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Abstract: Developable surface plays an important role in geometric design, architectural design, and
manufacturing of material. Bézier curve and surface are the main tools in the modeling of curve and
surface. Since polynomial representations can not express conics exactly and have few shape handles,
one may want to use rational Bézier curves and surfaces whose weights control the shape. If we vary
a weight of rational Bézier curve or surface, then all of the rational basis functions will be changed.
The derivation and integration of the rational curve will yield a high degree curve, which means
that the shape of rational Bézier curve and surface is not easy to control. To solve this problem of
shape controlling for a developable surface, we construct C-Bézier developable surfaces with some
parameters using a dual geometric method. This yields properties similar to Bézier surfaces so that it
is easy to design. Since C-Bézier basis functions have only two parameters in every basis, we can
control the shape of the surface locally. Moreover, we derive the conditions for C-Bézier developable
surface interpolating a geodesic.

Keywords: developable surface; C-Bézier basis; dual method; geodesic

1. Introduction

Developable surface is a special ruled surface with vanishing Gaussian curvature. They can
be unfolded or developed onto a plane without stretching and tearing. Based on these properties,
they have many applications in computer aided geometric design (CAGD), especially for the designing
the surface of some products, such as shoes, hat, ship hull and car body, etc. Therefore, the design of
developable surface is of considerable importance to plate-metal-based and sheet-metal industries.
A developable surface is either a cylindrical surface, a conical surface, or a tangent surface.

There are mainly methods to study developable surfaces in current computer aided design
(CAD)/computer aided manufacturing (CAM) system. One method is point geometry. We can refer to
the papers [1–7]. Aumann [1] proposed the conditions to construct a developable Bézier surface with
two boundary curves that are restricted in parallel planes. Lang and Röschel [2] studied the necessary
conditions of a rational developable Bézier surface by characterizing the weights and the control nets.
The main drawback of this method is the production of coupled equations that is very difficult for the
designing of developable surfaces in a CAD system. Another approach is projective geometry, which
is proposed by Pottmann and Farin [4]. In this viewpoint, a developable surface can be represented
as a curve in projective space. Because of the curve scheme, the nonlinear characterization equations
can be avoided. Bodduluri and Ravani [7] developed a new representation for developable surfaces
by using the concept of duality between points and planes in projective space. Moreover, Zhao and
Wang [8] and Li et al. [9] constructed the developable surface to interpolate geodesic and line of
curvature, respectively.
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The above approaches were almost confined on Bézier or B-spline surfaces. It is uncontrollable
and has trouble adjusting the shape of the developable surface because of a few degrees of freedom.
These disadvantages make them difficult to meet the needs of the practice engineering. Of course,
we can consider using a rational Bézier surface. However, just as mentioned by Farin [10] and Piegl [11],
the higher power of a rational model can induce several drawbacks:

• Rational curves and surfaces have weights for each control point. In general, the selection of the
weight is not clear. Thus, the author in [12] concluded that “this added freedom of weights is
potentially more a nuisance than a real help”.

• We know that the derivative of a degree n polynomial curve is a curve of degree n− 1; this means
that differential yields a simpler curve. However, the derivative of a degree n rational curve is a
rational curve of degree 2n. Thus, the derivative yields a curve with a high degree. If we repeat
differentiation, we will get a curve of a high degree. It may not be dealt with in the CAD system.

• The rational model can not encompass transcendental curves, such as cycloid and helix.
The curves are very important in technical application.

To overcome these shortcomings, some researchers introduced the curve and surface with
parameter. Zhang [13] proposed C-curves, which are an extension of cubic curves. These new
curves depend on a parameter; when the parameter tends to 0, they degenerated to cubic curves.
Following this paper, Zhang introduced C-B splines in [14]. He gave a new reparametrized form of
C-B splines, and derived the third form that has different parameters. By using the same techniques
of C-B splines, Zhang discussed two other forms of C-Bézier curves and a reformed formula for the
subdivisions in [15]. Under these new forms, C-Bézier curves can make the processes of the normal
cases and the limiting case with precise results unified. Han, Ma, and Huang [16] proposed a class of
polynomial basis functions with n adjustable shape parameters. The authors constructed quasi-Bézier
curves and surfaces, which can be flexibly controlled by suitably modifying the values of the shape
parameters. Zhu and Han [17] constructed four new cubic rational Bernstein-like basis functions with
two parameters by using the blossom method. These basis functions can form a normalized B-basis.
They analyzed their good properties. Zhu, Han, and Liu [18] also studied four new αβ-Bernstein-like
basis functions with two exponential shape parameters. These basis functions include the cubic
Said–Ball basis functions and cubic Bernstein basis functions. They developed a new corner cutting
algorithm. Zhou et al. [19] constructed developable surfaces of C-Bézier basis functions with one shape
parameter. Hu et al. [20] studied λ−Bézier developable surface and their properties. They can control
the shape of the developable surface without altering the position of the control points. However,
there is only one parameter, which is limited to adjust the developable surface. Hu et al. [21] proposed
a novel method for constructing 1× 3 developable H-Bézier surfaces with three parameters. In recent
years, several trigonometric splines have been studied. In [22], the authors constructed the cubic
trigonometric polynomial spline curve of G3 continuity, which can be G5 continuity under special
conditions. Yang and Liang [23] presented algebraic-trigonometric blended spline curves which can
represent some transcendental curves.

