    ∥ → 0    that    ∥   z n  −  x  n + 1    ∥ → 0   . From


   ∥   y n  −  z n   ∥ ≤ ∥   y n  −  x  n + 1    ∥ + ∥   x  n + 1   −  z n   ∥   








we have that


   lim  n → ∞    ∥  y n  −  z n  ∥  = 0 .  



(21)







Let us show    ∥   z n  −  u n   ∥ → 0   . We have from    x  n + 1   ∈  C  n + 1     that


   〈  z n  −  x  n + 1   ,  z n  −  u n  〉  ≥   ∥  z n  −  u n  ∥  2  .  











Since    ∥   z n  −  x  n + 1    ∥ ∥   z n  −  u n   ∥ ≥   〈  z n  −  x  n + 1   ,  z n  −  u n  〉  ≥   ∥  z n  −  u n  ∥  2   , we have that    ∥   z n  −  x  n + 1    ∥ ≥ ∥   z n  −  u n   ∥   . Then we get from    ∥   z n  −  x  n + 1    ∥ → 0    that


   lim  n → ∞    ∥  z n  −  u n  ∥  = 0 .  



(22)







Since   T j   is   k j  -demimetric for all   j ∈ { 1 , … , M }  , we get that, for   z ∈  ∩  j = 1  M  F  (  T j  )   ,


     〈  x n  − z ,      x n  −  y n   〉 =   〈  x n  − z ,  x n  −  ∑  j = 1  M   ξ j   (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  〉           =  ∑  j = 1  M   ξ j   〈  x n  − z ,  x n  −  (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  〉           =  ∑  j = 1  M   ξ j   λ n   〈  x n  − z ,  x n  −  T j   x n  〉           ≥  ∑  j = 1  M   ξ j   λ n    1 −  k j   2    ∥  x n  −  T j   x n  ∥  2           ≥  ∑  j = 1  M   ξ j  a   1 −  k j   2    ∥  x n  −  T j   x n  ∥  2  .     











We have from    lim  n → ∞    ∥  y n  −  x n  ∥  = 0   that


   lim  n → ∞    ∥  x n  −  T j   x n  ∥  = 0 ,  ∀ j ∈  { 1 , … , M }  .  











Since   T j   are demiclosed for all   j ∈ { 1 , … , M }   and    lim  n → ∞    x n  = u  , we have that   u ∈  ∩  j = 1  M  F  (  T j  )   . Let us show that   u ∈  ∩  i = 1  N    (  B i  + G )   − 1   0  . Since    Q  η n    ( I −  η n   B i  )    is nonexpansive for all   i ∈ { 1 , … , N }  , we get that, for   z ∈  ∩  i = 1  N    (  B i  + G )   − 1   0  ,


     〈  y n  − z ,      y n  −  z n   〉 =   〈  y n  − z ,  y n  −  ∑  i = 1  N   σ i   Q  η n    ( I −  η n   B i  )   y n  〉           =  ∑  i = 1  N   σ i   〈  y n  − z ,  y n  −  Q  η n    ( I −  η n   B i  )   y n  〉           ≥  ∑  i = 1  N   σ i   1 2    ∥  y n  −  Q  η n    ( I −  η n   B i  )   y n  ∥  2  .     











We have from    lim  n → ∞    ∥  y n  −  z n  ∥  = 0   that


   lim  n → ∞    ∥  y n  −  Q  η n    ( I −  η n   B i  )   y n  ∥  = 0 ,  ∀ i ∈  { 1 , … , N }  .  











