
mathematics

Article

Self-Regulating Artificial-Free Linear Programming
Solver Using a Jump and Simplex Method

Rujira Visuthirattanamanee 1, Krung Sinapiromsaran 1,* and Aua-aree Boonperm 2

1 Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 13300, Thailand; rujira.vst@gmail.com

2 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University,
Pathumthani 12121, Thailand; aua-aree@mathstat.sci.tu.ac.th

* Correspondence: krung.s@chula.ac.th

Received: 13 February 2020; Accepted: 2 March 2020; Published: 5 March 2020
����������
�������

Abstract: An enthusiastic artificial-free linear programming method based on a sequence of jumps
and the simplex method is proposed in this paper. It performs in three phases. Starting with phase 1,
it guarantees the existence of a feasible point by relaxing all non-acute constraints. With this initial
starting feasible point, in phase 2, it sequentially jumps to the improved objective feasible points.
The last phase reinstates the rest of the non-acute constraints and uses the dual simplex method to
find the optimal point. The computation results show that this method is more efficient than the
standard simplex method and the artificial-free simplex algorithm based on the non-acute constraint
relaxation for 41 netlib problems and 280 simulated linear programs.

Keywords: artificial-free linear programming method; simplex method; jump technique; non-acute
constraint; relaxation model

1. Introduction

A linear program (LP) is an optimization problem consisting of a linear objective function
(maximizing or minimizing), linear equality, or inequality constraints. It is ubiquitous in many
areas of applied science, such as airline crew scheduling problems [1–3], labor scheduling problems [4],
diet problems [5], and supplier selection and order allocation problems [6].

There are many popular methods for solving LP models, such as the simplex method and the
interior point method. For small-sized to medium-sized LP models, the simplex method using
Dantzig’s pivot rule [7] is an efficient method, while for a large-sized LP model, the interior point
method is more effective than the simplex method. The classical interior point method was proposed
by Karmarkar [8] in 1984. Its process starts by moving from an interior feasible point along the
improving direction, projected on the feasible region with a step size. However, the transformation
of the LP problem into the initial Karmarkar’s form requires excessive computational initialization.
Thus, in 1986, Chang [9] developed the gravitational method for solving LP using the interior point
concept, avoiding the complexity of the Karmarkar’s method. The gravitational method starts with the
creation of a small ball, covering the initial interior point as the center of the ball. Then, it drops along
the gravitational force with the steepest descent direction until it meets the boundary of the feasible
region. After that, it moves on the surfaces of the feasible region until it reaches the optimal point.

For the simplex method, it starts at the feasible origin point and moves along the edge of the
polytope until it reaches the new optimal one. If the origin point is infeasible, it needs to add artificial
variables into the model, and uses the Two-Phase simplex method or the Big-M method to solve the
model, which expands the size of the linear program. As a result, many researchers have attempted
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to improve the simplex method without using artificial variables [10–22]. Moreover, other methods
require finding an initial point closer to the optimal point, expecting to reduce the computational time.

In 2002, Luh and Tsaih [23] proposed a hybrid method based on the interior point method and the
simplex method to find an initial basic feasible point of an LP model. The effectiveness of the interior
point method is suitable for a large LP model; on the other hand, the effectiveness of the simplex
method is more appropriate for a small LP model. Their method applies the idea of the interior point
method to choose the direction used to reach the initial basic feasible point that is near an optimal
point. Afterwards, the simplex method is used to find the LP optimal point. Their method requires the
initial feasible point, so it is not practical for the infeasible LP model.

The improvement of an initial basis from Junior and Lins [14] in 2005 uses a relation of angles
between the gradient vector of the objective function and the gradient vector of each constraint.
This method claims that the constraint that includes the smallest angle induces the basic feasible point
near the optimal one. For a small-sized linear programming model with a number of constraints
and variables of less than 50, Junior et al. assert that their method starts close to the optimal point.
However, this method cannot start when the initial matrix is singular.

Arsham’s method [15,16] in 2006 provides a better initial basis without using artificial variables,
which consist of three phases. Note that the right-hand-side vector of the model must be nonnegative.
Phase 1 starts by relaxing the greater-than constraints from the original model, which guarantees the
feasibility of the origin point. Subsequently, the simplex method is performed in order to find the
optimal point of the relaxation model. Then, phase 2 of Arsham’s method will check the consistency of
this point with constraints in the original model. If the point satisfies all constraints in the original
model, then phase 2 will stop. Otherwise, the most violated constraint is reinserted and performs the
dual simplex method. This process repeats until all constraints are satisfied. After phase 2 terminates,
the original objective function is restored (and performs the simplex method if necessary) to find the
optimal point of the original model.