In this paper, in order to solve the shape handling problem of the developable surface,
we introduce new basis functions with n parameters by integral. In addition to some similar properties
of Bézier basis, the new basis functions have better handling because of the parameters. We analyze
the good properties of the new basis functions and prove them. Due to the merits of the new basis,
we can extend them to curves and surfaces. Considering the application of the developable surface
in designing of the car body, airplane skin, and shoes, we construct developable surfaces under
the new basis by enveloping developable and tangent of spine curve. The shape of the surface can
be easily controlled dual to the parameters, so it will provide more convenience for designing the
apparent surface of some products. The rest of the paper is organized as follows. Section 2 gives
generalized C-Bézier basis functions with n parameters and its properties. In Section 3, we construct
the developable surface by two approaches. One is considered as the envelope of the one-parameter
pencils of tangent planes. The other is that we express the developable surface as the tangent surface of
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regression line. We only need to adjust the shape of the surface by shape parameters without moving
the control points. Moreover, we give the concrete expression of n-parameters C-Bézier developable
surface interpolating geodesic. We do the examples on a 1.8 GHz PC by the software Maple, and the
examples show the method is effective.

2. C-Bézier Curve with n-Parameters

2.1. C-Bézier Basis Functions with n-Parameters

Zhang [13,14] investigated cubic C-curves and C-surfaces with one parameter α in the
space span{1, t, cos t, sin t}. Chen [24] constructed a new C-Bézier basis with degree n for the
span{1, t, t2, . . . , tn−2, sin t, cos t} by an integral approach. These bases share the same properties
as the Bernstein basis when the parameter α→ 0. Because such basis has only one parameter, there is
a limit for adjusting the shape of the surface. In order to control the surface more flexibly, we construct
a new basis function with n parameters. First, we choose the original functions as

u0,1(t; α) =
sin α(1− t)

sin α
,

u1,1(t; α) =
sin αt
sin α

,

where α ∈ (0, π), t ∈ [0, 1]. Then, we can define

Definition 1. C-Bézier basis functions with n parameters

u0,n(t; α1) = 1−
∫ t

0
δ0,n−1u0,n−1(x; α1)dx,

ui,n(t; αi, αi+1) =
∫ t

0
[δi−1,n−1ui−1,n−1(x; αi)− δi,n−1ui,n−1(x; αi+1)]dx,

un,n(t; αn) =
∫ t

0
δn−1,n−1un−1,n−1(x; αn)dx,

where ui,n−1(x; αi+1) = ui,n−1(x; αi+1, αi+1), δi,n−1 = (
∫ 1

0 ui,n−1(t; αi+1)dt)−1, i = 0, 1, . . .¸ , n − 1, t ∈
[0, 1]. If n = 2, α2 ∈ (0, π], if n ≥ 3, αi ∈ (0, 2π].

According to Definition 1, we can compute the quadratic C-Bézier basis.

u0,2(t; α1) = 1−
∫ t

0 δ0,1u0,1(x; α1)dx = 1− cos α1(1−t)−cos α1
1−cos α1

,

u1,2(t; α1, α2) =
∫ t

0 (δ0,1u0,1(x; α1)− δ1,1u1,1(x; α2))dx

= cos α1(1−t)−cos α1
1−cos α1

− 1−cos α2t
1−cos α2

,

u2,2(t; α2) =
∫ t

0 δ1,1u1,1(x; α2)dx = 1−cos α2t
1−cos α2

.

Figure 1 shows the basis functions with different parameters.
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(a) (b)

(c) (d)

Figure 1. Quadratic basis functions. (a) α1 = π
8 , α2 = π

8 ; (b) α1 = π
8 , α2 = 7π

8 ; (c) α1 = 7π
8 , α2 = π

8 ; and
(d) α1 = 7π

8 , α2 = 7π
8 .

In the same manner, the cubic basis functions can be expressed as follows:

u0,3(t; α1) = − sin α1(1−t)−α1(1−t)
α1−sin α1

,

u1,3(t; α1, α2) =
sin α1(1−t)+α1t−sin α1

α1−sin α1

+ (1−M2) sin α2t+K2 M2 cos α2t−(1−M2)α2t−K2 M2
α2−sin α2

,

u2,3(t; α2, α3) = − (1−M2) sin α2t+K2 M2 cos α2t−(1−M2)α2t−K2 M2
α2−sin α2

− α3t−sin α3t
α3−sin α3

,

u3,3(t; α3) =
α3t−sin α3t
α3−sin α3

,

(1)

where K2 = α2−sin α2
1−cos α2

, M2 =

{
1, α2 = π;

sin α2(1−cos α2)
2 sin α2−α2−α2 cos α2

, 0 < α2 < π.
The basis functions are shown in

Figure 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Cubic basis functions. (a) α1 = π
8 , α2 = π

8 , α3 = π
8 ; (b) α1 = 13π

8 , α2 = 13π
8 , α3 = 13π

8 ;
(c) α1 = π

8 , α2 = 13π
8 , α3 = π

8 ; (d) α1 = 13π
8 , α2 = π

8 , α3 = 13π
8 ; (e) α1 = π

8 , α2 = π
8 , α3 = 13π

8 ; (f)
α1 = 13π

8 , α2 = π
8 , α3 = π

8 .

The C-Bézier basis functions with parameters have the following properties.

Property 1. The basis is normalized that is

u0,n(t; α1) +
n−1

∑
i=1

ui,n(t; αi, αi+1) + un,n(t; αn) = 1.

Proof. From Definition 1, it is obvious that the basis is normalized.

Property 2. At the endpoints, when n ≥ 2, the basis satisfies

(a). u0,n(0; α1) = un,n(1; αn) = 1;
(b). u(j)

i,n(0; αi, αi+1) = u(k)
i,n (1; αi, αi+1) = 0, j = 0, 1, . . . , i− 1; k = 0, 1, . . . , n− i− 1;

(c). u(i)
i,n(0; αi, αi+1) = δi−1,n−1(αi)δi−2,n−2(αi) . . . δ0,n−i(αi), i = 1, 2, . . . , n, δ0,0 = α

sin α .
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Proof.