Since   {  η n  }   is bounded, we get that there exists a subsequence   {  η  n l   }   of   {  η n  }   such that    lim  l → ∞    η  n l   = η   and   0 < b ≤ η ≤ 2 min {  μ 1  , … ,  μ N  }  . For such  η , we get that, for   i ∈ { 1 , … , N }   and a subsequence   {  y  n l   }   of   {  y n  }   corresponding to the sequence   {  η  n l   }  ,


      ∥   y  n l   −  Q η   ( I − η  B i  )   y  n l    ∥       ≤ ∥   y  n l   −  Q  η  n l     ( I −  η  n l    B i  )   y  n l    ∥              + ∥   Q  η  n l     ( I −  η  n l    B i  )   y  n l   −  Q  η  n l     ( I − η  B i  )   y  n l    ∥              + ∥   Q  η  n l     ( I − η  B i  )   y  n l   −  Q η   ( I − η  B i  )   y  n l    ∥            ≤ ∥   y  n l   −  Q  η  n l     ( I −  η  n l    B i  )   y  n l    ∥              + ∥   ( I −  η  n l    B i  )   y  n l   −  ( I − η  B i  )   y  n l    ∥              + ∥   Q  η  n l     ( I − η  B i  )   y  n l   −  Q η   ( I − η  B i  )   y  n l    ∥            ≤ ∥   y  n l   −  Q  η  n l     ( I −  η  n l    B i  )   y  n l    ∥ + |   η  n l   −  η | ∥   B i   y  n l    ∥             +    |   η  n l    − η |   η   ∥  Q η   ( I − η  B i  )   y  n l   −  ( I − η  B i  )   y  n l   ∥  .     











On the other hand, we get that, for a fixed   y ∈ C   and   i ∈ { 1 , … , N }  ,


      b ∥   B i   y n   ∥      ≤  η n   ∥   B i   y n   ∥ = ∥   η n   B i   y n   ∥            = ∥   y n  −  ( y −  η n   B i  y )  + y −  η n   B i  y −  (  y n  −  η n   B i   y n  )   ∥            ≤ ∥   y n   − y ∥ +   η n   ∥   B i   y ∥ + ∥   ( I −  η n   B i  )  y −  ( I −  η n   B i  )   y n   ∥            ≤ ∥   y n   − y ∥ + 2 min   {  μ 1  , … ,  μ N  }   ∥   B i   y ∥ + ∥ y −   y n   ∥ .      











Since   {  y n  }   is bounded, we have that   {  B i   y n  }   is bounded for all   i ∈ { 1 , … , N }  . Thus we get that


   lim  l → ∞    ∥  x  n l   −  Q η   ( I − η  B i  )   x  n l   ∥  = 0 ,  ∀ i ∈  { 1 , … , N }  .  











Since    lim  l → ∞    x  n l   = u   and    Q η   ( I − η  B i  )    are demiclosed for all   i ∈ { 1 , … , N }  , we get   u ∈  ∩  i = 1  N    (  B i  + G )   − 1   0  . Let us show   u ∈  A  − 1   0  . We have from (22) that


    lim  n → ∞    ∥  z n  −  u n  ∥  = 0 .   











Using    r n  ≥ c  , we get


    lim  n → ∞    1  r n    ∥  z n  −  u n  ∥  = 0 .   











Therefore, we have


   lim  n → ∞    ∥   A  r n    z n   ∥ =   lim  n → ∞    1  r n    ∥  z n  −  u n  ∥  = 0 .  











For   ( p ,  p *  ) ∈ A  , from the monotonicity of A, we have   〈 p −  u n  ,  p *  −  A  r n    z n  〉 ≥ 0   for all   n ∈ N  . Since    z n  → u   and hence    u n  → u  , we get   〈 p − u ,  p *  〉 ≥ 0  . From the maximallity of A, we have   u ∈  A  − 1   0  . Therefore, we have   u ∈ Ω  .



Since    z 0  =  P Ω   x 1   ,   u ∈ Ω   and    x n  → u  , we have from (17) that


      ∥   x 1  −  z 0   ∥ ≤ ∥   x 1   − u ∥      =  lim  n → ∞    ∥   x 1  −  x n   ∥ ≤ ∥   x 1  −  z 0   ∥ .      











Then   u =  z 0  .   Therefore, we have    x n  → u =  z 0   . This completes the proof. ☐






4. Applications


In this section, using Theorem 2, we obtain well-known and new strong convergence theorems in Hilbert spaces. We know the following lemma proved by Marino and Xu [22]; see also [23]. For the sake of completeness, we give the proof.