Later in 2011, Al-Najjar and Malakooti [24] proposed a method for finding an initial basic feasible
point. Their method consists of two phases. Phase 1 is to find the basic feasible point by moving
the initial feasible point through the interior feasible region, which will avoid some extreme points.
Phase 2 uses the simplex method in order to find the optimal point by starting from the previous
basic feasible point. Nonetheless, the initial feasible point and the user’s parameters must be given
before this method can start. In addition, this method only deals with an LP model with a nonempty
feasible region.

An artificial-free simplex algorithm based on the non-acute constraint relaxation (SNAR) was
proposed by Boonperm and Sinapiromsaran [18] in 2014, starting with a relaxation model consisting
of a group of acute constraints formed from the objective gradient vector. With the existence of the
initial basic feasible point of the relaxation model, it can be solved by the simplex method. After that,
the non-acute constraints are reinserted back into the relaxation model in order to find the point of the
original model. From their computational results, if the LP model is unbounded, then each non-acute
constraint is reinserted one at a time. In addition, if the original model is unbounded, this method
must reinsert all non-acute constraints into the relaxation model until it reports that the problem is
unbounded, which requires a high computational time.

When the model has a large number of acute constraints, SNAR performs quite well. This leads
to a large number of extreme points, presented in Figure 1, which may not be suitable for the simplex
method. Thus, in this paper, the iterative jump method presented in Figure 2 is proposed in order to
avoid unnecessarily visited extreme points.

For this reason, a self-regulating artificial-free linear programming solver using jump and simplex
method (SAJS) is proposed. It integrates the jump concept on a relaxation model similar to SNAR.
SAJS consists of three phases. In phase 1, the relaxation model is created by a group of acute constraints.
In phase 2, SAJS applies the technique of iterative jumps along the improving directions of the objective
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value. The non-acute constraints are restored, and SAJS finds the point using the dual simplex method
on the perturbation model before applying the final simplex method in phase 3.

The idea of the iterative jump method uses the improvement direction according to the objective
gradient vector, similarly to the gravitational method. However, SAJS combines this direction with the
current gradient vector of binding constraints at the current point while the gravitational method drops
along the faces at the current point. Moreover, SAJS is applied on the relaxation model before applying
the dual simplex method at the last step while the gravitational method works on the original model.

Figure 1. Simplex method for SNAR (artificial-free simplex algorithm based on the non-acute
constraint relaxation).

Figure 2. Iterative jumps from SAJS (self-regulating artificial-free linear programming solver using
a jump and simplex method).

This paper is divided into five parts. Section 2 details the preliminaries, while SAJS is explained
in Section 3. In Section 4, experiments and results are shown. Finally, the conclusion is proposed in
Section 5.

2. Background and Knowledge

Consider a linear program as follows:

Maximize c>x
subject to Ax ≤ b,

(1)

where c is a nonzero vector in Rn, x ∈ Rn, A is an m × n matrix and b ∈ Rm, and m > n.
Let IM = {1, 2, . . . , m}. SNAR [18] and preliminaries of SAJS are described in this section.
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2.1. SNAR Description

SNAR starts with the relaxation model, consisting of a group of acute constraints corresponding
to the objective gradient vector. Let Ai: be a gradient vector of the ith constraint from the matrix A,
let c be an objective gradient vector, and let θi be defined as follows:

θi = arccos
A>i: c
‖Ai:‖‖c‖

. (2)

Two separating groups of constraints can be considered from the sign of A>i: c only,
since ‖Ai:‖‖c‖ > 0. Let Pos be a set of all acute constraints defined as Pos =

{
i ∈ IM|A>i: c > 0

}
,

and let Neg be a set of all non-acute constraints defined as Neg =
{

i ∈ IM|A>i: c ≤ 0
}

.
After that, SNAR will create the relaxation model consisting of the group of acute constraints.

Maximize c>x
subject to APosx ≤ bPos,

(3)

where APos is a submatrix from the row indices from Pos, and bPos is the column vector of constraints
corresponding to Pos.