(a). By Definition 1,

u0,n(0; α1) = 1−
∫ 0

0
δ0,n−1u0,n−1(x; α1)dx = 1;

un,n(1; αn) =
∫ 1

0
δn−1,n−1un−1,n−1(x; αn)dx = δn−1,n−1

∫ 1

0
un−1,n−1(x; αn)dx

=

∫ 1
0 un−1,n−1(x; αn)dx∫ 1
0 un−1,n−1(x; αn)dx

= 1.

(b). We prove this property by induction on n. When n = 2, we get u1,2(0; α1, α2) = u1,2(1; α1, α2) = 0.
Assume (b) holds on n− 1, that is,

u(j)
i,n−1(0; αi, αi+1) = u(k)

i,n−1(1; αi, αi+1) = 0, j = 0, . . . , i− 1, k = 0, . . . , n− i− 2. (2)

Then, for n, we have

u(j)
i,n(0; αi, αi+1) = δi−1,n−1u(j−1)

i−1,n−1(0; αi−1, αi)− δi,n−1u(j)
i,n−1(0; αi, αi+1),

u(k)
i,n (1; αi, αi+1) = δi−1,n−1u(k−1)

i−1,n−1(1; αi−1, αi)− δi,n−1u(k)
i,n−1(1; αi, αi+1).

According to Formula (2), it is easy to get

u(j)
i,n(0; αi, αi+1) = u(k)

i,n (1; αi, αi+1) = 0, j = 0, . . . , i− 1, k = 0, . . . , n− i− 1.

(c). We prove this property by induction on n too. When n = 2, we have

u
′
1,2(0; α1, α2) =

α1 sin α1

1− cos α1
= δ0,1(α1),

u
′′
2,2(0; α2) =

α2
2

1− cos α2
= δ1,1(α2)δ0,0(α2).

Assume it holds for n − 1, that is, u(i)
i,n−1(0; αi, αi+1) = δi−1,n−2(αi)δi−2,n−3(αi) . . . δ0,n−i−1(αi).

On the left part of this equation, when we let t = 0, the term including αi+1 is zero. Therefore,
the right side of the equation only has parameter αi. Then, we have

u(i)
i,n(0; αi, αi+1) = (u

′
i,n)

(i−1)(0; αi, αi+1)

= (δi−1,n−1ui−1,n−1(t; αi, αi+1)− δi,n−1ui,n−1(t; αi, αi+1))
(i−1) |t=0

According to (b), ui,n−1(t; αi, αi+1))
(i−1) |t=0= 0. Therefore,

u(i)
i,n(0; αi, αi+1) = δi−1,n−1u(i−1)

i−1,n−1(0; αi, αi+1)

= δi−1,n−1(αi)δi−2,n−2(αi)δi−3,n−3(αi) . . . δ0,n−i(αi).

Property 3. Linear independence.

Proof. Assume

a0u0,n(t; α1) +
n−1

∑
i=1

aiui,n(t; αi, αi+1) + anui,n(t; αn) = 0. (3)
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Then, by Property 2, we get

a0u0,n(0; α1) + a1u1,n(0; α1, α2) + . . . + anun,n(0; αn) = a0 = 0

for t = 0. Then, differential Equation (3), according to Property 2, we have

a1δ0,n−1(α1) = 0,

so a1 = 0. Similar to the above, we can differentiate Equation (3) n times, then we get
ai = 0, i = 2, . . . , n. This means that the functions u0,n(t; α1), {ui,n(t; αi, αi+1)}n−1

i=1 , un,n(t; αn) are
linear independent.

Property 4. When n ≥ 3, the basis functions u0,n(t; α1), {ui,n(t; αi, αi+1)}n−1
i=1 , un,n(t; αn) are positive.

Proof. For arbitrary f ∈ span{sin αt, cos αt, tn−2, . . . , t, 1}, assume f (t) = a sin αt + b cos αt +
n−2
∑

i=0
ti

has n + 2 roots in [0, 1]. According to Rolle’s Theorem, f (n−1)(t) has three roots in [0, 1]. By computing,
f (n−1)(t) = A sin αt + B cos αt = C sin (αt + ϕ), A, B, C, ϕ are constants. C sin (αt + ϕ) has two roots
at most in [0, 1]; this is in contradiction with the assumption. Therefore, f (t) has n + 1 roots at most
in [0, 1].

From the above theory, the basis u0,n(t; α1), {ui,n(t; αi, αi+1)}n−1
i=1 , un,n(t; αn) has n+ 1 roots at most

in [0, 1]. By Property 2, 0 is i multiple root and 1 is n− i multiple root:

u0,n(t; α1) =
i

∑
j=0

u(j)
0,n(0; α1)tj

j!
+ o(tj) =

u0,n(0; α1)ti

i!
+ o(ti),

ui,n(t; αi, αi+1) =
i

∑
j=0

u(j)
i,n(0)t

j

j!
+ o(tj) =

u(i)
i,n(0)t

i

i!
+ o(ti), 1 ≤ i ≤ n− 1,

un,n(t; αn) =
i

∑
j=0

u(j)
n,n(0; αn)tj

j!
+ o(tj) =

un,n(0; αn)ti

i!
+ o(ti).

When n = 3,

u
′
1,3(0; α1, α2) = δ0,2(α1) =

α1(1− cos α1)

α1 − sin α1
> 0, (α1 ∈ (0, π]),

u
′′
2,3(0; α2, α3) = δ1,2(α2)δ0,1(α2) =

α2
2 sin α2

2 sin α2 − α2 − cos α2α2

=
α2

2
sin α2

α2

2 cos α2
2 (

sin α2
2

α2
2
− cos α2

2 )
.