Lemma 5

([22,23]).Let C be a nonempty, closed and convex subset of a Hilbert space H. Let k be a real number with   0 ≤ k < 1   and let   U : C → H   be a k-strict pseudo-contraction. If    x n  ⇀ u   and    x n  − U  x n  → 0   , then   u ∈ F ( U )   .





Proof. 

Let us show that a nonexpansive mapping   T : C → H   is demiclosed. Let   {  x n  }   be a sequence in C such that    x n  ⇀ u   and    x n  − T  x n  → 0  . We have that


     ∥ u −       T u ∥  2  =   ∥ u −  x n  +  x n  − T u ∥  2            = ∥ u −   x n    ∥  2  +   ∥  x n  − T u ∥  2  + 2  〈 u −  x n  ,  x n  − T u 〉            = ∥ u −   x n    ∥  2  +   ∥  x n  − T  x n  + T  x n  − T u ∥  2  + 2  〈 u −  x n  ,  x n  − u + u − T u 〉            = ∥ u −   x n    ∥  2   + ∥   x n  − T  x n    ∥  2  +   ∥ T  x n  − T u ∥  2  + 2  〈  x n  − T  x n  , T  x n  − T u 〉              − 2 ∥ u −   x n    ∥  2  + 2  〈 u −  x n  , u − T u 〉            ≤ ∥ u −   x n    ∥  2   + ∥   x n  − T  x n    ∥  2  +   ∥  x n  − u ∥  2  + 2  〈  x n  − T  x n  , T  x n  − T u 〉              − 2 ∥ u −   x n    ∥  2  + 2  〈 u −  x n  , u − T u 〉            = ∥   x n  − T  x n    ∥  2  + 2  〈  x n  − T  x n  , T  x n  − T u 〉  + 2  〈 u −  x n  , u − T u 〉  → 0 .     











Then,   u = T u  . It is obvious that a mapping   B = I − U : C → H   is    1 − k  2  -inverse strongly monotone. Put   α =   1 − k  2   . We have that


    α ∥ B x − B y ∥  2  ≤  〈 x − y , B x − B y 〉  ,  ∀ x , y ∈ C .  



(23)







From   U = I − B   and (9), we have that


  I − 2 α B = I − 2 α ( I − U ) = ( 1 − 2 α ) I + 2 α U  








is nonexpansive. If    x n  ⇀ u   and    x n  − U  x n  → 0  , then


   x n  −  (  ( 1 − 2 α )  I + 2 α U )   x n  = 2 α  ( I − U )   x n  → 0 .  











Since   ( 1 − 2 α ) I + 2 α U   is nonexpansive, we have   u ∈ F ( ( 1 − 2 α ) I + 2 α U ) = F ( U )  . This implies that U is demiclosed. ☐





Furthermore, we know the following lemma from Kocourek, Takahashi, and Yao [2]; see also [24].



Lemma 6

([2,24]).Let C be a nonempty, closed and convex subset of a Hilbert space H and let   U : C → H   be generalized hybrid. If    x n  ⇀ u   and    x n  − U  x n  → 0   , then   u ∈ F ( U )   .





We prove a strong convergence theorem for a finite family of strict pseudo-contractions in a Hilbert space.



Theorem 3.

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let   {  k 1  , … ,  k M  }  ⊂  [ 0 , 1 )   and let   {  T j  }   j = 1  M  be a finite family of  k j  -strict pseudo-contractions of C into itself. Assume that   ∩  j = 1  M  F  (  T j  )  ≠ ∅  . For   x 1  ∈ C  and   C 1  = C  , let  {  x n  }  be a sequence defined by


       y n  =  ∑  j = 1  M   ξ j   (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  ,        C  n + 1    = { z ∈   C n   : ∥   y n   − z ∥ ≤ ∥   x n  − z  ∥ }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,      








where  a ∈ R  ,    {  λ n  }  ⊂  ( 0 , ∞ )   and   {  ξ 1  , … ,  ξ M  }  ⊂  ( 0 , 1 )   satisfy the following:




	(1) 

	
  0 < a ≤  λ n  ≤ min  { 1 −  k 1  , … , 1 −  k M  }  ,  ∀ n ∈ N  ;




	(2) 

	
   ∑  j = 1  M   ξ j  = 1  .