For model (3), SNAR uses the simplex method to find a solution. If bPos ≥ 0, then the simplex
method can start at 0. Otherwise, SNAR will define x(0) = −λc, where λ = maxi∈Pos−

{ bi
−A>i: c

}
and

Pos− = {i ∈ Pos|bi < 0}. For each x in model (3), let x̃ = x − x(0). Thus, model (3) is relocated
as follows:

Maximize c>x̃ + c>x(0)

subject to APosx̃ ≤ bPos −APosx(0).
(4)

Next, model (4) is the unrestricted model which is needed to transform to the standard form for
the simplex method. First, the vector of slack variables s is added to all constraints, changing inequality
constraints into equality constraints.

Maximize c>x̃ + c>x(0)

subject to APosx̃ + s = bPos −APosx(0)

s ≥ 0.
(5)

Subsequently, let x̃ = x+ − x−, where x+, x− ≥ 0. Therefore, model (5) is converted before
starting the simplex method.

Maximize c>x+ − c>x− + c>x(0)

subject to APosx+ −APosx− + s = bPos −APosx(0)

s, x+, x− ≥ 0.
(6)

After the simplex method is complete, the result can be either optimal or unbounded optimal.
For the case of the optimal solution, all constraints from Neg will be added into the model. If it is
feasible after adding non-acute constraints, then the current solution is also the optimal solution of
the original model. Otherwise, the dual simplex is performed in order to find the optimal solution.
For the other case of the unbounded optimal solution, each non-acute constraint is restored in the
relaxation model. The technique of Pan [25] is applied to change dual infeasible to dual feasible before
performing the dual simplex method. The process of the unbounded will be repeated until the result
of the relaxation model is optimal. Then, it returns to be performed in the case of the optimal solution.
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2.2. Preliminaries of SAJS

The related theorems for establishing SAJS are shown in this section. Consider the relaxation
model as follows:

Maximize c>x
subject to APosx ≤ bPos.

(7)

To start at the more suitable point for model (7), SAJS considers two scenarios. If bPos � 0,
SAJS starts with x(0) = −λc, where λ = maxi∈Pos−

{ bi
−A>i: c

}
, the same as SNAR. Otherwise, SAJS

defines x(0) = λc, where λ = mini∈Pos
{ bi

A>i: c

}
. The case in which bPos � 0 proved that x(0) is feasible

in [18]. Another case will be proven in Theorem 1.

Theorem 1. Given a linear program like that in model (7) and Pos =
{

i ∈ IM|A>i: c > 0
}

, if bPos ≥ 0 and
λ = mini∈Pos

{ bi
A>i: c

}
, where Ai: is a gradient vector of the ith constraint from the matrix A, then x(0) = λc

is feasible.

Proof. Suppose bPos ≥ 0 and λ = mini∈Pos
{ bi

A>i: c

}
. Since bi ≥ 0 and A>i: c > 0 for all i ∈ Pos, λ ≥ 0.

So, λ ≤ bh
A>h:c

for all h ∈ Pos. Hence, λ
(
A>h:c

)
≤ bh. Choosing x(0) = λc gives A>h:x

(0) ≤ bh for all

h ∈ Pos. Thus, APosx(0) ≤ bPos.

After the initial feasible point of the relaxation model is found, SAJS will iteratively jump to other
improved feasible points using the following theorem.

Theorem 2. Given a linear program like that in model (7) with c 6= 0 and Pos =
{

i ∈ IM|A>i: c > 0
}

, let xold

be a feasible point which lies on the γth constraint of A, v =
−Aγ:
‖Aγ:‖ +

c
‖c‖ , and

S =

{
bi −A>i: xold

A>i: v
| i ∈ Pos and A>i: v > 0 and bi −A>i: xold > 0

}
.

Suppose S 6= ∅ and v 6= 0 and let α = min S. Then, xnew = xold + αv is feasible and c>xold < c>xnew.

Proof. Let xold be a feasible point for model (7) which lies on the γth constraint, v =
−Aγ:
‖Aγ:‖ +

c
‖c‖ , c 6= 0,

and S =
{ bi−A>i: xold

A>i: v
| i ∈ Pos and A>i: v > 0 and bi − A>i: xold > 0

}
. Assume that S 6= ∅ and v 6= 0.

Let α = min S. Since xold is the feasible point, bt −A>t: xold ≥ 0 for all t ∈ Pos.