If α2 ∈ (0, π], that is, α2
2 ∈ (0, π

2 ]. Then, sin α2 > 0, cos α2
2 > 0, sin α2

2
α2
2
− cos α2

2 > 0, we get

u2,3(0; α2, α3) > 0. For α2 ∈ (π, 2π], sin α2 < 0, cos α2
2 < 0, sin α2

2
α2
2
− cos α2

2 > 0, then u2,3(0; α2, α3) > 0.

u(3)
3,3 (0; α3) = δ2,2δ1,1δ0,0 =

α3
3

α3 − sin α3
> 0.

Therefore, u(i)
i,3 (0; α3) > 0, there exists δ > 0, when t ∈ (0, δ), ui,3(t; α3) > 0, while t ∈ (0, δ),

ui,3(1− t; α3) > 0. If there exists t∗ ∈ (0, 1) making ui,3(t∗; α3) < 0, then ui,3(t; α3) has two roots
at least in (0, 1). In this case, ui,3(t; α3) has five roots at least in [0, 1], it is a contradiction with the
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consumption that the basis u0,n(t; α1), {ui,n(t; αi, αi+1)}n−1
i=1 , un,n(t; αn) has n + 1 roots at most in [0, 1].

Thus, ui,3(t; α3) > 0.
Assume 3 < n ≤ k − 1, ui,n(t; αi, αi+1) > 0, then δi−1,k−1δi−2,k−2 . . . , δ0,k−1 > 0, that is,

u(i)
i,k (0; αi, αi+1) > 0. When n = k, ui,k(t; αi, αi+1) is positive in a small enough right domain of 0

and a left domain of 1. If t∗ ∈ (0, 1) makes ui,k(t∗; αi, αi+1) < 0, then ui,k(t; αi, αi+1) has at least
two roots in (0, 1). Therefore, it has k + 2 roots at least in [0, 1], which is impossible. Consequently,
ui,k(t) > 0.

2.2. C-Bézier Curve with n-Parameters

Definition 2. Given n + 1 points Pi ∈ R3(i = 0, . . . , n), the parametric curve

P(t; α1, . . . , αn) = P0u0,n(t; α1) +
n−1

∑
i=1

Piui,n(t; αi, αi+1) + Pnun,n(t; αn), 0 ≤ t ≤ 1 (4)

is called C-Bézier curve of degree n with n-parameters, where Pi are control points, αi are shape parameters.

Example 1. By Definition 2 and cubic C-Bézier basis functions (1), the cubic C-Bézier curve is given by

P(t) = P0u0,3(t, α1) + P1u1,3(t; α1, α2) + P2u2,3(t; α2, α3) + P3u3,3(t; α3), (5)

where t ∈ [0, 1], αi ∈ (0, 2π], i = 1, 2, 3. Figure 3 show cubic C-Bézier curves with different parameters.

(a) (b)

Figure 3. Cubic C-Bézier curves with different parameters. (a) α1 = [π
8 , π

8 , π
8 , 13π

8 ]; α2 = [ 13π
8 , π

8 , π
8 , π

8 ];
α3 = [π

8 , 13π
8 , π

8 , π
8 ]; (b)α1 = [π

8 , π
8 , π

8 , 13π
8 ]; α2 = [ 13π

8 , π
8 , π

8 , π
8 ]; α3 = [π

8 , 13π
8 , π

8 , π
8 ].

By Example 1, we can note that such parametric curve construction can be potentially applied
to extend linear opinion speading to multidimensional parametric spaces with embedded structural
dynamics. See [25].

By the properties of C-Bézier basis functions and Definition 2, we have the following basic
properties of C-Bézier curve with n-parameters.

Property 5. Convex hull property. The entire C-Bézier curve with n-parameters must lie inside the convex hull
of its control points.

Proof. By Properties 1 and 4, the basis functions u0,n(t; α1), {ui,n(t; αi, αi+1)}n−1
i=1 , un,n(t; αn) are positive

and normalized. Therefore, for a given t, the C-Bézier curve P(t; α1, · · · , αn) is weighted average
of the control points Pi. That is, the curve P(t; α1, · · · , αn) lies in the convex hull formed by its
control points.

Property 6. Endpoints’ interpolation and derivatives.

(a). P(0; α1, · · · , αn) = P0, P(1; α1, · · · , αn) = Pn;
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(b). P(j)(0; α1, . . . , αj+1) = P0u(j)
0,n(0; α1) +

j
∑

i=1
Piu

(j)
i,n(0; αi, αi+1);

(c). P(j)(1) =
n−1
∑

i=n−j
Piu

(j)
i,n(1; αi, αi+1) + Pnu(j)

n,n(1; αn).

Proof.

(a). Let t = 0; then, Equation (4) is

P(0; α1, · · · , αn) = P0u0,n(0; α1, . . . , αn) +
n−1

∑
i=1

Piui,n(0; αi, αi+1) + Pnun,n(0; αn).

By Property 2(a) and 2(b), we have u0,n(0; α1) = 1, ui,n(0; αi, αi+1) = 0, un,n(0; αn) = 0, then
P(0; α1, · · · , αn) = P0. In the similar way, P(1; α1, · · · , αn) = Pn.

(b). When t = 0,

P(j)(0; α1, . . . , αn) = P0u(j)
0,n(0; α1) +

n−1

∑
i=1

Piu
(j)
i,n(0; αi, αi+1) + Pnu(j)

n,n(0; αn).

According to Property (2)(b), u(j)
i,n(0; αi, αi+1) = 0(i = j + 1, . . . , n− 1), u(j)

n,n(0; αn) = 0, so we have

P(j)(0; α1, . . . , αj+1) = P0u(j)
0,n(0; α1) +

j

∑
i=1

Piu
(j)
i,n(0; αi, αi+1).