Then   {  x n  }   converges strongly to a point    z 0  ∈  ∩  j = 1  M  F  (  T j  )    , where    z 0  =  P   ∩  j = 1  M  F  (  T j  )     x 1    .





Proof. 

Since   T j   is a   k j  -strict pseudo-contraction of C into itself with   F (  T j  ) ≠ ∅  , from (1),   T j   is a   k j  -demimetric mapping. Furthermore, we have from Lemma 5 that   T j   is demiclosed. We also have that if    B i  = 0   for all   i ∈ { 1 , … , N }   in Theorem 2, then   B i   is a 1-inverse strongly monotone mapping. Putting    η n  = 1   for all   n ∈ N   in Theorem 2, we have that    z n  =  y n    for all   n ∈ N  . Furthermore, putting   A = G = 0   and    η n  =  r n  = 1   for all   n ∈ N   in Theorem 2, we have that


   Q  ν n   =  J  r n   = I ,  ∀  ν n  > 0 ,    r n  > 0 .  











Then we have that    u n  =  z n  =  y n    for all   n ∈ N  . Thus, we get the desired result from Theorem 2. ☐





As a direct result of Theorem 3, we have Theorem 1 in Introduction. We can also prove the following strong convergence theorem for a finite family of inverse strongly monotone mappings in a Hilbert space. Let g be a proper, lower semicontinuous and convex function of a Hilbert space H into   ( − ∞ , ∞ ]  . The subdifferential   ∂ g   of g is defined as follows:


  ∂ g ( x ) = { z ∈ H : g ( x ) + 〈 z , y − x 〉 ≤ g ( y ) ,  ∀ y ∈ H }  








for all   x ∈ H  . We have from Rockafellar [25] that   ∂ g   is a maximal monotone mapping. Let D be a nonempty, closed, and convex subset of a Hilbert space H and let   i D   be the indicator function of D, i.e.,


   i D   ( x )  =      0 ,     x ∈ D ,       ∞ ,     x ∉ D .       











Then   i D   is a proper, lower semicontinuous and convex function on H and then the subdifferential   ∂  i D    of   i D   is a maximal monotone mapping. Thus we define the resolvent   J λ   of   ∂  i D    for   λ > 0  , i.e.,


   J λ  x =   ( I + λ ∂  i D  )   − 1   x  








for all   x ∈ H  . We get that, for   x ∈ H   and   u ∈ D  ,


     u =      J λ  x ⟺ x ∈ u + λ ∂  i D  u ⟺ x ∈ u + λ  N D   u          ⟺ x − u ∈ λ  N D   u          ⟺  1 λ   〈 x − u , v − u 〉  ≤ 0 ,  ∀ v ∈  D          ⟺ 〈 x − u , v − u 〉 ≤ 0 ,  ∀ v ∈  D          ⟺ u =  P D  x ,     








where    N D  u   is the normal cone to D at u, i.e.,


   N D  u =  { z ∈ H :  〈 z , v − u 〉  ≤ 0 ,  ∀ v ∈ D }  .  











Theorem 4.

Let C be a nonempty, closed and convex subset of a Hilbert space H. Let   {  μ 1  , … ,  μ N  }  ⊂  ( 0 , ∞ )   . Let   {  B i  }   i = 1  N  be a finite family of  μ i  -inverse strongly monotone mappings of C into H. Assume that   ∩  i = 1  N  V I  ( C ,  B i  )  ≠ ∅  . Let   x 1  ∈ C  and   C 1  = C  . Let  {  x n  }  be a sequence defined by


       z n  =  ∑  i = 1  N   σ i   P C   ( I −  η n   B i  )   x n  ,        C  n + 1    = { z ∈   C n   : ∥   z n   − z ∥ ≤ ∥   x n  − z  ∥ }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,      








where  b ∈ R  ,    {  η n  }  ⊂  ( 0 , ∞ )   and   {  σ 1  , … ,  σ N  }  ⊂  ( 0 , 1 )   satisfy the following:




	(1) 

	
  0 < b ≤  η n  ≤ 2 min  {  μ 1  , … ,  μ N  }  ,  ∀ n ∈ N  ;




	(2) 

	
   ∑  i = 1  N   σ i  = 1  .