For t ∈ Pos, A>t: v > 0,

α ≤ bt −A>t: xold

A>t: v

A>t: αv ≤ bt −A>t: xold

A>t: (xold + αv) ≤ bt

A>t: xnew ≤ bt.
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For t ∈ Pos, A>t: v < 0,

bt −A>t: xold

A>t: v
< α

A>t: αv < bt −A>t: xold

A>t: (xold + αv) < bt

A>t: xnew < bt.

For t ∈ Pos, A>t: v = 0,

A>t: xnew = A>t: (xold + αv) = A>t: xold ≤ bt.

Hence, APosxnew ≤ bPos.
Then, xnew is the feasible point.
Next, it can be shown that c>xold < c>xnew. Consider

c>xnew = c>(xold + αv) = c>xold + αc>v.

Since

c>v = c>
( −Aγ:

‖Aγ:‖
+

c
‖c‖

)
=
−c>Aγ:

‖Aγ:‖
+
‖c‖2

‖c‖

=
−‖Aγ:‖‖c‖ cos θ

‖Aγ:‖
+ ‖c‖

= ‖c‖ (1− cos θ) > 0 (since,−1 < cos θ < 1)

and α > 0, hence, c>xold < c>xnew.

SAJS enhances the performance of solving a linear program without using artificial variables and
the user’s parameters. It consists of three phases. In phase 1, SAJS creates the relaxation model by
relaxing all non-acute constraints to guarantee the existence of a feasible point.

In phase 2, SAJS applies the technique of iterative jumps to find a feasible point. For each jump,
the objective value of the relaxation model is improved until it reaches the stopping criterion (ε).
The stopping criterion is defined as the minimum ratio improvement of two consecutive differences of
the objective values of SAJS. The appropriate setting for the stopping criterion is discussed in Section 4.

After phase 2 terminates, slack variables are added to transform the last jump point into
the extreme point, initializing phase 3. SAJS divides the non-acute constraints into two groups:
The non-acute constraints which the last jump point in phase 2 is satisfied and the non-acute constraints
which the last jump point in phase 2 is violated. The non-acute constraints from the first group are
reinserted into the model, maintaining the feasibility of the last jump point. Afterwards, the remaining
non-acute constraints are reinserted into the model, and SAJS expands the current relaxation model to
the standard form of the LP by adding the variables and constraints into the model.

3. The Process of SAJS

Consider a linear program in the following form:

Maximize c>x
subject to Ax ≤ b.

(8)
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The flowchart of SAJS, comprised of 3 phases, is shown. Phase 1 is the construction of the
relaxation model. Phase 2 performs the iterative jumps by Algorithm 1 along an improving direction.
The procedure of phases 1 and 2 of SAJS are shown in Figure 3. It will stop when the ratio of consecutive
differences for the objective values is less than the user’s stopping criterion, which will be explained in
Section 4. After that, the model is transformed into the standard form, and the group of non-acute
constraints is reinserted into the model in order to find the optimal solution of the original model in
phase 3 as demonstrated in Figure 4. However, if the unbounded optimal solution is detected after the
dual simplex method is performed, then SAJS concludes that the original model is infeasible.

Algorithm 1 Jump technique of SAJS

Input: A, b, c, x(0), γ(0), Pos, ε

Output: x̂
1: Set k = 0, ∆z(1) = ∆z(0) = 1, where ∆z(1) and ∆z(0) are the initial values of the

consecutive differences.

2: while ∆z(k+1)

∆z(k)
> ε do

3: Compute v =
−A

γ(k) :
‖A

γ(k) :
‖ +

c
‖c‖ , where c 6= 0.

4: Construct Pos′ = Pos \ {γ(k)}.
5: Set α = M, where M is a large constant.

6: for i ∈ Pos′ do
7: if A>i: v > 0 and bi −A>i: x(k) > 0 then
8: Compute Dist = bi−A>i: x(k)

A>i: v
.

9: if Dist < α then
10: Define α = Dist.
11: Define γ(k+1) = i.
12: end if
13: end if
14: end for
15: if α 6= M then
16: Compute x(k+1) = x(k) + αv.

17: Compute ∆z(k+1) = cx(k+1) − cx(k).
18: Compute k = k + 1.