(c). By using the above method, we can prove conclusion (c), so here we omit the process of the proof.

Property 7. Differentiation property. The derivative P′(t) of a degree n is a degree n− 1 C-Bézier curve with
(n− 1)-parameters, which can be expressed as

P′(t) =
n−1

∑
i=0

δi,n−1(Pi+1 − Pi)ui,n−1(t; αi+1).

Proof. By differentiating Equation (4), we get

P′(t; α1, . . . , αn) = P0u′0,n(t; α1) +
n−1

∑
i=1

Piu′i,n(t; αi, αi+1) + Pnu′n,n(t; αn).

We substitute the expression of the basis functions given in Definition 1; then,

P′(t; α1, . . . , αn) = P0δ0,n−1u0,n−1(t; α1) + P1(δ0,n−1u0,n−1(t; α1)− δ1,n−1u1,n−1(t; α2))

+ P2(δ1,n−1u1,n−1(t; α2)− δ2,n−1u2,n−1(t; α3)) + . . .

+ Pn−1(δn−2,n−1un−2,n−1(t; αn−1)− δn−1,n−1un−1,n−1(t; αn))

+ Pnδn−1,n−1un−1,n−1(t; αn)

= (P1 − P0)δ0,n−1u0,n−1(t; α1) + . . . + (Pn − Pn−1)δn−1,n−1un−1,n−1(t; αn)

=
n−1

∑
i=0

δi,n−1(Pi+1 − Pi)ui,n−1(t; αi+1).

The conclusion is proved.
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3. Developable Surface from Cubic C-Bézier Curve with Three Parameters

In this section, based on the C-Bézier basis functions and cubic C-Bézier curve defined in the last
section, we propose two methods to design the developable surface with three parameters due to the
following Definition 3.

Definition 3 ([26]). Two planes in a plane family {∏t} intersect a line called the characteristic line. Three
planes in a plane family {∏t} intersect a point called characteristic point.

3.1. 1× 3 Enveloping Developable C-Bézier Surface

We mainly based on the theory that the dual element of point is plane, and the dual element
of the line is a line in three-dimensional projective space. In the expression (5), we substitute the
control points Pi(i = 0, 1, 2, 3) with control planes ∏i(i = 0, 1, 2, 3). Assume the coordinates of planes
∏i(i = 0, 1, 2, 3) are Qi = (ai, bi, ci, di)(i = 0, 1, 2, 3); then, we can get the single-parameter family
of planes

{∏t} : X(t; α1, α2, α3) = (x0(t), x1(t), x2(t), x3(t))

= Q0u0,3(t, α1) + Q1u1,3(t, α1, α2)

+ Q2u2,3(t, α2, α3) + Q3u3,3(t, α3). (6)

That is,
a0u0,3(t, α1) + a1u1,3(t, α1, α2) + a2u2,3(t; α2, α3) + a3u3,3(t; α3) = x0(t),
b0u0,3(t, α1) + b1u1,3(t, α1, α2) + b2u2,3(t; α2, α3) + b3u3,3(t; α3) = x1(t),
c0u0,3(t, α1) + c1u1,3(t, α1, α2) + c2u2,3(t; α2, α3) + c3u3,3(t; α3) = x2(t),
d0u0,3(t, α1) + d1u1,3(t, α1, α2) + d2u2,3(t; α2, α3) + d3u3,3(t; α3) = x3(t).

According to the conditions of developable surface, the envelope of the a single-parameter family
of planes is a developable surface. The plane at any of value t can be expressed as

x0(t)x + x1(t)y + x2(t)z = x3(t). (7)

Differential Equation (7), that is,

x
′
0(t)x + x

′
1(t)y + x

′
2(t)z = x

′
3(t). (8)

By Definition 3, the intersecting line of the two planes (7) and (8) is the generator of the
developable surface. We use L(t) = L(s(t), r(t)), which represents the generator, where

s(t) = (x0(t), x1(t), x2(t))× (x
′
0(t), x

′
1(t), x

′
2(t))

= (x1(t)x
′
2(t)− x2(t)x

′
1(t), x

′
0(t)x2(t)− x0(t)x

′
2(t), x0(t)x

′
1(t)− x1(t)x

′
0(t))

is the directional vector of L(t):

r(t) = x
′
3(t)(x0(t), x1(t), x2(t))− x3(t)(x

′
0(t), x

′
1(t), x

′
2(t))

= (x0(t)x
′
3(t)− x3(t)x

′
0(t), x1(t)x

′
3(t)− x

′
1(t)x3(t), x2(t)x

′
3(t)− x3(t)x

′
2(t)).
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Assume P = (x, y, z) is the point, closest to the origin O; then, OP is vertical to the vector s. At
the same time, it lies in the two planes, so it satisfies

x0(t)x + x1(t)y + x2(t)z = x3(t),
x
′
0(t)x + x

′
1(t)y + x

′
2(t)z = x

′
3(t),

(x1(t)x
′
2(t)− x2(t)x

′
1(t))x + (x

′
0(t)x2(t)− x0(t)x

′
2(t))y + (x0(t)x

′
1(t)− x1(t)x

′
0(t))z = 0.

To solve this equation system, we get

P =
s× r
s · s .

Therefore, the line L(t) has the following form:

T(t, v) = vs + P, t ∈ [0, 1], v ∈ (−∞, ∞). (9)

When t varies on [0, 1], the line L(t) forms a developable surface. From the constructive process,
it is obvious that a developable surface can be formed when the control planes are given. Furthermore,
we analyze the properties of the developable C-Bézier surface (9). We take the first derivative of
Equation (6) with respect to t and put it with (6) together,{

X(t; α1, α2, α3) = Q0u0,3(t; α1) + Q1u1,3(t; α2, α3) + Q3u2,3(t; α2, α3) + Q3u3,3(t; α3),
X′(t; α1, α2, α3) = Q0u′0,3(t; α1) + Q1u′1,3(t; α2, α3) + Q3u′2,3(t; α2, α3) + Q3u′3,3(t; α3).