Then   {  x n  }   converges strongly to    z 0  ∈  ∩  i = 1  N  V I  ( C ,  B i  )    , where    z 0  =  P   ∩  i = 1  N  V I  ( C ,  B i  )     x 1    .





Proof. 

Putting   G = ∂  i C    in Theorem 2, we get that for    η n  > 0  ,    J  η n   =  P C  .   Furthermore, we have     ( ∂  i C  )   − 1   0 = C   and     (  B i  + ∂  i C  )   − 1   0 = V I  ( C ,  B i  )   . In fact, we get that, for   z ∈ C  ,


     z ∈ (      B i  + ∂  i C    )   − 1   0 ⟺ 0 ∈  B i  z + ∂   i C  z          ⟺ 0 ∈  B i  z +  N C  z ⟺ −  B i  z ∈   N C  z          ⟺ 〈 −  B i  z , v − z 〉 ≤ 0 ,  ∀ v ∈  C          ⟺ 〈  B i  z , v − z 〉 ≥ 0 ,  ∀ v ∈  C          ⟺ z ∈ V I ( C ,  B i  ) .     











The identity mapping I is a   1 2  -demimetric mapping of C into H. Put    T j  = I   for all   j ∈ { 1 , … , M }   and    λ n  =  1 2    for all   n ∈ N   in Theorem 2. Then we get that    y n  =  x n    for all   n ∈ N  . Furthermore, putting   A = 0  , we have    u n  =  z n   . Thus, we get the desired result from Theorem 2. ☐





We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of inverse strongly monotone mappings in a Hilbert space.



Theorem 5.

Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let    {  μ 1  , … ,  μ N  }  ⊂  ( 0 , ∞ )    . Let    {  T j  }   j = 1  M   be a finite family of generalized hybrid mappings of C into itself and let    {  B i  }   i = 1  N   be a finite family of   μ i   -inverse strongly monotone mappings of C into H. Suppose that


    ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  V I  ( C ,  B i  )  )  ≠ ∅ .   











For    x 1  ∈ C   and    C 1  = C   , let   {  x n  }   be a sequence defined by


        y n  =  ∑  j = 1  M   ξ j   (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  ,        z n  =  ∑  i = 1  N   σ i   P C   ( I −  η n   B i  )   y n  ,        C  n + 1    = { z ∈   C n   : ∥   y n   − z ∥ ≤ ∥   x n  −  z ∥  a n d  ∥   z n   − z ∥ ≤ ∥   y n  − z  ∥ }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,       








where   a , b , c ∈ R   ,    {  λ n  }  ,  {  η n  }  ⊂  ( 0 , ∞ )    ,    {  ξ 1  , … ,  ξ M  }  ,  {  σ 1  , … ,  σ N  }  ⊂  ( 0 , 1 )    and    {  α n  }  ,  {  β n  }  ,  {  γ n  }  ⊂  ( 0 , 1 )    satisfy the following conditions:




	(1) 

	
   0 < a ≤  λ n  ≤ 1 ,  ∀ n ∈ N   ;




	(2) 

	
   0 < b ≤  η n  ≤ 2 min  {  μ 1  , … ,  μ N  }  ,  ∀ n ∈ N   ;




	(3) 

	
    ∑  j = 1  M   ξ j  = 1   and    ∑  i = 1  N   σ i  = 1   .









Then   {  x n  }   converges strongly to a point    z 0  ∈  ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  V I  ( C ,  B i  )  )    , where    z 0  =  P   ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  V I  ( C ,  B i  )  )     x 1    .





Proof. 

Since   T j   is a generalized hybrid mapping of C into itself such that   F (  T j  ) ≠ ∅  , from (2),   T j   is 0-demimetric. Furthermore, from Lemma 6,   T j   is demiclosed. Furtheremore, put   G = ∂  i C    as in the proof of Theorem 4. Then we have that    Q  η n    ( I −  η n   B i  )  =  P C   ( I −  η n   B i  )    in Theorem 2. We also have that if   A = 0  , then    J  r n   = I   and    u n  =  z n   . Therefore, we get the desired result from Theorem 2.