19: else
20: break

21: end if
22: end while
23: Set x̂ = x(k+1)
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Start

Input: A, b, c, and ε

Phase 1:
Separate the groups of all constraints

Pos =
{

i ∈ IM |A>i: c > 0
}

,
Neg =

{
i ∈ IM |A>i: c ≤ 0

}

Create the relaxation model with
the group of acute constraints.

Maximize c>x
subject to APosx ≤ bPos

Phase 2:

bPos ≥ 0

Find the initial feasible point
x(0) = λc, where

λ = min
i∈Pos

{
bi

A>i: c

}
and

γ(0) = argmin
i∈Pos

{
bi

A>i: c

}
Find the initial feasible point

x(0) = −λc, where

λ = max
i∈Pos−

{
bi
−A>i: c

}
and

γ(0) = argmax
i∈Pos−

{
bi
−A>i: c

}

Perform the jump
technique of SAJS

yes no

Figure 3. The flowchart of SAJS showing phase 1 and phase 2.
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Phase 3: Transform the relaxation model

Let x = x+ − x− + x̂, where x+, x− ≥ 0.
Maximize c>x+ − c>x− + c>x̂
subject to APosx+ −APosx− + s = bPos −APosx̂

s, x+, x− ≥ 0

Check feasibility of x̂ with all non-acute constraints.
Let Neg− =

{
i ∈ Neg | bi −A>i: x̂ < 0

}
and Neg+ = Neg − Neg−.

Add the non-acute constraints in the set of Neg+.
Maximize c>x+ − c>x− + c>x̂
subject to APosx+ −APosx− + s = bPos −APosx̂

ANeg+x+ −ANeg+x− + s1 = bNeg+ −ANeg+ x̂
s, s1, x+, x− ≥ 0

Neg− = ∅

Perform
the primal

simplex
method

Add the non-acute constraints in the set of Neg−.
Maximize c>x+ − c>x− + c>x̂
subject to APosx+ −APosx− + s = bPos −APosx̂

ANeg+x+ −ANeg+x− + s1 = bNeg+ −ANeg+ x̂
ANeg−x+ −ANeg−x− + s2 = bNeg− −ANeg− x̂
s, s1, s2, x+, x− ≥ 0

Dual feasible?

Perform the dual
simplex method

Do the perturbation technique [25]
and perform the dual simplex method

Restore the original objective value and
perform the primal simplex method

Output

Stop

yes
no

yes

no

Figure 4. The flowchart of SAJS showing phase 3.
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4. Experiments and Results

The computational results of the wall-clock time of SAJS, the Two-Phase method, and SNAR
on 41 standard problems from netlib and 280 randomly generated problems are presented in this
section. The maximizing linear programs are randomly generated with the objective vector c, equal
to a vector of ones, and the number of constraints is higher than the number of variables, which
exhibits the worst-case performance of SNAR. Furthermore, these linear programs check for optimal
solutions before they are included in the experiment. The experiments were performed by using an
Intel(R) Core(TM) i7-3770 CPU@3.40 GHz processor with 8 GB RAM on Windows 10. Three methods,
SAJS, the Two-Phase method, and SNAR, were written by Python libraries numpy.

The rows of matrix A are generated in two groups. The first group is generated for row
i = 1, 2, . . . , k, where k =

⌈ 3
4 n
⌉
. All coefficients in this group of the matrix A are uniformly random

from [−3, 9], with a high probability of making acute angles with the objective vector. The second
group is generated for row i = k + 1, k + 2, . . . , m, with uniformly random coefficients from [−9, 3] and
with a high probability of making obtuse angles with the objective vector. To guarantee a nonempty
feasible region, the intended feasible solution vector x is generated first with xj ∈ [−9, 9], j = 1, 2, . . . , n,
and then the vector’s right-hand side b is calculated from bi = A>i: x, where i = 1, 2, . . . , n, and
bi = A>i: x + 1, where i = n + 1, n + 2, . . . , m.

The randomly generated problems are simulated by their sizes with varying m constraints and
n variables according to the following scenarios: m > n, m ∈ {100, 200, 300, 400, 500, 1000, 2000},
n ∈

{
m
10 , 2m

10 , 3m
10 , 4m

10

}
. The wall-clock times of each of the sizes of the randomly generated problems

are averaged by 10 different problems and are shown in Figure 5, Table 1, and Figure 6.
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Figure 5. SAJS performances by varying the stopping criterion.