When t = 0 and t = 1, respectively, we have{
X(0; α1, α2, α3) = Q0,
X′(t; α1, α2, α3) = δ0,2(Q1 −Q0)

(10)

and {
X(1; α1, α2, α3) = Q3,
X′(t; α1, α2, α3) = δ2,2(Q1 −Q0).

(11)

The first equations of (10) and (11) are planes that are tangential to the developable surface
along its generators at t = 0 and t = 1. The line of intersection of the two planes defined by
Equations (10) and (11) is the generator of the developable surface at t = 0 (t = 1). Therefore,
the generator T(0; α1, α2, α3) is the intersection of the first control planes Q0 and Q1. Similarly, the
generator T(1; α1, α2, α3) is the intersection of the last control planes Q2 and Q3.

From the above analysis, the developable surface can be constructed as long as the control planes
are given. In the following, we display the effects of shape parameters α1, α2, α3 on developable surface
by an example.

Example 2. Assume the coordinates of the planes are

Q0 = (5
√

2,−5
√

2, 5, 125), Q1 = (−5
√

2,−5
√

2, 5, 125),

Q2 = (−5
√

2, 5
√

2, 5, 125), Q3 = (5
√

2, 5
√

2, 5, 125).

Figures 4–6 show the developable surfaces. The parameters have the following effect on the developable surfaces:

• When modifying the value of α1, and keep α2, α3 unchanged, the length and position of the generator
T(1; α1, α2, α3) remain the same. The position of the generator T(0; α1, α2, α3) has no change, but the
length of it becomes longer when we increase the value of α1.
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• When we change the value of α2 and keep α1, α3 unchanged, the generator T(0; α1, α2, α3) and
T(1; α1, α2, α3) have no changes in position and length. However, the shape of the developable surfaces will
be changed.

• If we keep the value of α1, α2 unchanged and modify α3, the position and the length of the generator
T(0; α1, α2, α3) keep the same. The position of the generator T(1; α1, α2, α3) also has no change, but the
length of it will become longer when we increase the value of α3.

(a) (b)

(c) (d)

Figure 4. The effects of parameter α1 on the 1× 3 developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ; (b)

α1 = π
2 , α2 = π

4 , α3 = π
4 ; (c) α1 = 3π

4 , α2 = π
4 , α3 = π

4 ; and (d) α1 = π, α2 = π
4 , α3 = π

4 .

(a) (b)

(c) (d)

Figure 5. The effects of parameter α2 on the 1× 3 developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ;

(b) α1 = π
4 , α2 = π

2 , α3 = π
4 ; (c) α1 = π

4 , α2 = 3π
4 , α3 = π

4 ; and (d) α1 = π
4 , α2 = 5π

4 , α3 = π
4 .
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(a) (b)

(c) (d)

Figure 6. The effects of parameter α3 on the 1× 3 developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ;

(b) α1 = π
4 , α2 = π

4 , α3 = π
2 ; (c) α1 = π

4 , α2 = π
4 , α3 = 3π

4 ; and (d) α1 = π
4 , α2 = π

4 , α3 = π.

3.2. Developable Surface as the Tangent of Spine Curve

In this section, we use another approach to construct the developable surface. Take the second
derivative of Equation (7), which is

x
′′
0(t)x + x

′′
1(t)y + x

′′
2(t)z = x

′′
3(t).

By Definition 3, three consecutive planes in the plane family {∏t} intersect a characteristic point.
We can obtain this point by solving the following equation system:

x0(t)x + x1(t)y + x2(t)z = x3(t),
x
′
0(t)x + x

′
1(t)y + x

′
2(t)z = x

′
3(t),

x
′′
0(t)x + x

′′
1(t)y + x

′′
2(t)z = x

′′
3(t).

According to Cramer’s Rule, the coordinate of the intersection q(t) is given by

x =

∣∣∣∣∣∣∣
x3(t) x1(t) x2(t)
x
′
3(t) x

′
1(t) x

′
2(t)

x
′′
3(t) x

′′
1(t) x

′′
2(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x0(t) x1(t) x2(t)
x
′
0(t) x

′
1(t) x

′
2(t)

x
′′
0(t) x

′′
1(t) x

′′
2(t)

∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣
x0(t) x3(t) x2(t)
x
′
0(t) x

′
3(t) x

′
2(t)

x
′′
0(t) x

′′
3(t) x

′′
2(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x0(t) x1(t) x2(t)
x
′
0(t) x

′
1(t) x

′
2(t)

x
′′
0(t) x

′′
1(t) x

′′
2(t)

∣∣∣∣∣∣∣
, z =

∣∣∣∣∣∣∣
x0(t) x1(t) x3(t)
x
′
0(t) x

′
1(t) x

′
3(t)

x
′′
0(t) x

′′
1(t) x

′′
3(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x0(t) x1(t) x2(t)
x
′
0(t) x

′
1(t) x

′
2(t)

x
′′
0(t) x

′′
1(t) x

′′
2(t)

∣∣∣∣∣∣∣
.