We prove a strong convergence theorem for a finite family of generalized hybrid mappings and a finite family of nonexpansive mappings in a Hilbert space.



Theorem 6.

Let C be a nonempty, closed, and convex subset of a Hilbert space H. Let   {  T j  }   j = 1  M  be a finite family of generalized hybrid mappings of C into itself and let   {  U i  }   i = 1  N  be a finite family of nonexpansive mappings of C into H. Suppose that   ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  F  (  U i  )  )  ≠ ∅  . For   x 1  ∈ C  and   C 1  = C  , let  {  x n  }  be a sequence defined by


       y n  =  ∑  j = 1  M   ξ j   (  ( 1 −  λ n  )  I +  λ n   T j  )   x n  ,        z n  =  ∑  i = 1  N   σ i   (  ( 1 −  η n  )  I +  η n   U i  )   y n  ,        C  n + 1    = { z ∈   C n   : ∥   y n   − z ∥ ≤ ∥   x n  −  z ∥  a n d  ∥   z n   − z ∥ ≤ ∥   y n  − z  ∥ }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,      








where  a , b ∈ R  ,    {  λ n  }  ,  {  η n  }  ⊂  ( 0 , ∞ )   and   {  ξ 1  , … ,  ξ M  }  ,  {  σ 1  , … ,  σ N  }  ⊂  ( 0 , 1 )   satisfy the following conditions:




	(1) 

	
  0 < a ≤  λ n  ≤ 1 ,  ∀ n ∈ N  ;




	(2) 

	
  0 < b ≤  η n  ≤ 1 ,  ∀ n ∈ N  ;




	(3) 

	
   ∑  j = 1  M   ξ j  = 1  and   ∑  i = 1  N   σ i  = 1  .









Then   {  x n  }   converges strongly to a point    z 0  ∈  ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  F  (  U i  )  )    , where    z 0  =  P   ∩  j = 1  M  F  (  T j  )  ∩  (  ∩  i = 1  N  F  (  U i  )  )     x 1    .





Proof. 

As in the proof of Theorem 5,   T j   is 0-demimetric and demiclosed. Since   U i   is nonexpansive,    B i  = I −  U i    is a   1 2  -inverse strongly monotone mapping. Furthermore, we get that


  I −  η n   B i  = I −  η n   ( I −  U i  )  =  ( 1 −  η n  )  I +  η n   U i  .  











Putting   A = G = 0  , we get the desired result from Theorem 2.





We finally prove a strong convergence theorem for resolvents of a maximal monotone mapping in a Hilbert space.



Theorem 7.

Let H be a Hilbert space. Let A be a maximal monotone mapping on H and let    J r  =   ( I + r A )   − 1     be the resolvents of A for   r > 0   . Suppose that    A  − 1   0 ≠ ∅ .   For    x 1  ∈ C   and    C 1  = C   , let   {  x n  }   be a sequence defined by


        u n  =  J  r n    x n  ,        C  n + 1    = { z ∈   C n  :  〈  x n  − z ,  x n  −  u n  〉   ≥ ∥   x n  −  u n    ∥ 2  }  ,        x  n + 1   =  P  C  n + 1     x 1  ,  ∀ n ∈ N ,       








where   c ∈ R   and    {  r n  }  ⊂  ( 0 , ∞ )    satisfy the following:


   0 < c ≤  r n  ,  ∀ n ∈ N .   











Then   {  x n  }   converges strongly to a point    z 0  ∈  A  − 1   0   , where    z 0  =  P   A  − 1   0    x 1    .





Proof. 

Put    T j  = I   and    B i  = 0   for all   j ∈ { 1 , 2 , … , M }   and   i ∈ { 1 , 2 , … , N }   in Theorem 2. Furthermore, put   G = 0  . Then we have that    x n  =  y n  =  z n   . Thus we get the desired result from Theorem 2.
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