Figure 5 shows the average wall-clock time varying according to stopping criteria of 0.20,
0.30, 0.40, and 0.50, which are used in phase 2 of SAJS. The stopping criterion is defined as the
minimum ratio improvement of two consecutive differences of the objective values of SAJS. However,
the average wall-clock times (in seconds) of the computations for each stopping criterion are not
significantly different. Thus, in this paper, SAJS uses ε = 0.40 to compare with the Two-Phase method
and SNAR, which are presented in Figures 6 and 7. The reason is that the average total wall-clock time
of SAJS with ε = 0.40 surpasses those of other stopping criteria.
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Table 1 shows the average wall-clock time of SAJS with ε = 0.40 to determine the longest time
from these three phases: Row represents the number of rows of the LP model and Col represents the
number of columns of the LP model. The values under phase 1, phase 2, phase 3, and total time are the
actual wall-clock times of each phase. The values in the parentheses present the ratio of the wall-clock
time of each phase to the total time. It can be observed that the actual times of phase 1 and phase 2 are
very small with respect to the wall-clock time of phase 3. Hence, the largest proportion of the running
time of SAJS originates from phase 3.

The comparison of SAJS with ε = 0.40, the Two-Phase method (TP), and SNAR using randomly
generated problems is presented in Figure 6. The performance of SAJS outperforms both methods.
Since adding artificial variables in Two-Phase method enlarges the LP model, the Two-Phase method
requires longer computational time to find the solution. For SNAR, the construction of the relaxation
models of the randomly generated problems requires the reinsertion of the non-acute constraints into
the model one by one, which takes a long time to find the solution. Moreover, Figure 6 shows that
both the number of variables and the number of constraints affect the wall-clock time of SNAR.

Table 1. The average wall-clock time of SAJS with ε = 0.40.

Row Col Time (s) Total Time
Phase 1 Phase 2 Phase 3

100 10 0.0020 (0.0863) 0.0003 (0.0132) 0.0205 (0.9006) 0.0228
100 20 0.0005 (0.0115) 0.0074 (0.1701) 0.0356 (0.8184) 0.0435
100 30 0.0021 (0.0322) 0.0039 (0.0597) 0.0593 (0.9081) 0.0653
100 40 0.0025 (0.0293) 0.0024 (0.0281) 0.0805 (0.9426) 0.0853
200 20 0.0009 (0.0080) 0.0009 (0.0080) 0.1113 (0.9841) 0.1131
200 40 0.0024 (0.0119) 0.0042 (0.0209) 0.1943 (0.9671) 0.2009
200 60 0.0075 (0.0219) 0.0061 (0.0178) 0.3291 (0.9603) 0.3427
200 80 0.0065 (0.0134) 0.0113 (0.0233) 0.4671 (0.9633) 0.4848
300 30 0.0053 (0.0169) 0.0018 (0.0058) 0.3058 (0.9773) 0.3129
300 60 0.0047 (0.0079) 0.0047 (0.0079) 0.5828 (0.9841) 0.5922
300 90 0.0068 (0.0058) 0.0108 (0.0093) 1.1491 (0.9849) 1.1668
300 120 0.0076 (0.0044) 0.0259 (0.0150) 1.6965 (0.9806) 1.7300
400 40 0.0031 (0.0041) 0.0031 (0.0041) 0.7439 (0.9917) 0.7501
400 80 0.0090 (0.0053) 0.0114 (0.0067) 1.6839 (0.9880) 1.7043
400 120 0.0125 (0.0047) 0.0234 (0.0089) 2.6007 (0.9864) 2.6366
400 160 0.0139 (0.0038) 0.0597 (0.0163) 3.5919 (0.9799) 3.6655
500 50 0.0019 (0.0014) 0.0112 (0.0080) 1.3827 (0.9906) 1.3954
500 100 0.0113 (0.0035) 0.0234 (0.0073) 3.1722 (0.9892) 3.2070
500 150 0.0157 (0.0032) 0.0437 (0.0088) 4.8884 (0.9880) 4.9479
500 200 0.0156 (0.0022) 0.0890 (0.0124) 7.0888 (0.9855) 7.1935
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Figure 6. The comparison of SAJS, the Two-Phase method (TP), and SNAR using the average wall-clock
time—randomly generated linear programming problems.