When parameter t changes in [0, 1], q(t) can generate a spine curve. We construct the parametric
surface as

T(t, v) = q(t) + vq
′
(t), t ∈ [0, 1], v ∈ (−∞, ∞), (12)
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which is a tangent developable surface with q(t) as its line of regression. Then, we analyze the property
of the developable surface (12). We take the second derivative of Equation (6). When t = 0 and t = 1,
we put it with Equations (10) and (11) together:

X(0; α1, α2, α3) = Q0,
X′(t; α1, α2, α3) = δ0,2(Q1 −Q0),
X
′′
(0; α1, α2, α3) = δ0,2δ0,1(Q0 −Q1) + δ1,2δ0,1(Q2 −Q1),

and 
X(1; α1, α2, α3) = Q3,
X′(t; α1, α2, α3) = δ2,2(Q1 −Q0),
X
′′
(1; α1, α2, α3) = δ1,2δ1,1(Q1 −Q2) + δ2,2δ1,1(Q3 −Q2).

Due to Definition 3, the intersection of the control planes Q0, Q1, Q2 is the characteristic point
which lies on the generator T(0; α1, α2, α3). Similarly, the intersection of the control planes Q1, Q2, Q3
is on the generator T(1; α1, α2, α3). The following example shows the effects of the parameters α1, α2, α3

for surface T(t, v).

Example 3. The coordinates of the control planes are

Q0 = (−2
√

3, 6, 2
√

3, 60), Q1 = (3
√

3, 9, 3
√

3, 135),

Q2 = (4
√

3, 12,−4
√

3, 240), Q3 = (−5
√

3, 15,−5
√

3, 375).

From Figures 7–9, we can see the following influence of parameters on the developable surface:

• When modifying the value of α1 and keeping α2, α3 unchanged, the length and position of the generator
T(0; α1, α2, α3) remain the same. The position of the generator T(1; α1, α2, α3) remains unchanged, but the
length of it becomes shorter when we increase the value of α1.

• When we only change the value of α2, the generator T(0; α1, α2, α3) and T(1; α1, α2, α3) have no changes
in position and length. However, the lengths of the two generators become shorter when increasing the
value of α2.

• We just modify the value of α3, the position and the length of the generator T(1; α1, α2, α3) remain
unchanged. The position of the generator T(0; α1, α2, α3) also has no change, but the length of it will
become shorter when increasing the value of α3.
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(a) (b)

(c) (d)

Figure 7. The effects of parameter α1 on the tangent developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ;

(b) α1 = π
2 , α2 = π

4 , α3 = π
4 ; (c) α1 = 3π

4 , α2 = π
4 , α3 = π

4 ; and (d) α1 = π, α2 = π
4 , α3 = π

4 .

(a) (b)

(c) (d)

Figure 8. The effects of parameter α2 on the tangent developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ;

(b) α1 = π
4 , α2 = π

2 , α3 = π
4 ; (c) α1 = π

4 , α2 = 3π
4 , α3 = π

4 ; and (d) α1 = π
4 , α2 = 5π

4 , α3 = π
4 .
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(a) (b)

(c) (d)

Figure 9. The effects of parameter α3 on the tangent developable surface. (a) α1 = π
4 , α2 = π

4 , α3 = π
4 ;

(b) α1 = π
4 , α2 = π

4 , α3 = π
2 ; (c) α1 = π

4 , α2 = π
4 , α3 = 3π

4 ; and (d) α1 = π
4 , α2 = π

4 , α3 = π.

4. 1 × 3 Developable Surface Interpolating Cubic Geodesic C-Bézier Curve with Parameters

Geodesic is an important characteristic curve on surface. In this section, we construct
a developable surface through the given C-Bézier curve, and the curve is the geodesic of the surface.

Theorem 1 ([26]). A curve (not a line) is a geodesic on the surface T(t, v) if and only if, at any point on the
curve, the principal normal β(t) to the curve is parallel to the normal N(t, v0).

Proof. Assume C(t) is a curve on the surface T(t, v), and P is an arbitrary point on C(t). β(t) is the
principal normal, N(t, v0) is the normal vector at point P, θ is the angle between β(t) and N(t, v0), and
kg is the geodesic curvature. According to the definitions of the geodesic curvature and geodesic curve,
we have

kg = ±k sin θ = 0.

Because k 6= 0, then θ = 0 or θ = π, that is, β(t) is parallel to N(t, v0). The conclusion
is proved.

Theorem 2. Given a C-Bézier curve with parameters α1, α2, α3, there must exist a developable surface through
it that is the geodesic of the developable surface.

Proof. Given a space cubic C-Bézier curve P(t; α1, α2, α3), we have the corresponding ruled surface

T(t, v; α1, α2, α3) = P(t; α1, α2, α3) + vP1(t; α1, α2, α3), (t ∈ [0, 1], v ∈ (−∞, ∞)).

If P(t; α1, α2, α3) is geodesic, by Theorem 1, we have

T(t, 0; α1, α2, α3) = P(t; α1, α2, α3), β(t, α1, α2, α3) ‖ N(t, 0; α1, α2, α3),
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where N(t, 0; α1, α2, α3) and β(t; α1, α2, α3) are the normal vector and the principal normal vector of the
curve. To make the writing simple, we omit the variable and parameters in the following process of
this theorem:

N(t, 0; α1, α2, α3) = Tt × Tv = (P
′
+ vP

′
1)× P1|v=0 = P

′ × P
′
1,

β(t, α1, α2, α3) =
(P
′ · P′) · P′′ − (P

′ · P′′) · P′

|P′ ||P′ × P′′ |
.

Because P
′ ⊥ N and β(t; α1, α2, α3) ‖ N(t, 0; α1, α2, α3), then the vector P1 must lie in the plane

spanned by P
′

and P
′ × P

′′
. We let

P1 = λ1P
′
+ λ2(P

′ × P
′′
).

According to the developable conditions, we have

(P
′
, λ1P

′
+ λ2(P

′ × P
′′
), (λ1P

′
+ λ2(P

′ × P
′′
))
′
) = 0

⇐⇒ (P
′
, λ1P

′
+ λ2(P

′ × P
′′
), λ

′
1P
′
+ λ1P

′′
+ λ

′
2P
′ × P

′′
+ λ2P

′ × P
′′′
) = 0

⇐⇒ (P
′
, λ2(P

′ × P
′′
), λ1P

′′
+ λ

′
2P
′ × P

′′
+ λ2P

′ × P
′′′
) = 0

λ2 6=0⇐⇒ [(P
′ × P

′′
)× P

′
] · (λ1P

′′
+ λ2P

′ × P
′′′
) = 0

⇐⇒ [(P
′ · P′)P′′ − (P

′′ · P′)P′ ] · (λ1P
′′
+ λ2P

′ × P
′′′
) = 0

⇐⇒ (|P′ |2|P′′ |2 − |P′ · P′′ |2)λ1 = |P′ |2(P′ , P
′′
, P
′′′
)λ2. (13)

That is, there must exist a developable surface

T(t, v; α1, α2, α3) = P(t; α1, α2, α3) + v(λ1P
′
(t; α1, α2, α3)

+ λ2(P
′
(t; α1, α2, α3)× P

′′
(t; α1, α2, α3)),

(t ∈ [0, 1], v ∈ (−∞, ∞)), (14)

which interpolates the given curve P(t), and P(t) is the geodesic of the developable surface, where
λ1(t)andλ2(t) satisfy Equation (13).

In a special case, if we choose λ2(t) = 1, then Equation (14) can be expressed as (we omit the
variable and parameters)

T = P + v(
|P′ |2(P′ , P

′′
, P
′′′
)

|P′ |2|P′′ |2 − |P′ · P′′ |2
P
′
+ P

′ × P
′′
),

t ∈ [0, 1], v ∈ (−∞, ∞).

We will give an example to illustrate that the constructed method is effective.

Example 4. The control points are P0 = [0, 0, 0], P1 = [1, 0, 1], P2 = [2, 0, 1], P3 = [3, 0, 0], and we construct
a developable surface interpolating the curve generated by the given control points, and at the same time the
curve is the geodesic of the developable surface. We just observe that the parameters have influences on the
developable surface from Figures 10–12. However, recently, it has been hard to analyze the geometric meaning of
parameters from theory. We will consider it further in our future work.
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(a) (b)

(c) (d)

Figure 10. The effects of parameter α1 on the developable surface through geodesic. (a) α1 = π
4 , α2 =

π
4 , α3 = π

4 ; (b) α1 = π
2 , α2 = π

4 , α3 = π
4 ; (c) α1 = 3π

4 , α2 = π
4 , α3 = π

4 ; and (d) α1 = π, α2 = 5π
4 , α3 = π

4 .

(a) (b)

(c) (d)

Figure 11. The effects of parameter α2 on the developable surface through geodesic. (a) α1 = π
4 , α2 =

π
4 , α3 = π

4 ; (b) α1 = π
4 , α2 = π

2 , α3 = π
4 ; (c) α1 = π

4 , α2 = 3π
4 , α3 = π

4 ; and (d) α1 = π
4 , α2 = 5π

4 , α3 = π
4 .
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(a) (b)

(c) (d)

Figure 12. The effects of parameter α2 on the developable surface through geodesic. (a) α1 = π
4 , α2 =

π
4 , α3 = π

4 ; (b) α1 = π
4 , α2 = π

4 , α3 = π
2 ; (c) α1 = π

4 , α2 = π
4 , α3 = 3π

4 ; and (d) α1 = π
4 , α2 = π

4 , α3 = π.

5. Conclusions

In this paper, we define some new basis functions that are the generalization of the C-Bézier
basis. These basis functions not only have the similar properties with Bézier basis, but also have the
better handling when using them to generate curve and surface. Based on the new basis, we construct
developable surface through cubic curves by single parameter plane family and tangent surface of
the spine curve, respectively. The main advantage compared to the ordinary C-Bézier curve and
surface is that we can design them flexibly by suitably modifying the values of the shape parameters
either locally or globally. According to the good property of endpoints interpolating and derivatives,
we analyzed the relationship between control planes and the generators of the developable surface at
t = 0 and t = 1, respectively. The examples also show the influence on the developable surfaces when
we just change one parameter and keep other parameters unchanged.

Our main point in this paper is the mathematical theory and properties of C-Bézier curve
with n parameters. Under these basis functions, the developable surface can be controlled easily.
As an extension of classic developable Bézier surfaces, the generalized developable C-Bézier surfaces
provide a new class of mathematical theory for the development of CAD/CAM application software.
Some interesting results in this area are taken into account, and they will be discussed in our future
works. We will develop the application from the following aspects:

• In the CAD/CAM field, the modeling of some products are often built by blending multiple
developable patches together. Therefore, in the future, we will study the conditions of G1 and G2

Beta continuity of new C-Bézier developable surfaces and analyze the effects of shape parameters
on the composite surface. We will try to apply the composite C-Bézier developable surface with
parameters to design the car body, shoes, ship hull, etc. I think it will be a useful complement for
CAD/CAM.

• Moreover, many researchers discussed the trigonometric curve and surface with some parameters;
refer to [27–29]. We also want to extend our work to trigonometric curve and surface with some
parameters, which can be controlled due to the freedom provided by these parameters. They can
be efficient models in the fields of CAGD.

• Yang and Liang [23] presented a new kind of algebraic-trigonometric blended spline curve,
called xyB curves. The new curves can represent some conics and transcendental curves. We can
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extend our work to the C-B-spline curve and surface with n parameters. We will try to construct
a spline curve to interpolate given points and to represent some conic curves. Because of more
freedom, we may get more smooth and precise curves.
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