Figure 7 demonstrates the performance computation of SAJS with ε = 0.40, the Two-Phase method
(TP), and SNAR using standard test problems from real-world netlib problems. m × n represents
the dimension of the LP model. In this paper, the maximum time limit of computation is set to one
day, which is equivalent to 86,400 s. However, the results with wall-clock times that exceed this limit
will not appear in the figure; these include SCSD6, SCSD8, 25FV47, SCFXM3, SHIP08S, DEGEN3,
SHIP12S, and SHIP08L. The efficacies of the three methods are comparable for small LP models with
a number of variables times constraints of less than 30,000, from AFIRO to ADLITTLE. When LP
models have of a number of variables times constraints of greater than 30,000, SNAR exhibits poor
performance, with the exception of BRANDY, SCTAP1, SCTAP2, and SCTAP3, which have similar
performance with SAJS due to the discovery of the optimal point in the relaxation model. For LP
models with a number of variables times constraints of greater than 200,000 from SCTAP1 to SHIP08L,
SAJS outperforms the Two-Phase method and SNAR, except with SCTAP2. The Two-Phase method has
a lower performance when the LP model contains a large number of constraints and variables because
the Two-Phase method takes a long time to handle all constraints. On the contrary, SAJS and SNAR
start with the relaxation model, dealing with a smaller model. When the solution of the relaxation
model is unbounded optimal, SNAR exhibits poor performance compared to other methods due to the
reinsertion of the non-acute constraints one by one. The nonparametric Wilcoxon test is used to verify
the effectiveness of SAJS against TP and SAJS against SNAR. The p-value of difference between SAJS
and TP from the Wilcoxon signed rank test is equal to 0.003198, while the p-value of difference between
SAJS and SNAR is equal to 3.30828 × 10−6. Hence, SAJS statistically significantly outperforms both TP
and SNAR.
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Figure 7. The comparison of SAJS, TP, and SNAR using the average wall-clock time—netlib problems.

5. Conclusions

This paper proposes a new self-regulating artificial-free method for solving a linear program,
namely SAJS. The three phases of SAJS are the established relaxation model phase (phase 1), the jump
phase to find the suitable initial point (phase 2), and the phase of reinsertion of non-acute constraints
(phase 3). The relaxation model is created in phase 1 in order to guarantee the existence of a feasible
point. The jump technique in phase 2 applies the technique of iterative jumps along the improving
directions of the objective value, avoiding extreme points formed by acute constraints. In phase 3,
the technique of reinsertion of non-acute constraints restores the group of non-acute constraints to
the model.

Improving the solution time of the simplex method is still an active research area, appearing in
various publications. The simplex method starts with the initial basic feasible solution before pivoting
to the better alternative ones. For a general linear programming problem, the starting initial basic
feasible solution is identified by enlarging the dimension of the decision variables, as in the two-phase
method. Our method counters this issue by working on the feasible region with a small number of
extreme points and avoiding extreme points using the jump technique, which significantly reduces the
solution time of the simplex method. Nevertheless, if a linear programming problem has no “greater
than or equal to” constraint, this improvement may not be significantly obvious.

Adding the artificial variable into the small-sized model rarely affects solving LP model for the
Two-Phase method, whereas adding artificial variables to the large-sized model will have a significant
effect on computational time. This does not affect SNAR or SAJS. Moreover, both methods begin
with the relaxation model, so the size of the problem will be small. Hence, the performance of the
Two-Phase method is inferior to those of both SNAR and SAJS for the large-sized model, though it is
comparable with both for the small-sized model.

If the solution of the relaxation model is unbounded, the non-acute constraints will be reinserted
into the LP model one by one. This affects the performance of SNAR, while SAJS reinserts two
collections of the non-acute constraints at one time and performs the dual simplex method to reach the
optimal solution. Therefore, for all randomly generated problems, SAJS outperforms other methods
for all problem sizes.

To verify the effectiveness of SAJS, the nonparametric Wilcoxon test is performed on the standard
test problems from netlib. SAJS exhibits significantly better overall performance over both the
Two-Phase method and SNAR. Nevertheless, after comparing the wall-clock times of all three phases,
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it is clearly shown that SAJS takes a very short time in phase 1 and phase 2, while it spends almost the
entire running time in phase 3 to find the solution by the dual simplex method.

In future work, the appropriate jumping direction of SAJS should be investigated.
Moreover, other pivot rules of the dual simplex method in the reinsertion phase may improve the
overall performance of SAJS.
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