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Abstract: In this paper, we study the existence of solutions for a new nonlocal boundary
value problem of integro-differential equations involving mixed left and right Caputo and
Riemann–Liouville fractional derivatives and Riemann–Liouville fractional integrals of different
orders. Our results rely on the standard tools of functional analysis. Examples are constructed to
demonstrate the application of the derived results.
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1. Introduction

In the last few decades, fractional-order single-valued and multivalued boundary value problems
containing different fractional derivatives such as Caputo, Riemann–Liouville, Hadamard, etc.,
and classical, nonlocal, integral boundary conditions have been extensively studied, for example,
see the articles [1–12] and the references cited therein.

In the study of variational principles, fractional differential equations involving both left and
right fractional derivatives give rise to a special class of Euler–Lagrange equations, for details, see [13]
and the references cited therein. Let us consider some works on mixed fractional-order boundary
value problems. In [14], the authors discussed the existence of an extremal solution to a nonlinear
system involving the right-handed Riemann–Liouville fractional derivative. In [15], a two-point
nonlinear higher order fractional boundary value problem involving left Riemann–Liouville and right
Caputo fractional derivatives was investigated, while a problem in terms of left Caputo and right
Riemann–Liouville fractional derivatives was studied in [16]. A nonlinear fractional oscillator equation
containing left Riemann–Liouville and right Caputo fractional derivatives was investigated in [17].
In a recent paper [18], the authors proved some existence results for nonlocal boundary value problems
of differential equations and inclusions containing both left Caputo and right Riemann–Liouville
fractional derivatives.

Integro-differential equations appear in the mathematical modeling of several real world problems
such as, heat transfer phenomena [19,20], forced-convective flow over a heat-conducting plate [21], etc.
In [22], the authors studied the steady heat-transfer in fractal media via the local fractional nonlinear
Volterra integro-differential equations. Electromagnetic waves in a variety of dielectric media with
susceptibility following a fractional power-law are described by the fractional integro-differential
equations [23].
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Motivated by aforementioned applications of integro-differential equations and [18], we introduce
a new kind of integro-differential equation involving right-Caputo and left-Riemann–Liouville
fractional derivatives of different orders and right-left Riemann–Liouville fractional integrals and
solve it subject to nonlocal boundary conditions. In precise terms, we prove existence and uniqueness
of solutions for the problem given by

CDα
1−

RLDβ
0+y(t) + λIp

1− Iq
0+h(t, y(t)) = f (t, y(t)), t ∈ J := [0, 1], (1)

y(0) = y(ξ) = 0, y(1) = δy(µ), 0 < ξ < µ < 1, (2)

where CDα
1− and RLDβ

0+ denote the right Caputo fractional derivative of order α ∈ (1, 2] and the left
Riemann–Liouville fractional derivative of order β ∈ (0, 1], Ip

1− and Iq
0+ denote the right and left

Riemann–Liouville fractional integrals of orders p, q > 0 respectively, f , h : [0, 1]×R→ R are given
continuous functions and δ, λ ∈ R. It is imperative to notice that the integro-differential equation in (1)
and (2) contains mixed type (integral and nonintegral) nonlinearities.

We organize the rest of the paper as follows. Section 2 contains some preliminary concepts related
to our work. In Section 3, we prove an auxiliary lemma for the linear variant of the problem (1) and (2).
Then we derive the existence results for the problem (1) and (2) by applying a fixed point theorem due
to Krasnoselski and Leray–Schauder nonlinear alternative, while the uniqueness result is established
via Banach contraction mapping principle. Examples illustrating the main results are also presented.

2. Preliminaries

In this section, we recall some related definitions of fractional calculus [1].

Definition 1. The left and right Riemann–Liouville fractional integrals of order β > 0 for an integrable
function g : (0, ∞)→ R are respectively defined by

Iβ
0+g(t) =

∫ t

0

(t− s)β−1

Γ(β)
g(s)ds and Iβ

1−g(t) =
∫ 1

t

(s− t)β−1

Γ(β)
g(s)ds.

Definition 2. The left Riemann–Liouville fractional derivative and the right Caputo fractional derivative of
order β ∈ (n− 1, n], n ∈ N for a function g : (0, ∞)→ R with g ∈ Cn((0, ∞),R) are respectively given by

Dβ
0+g(t) =

dn

dtn

∫ t

0

(t− s)n−β−1

Γ(n− β)
g(s)ds and cDβ

1−g(t) = (−1)n
∫ 1

t

(s− t)n−β−1

Γ(n− β)
g(n)(s)ds.

Lemma 1. If p > 0 and q > 0, then the following relations hold almost everywhere on [a, b]:

Ip
1− Iq

1− f (x) = Ip+q
1− f (x), Ip

0+ Iq
0+ f (x) = Ip+q

0+ f (x).

3. Main Results

In the following lemma, we solve a linear variant of the problem (1) and (2).

Lemma 2. Let H, F ∈ C[0, 1] ∩ L(0, 1). Then the linear problem
CDα

1−
RL

Dβ
0+y(t) + λIp

1− Iq
0+H(t) = F(t), t ∈ J := [0, 1],

y(0) = y(ξ) = 0, y(1) = δy(µ),
(3)
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is equivalent to the fractional integral equation:

y(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds

+ a1(t)
{

δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds (4)

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds
}

+ a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−F(s)− λIα+p

1− Iq
0+H(s)

]
ds,

where
a1(t) =

1
Λ

[
ξβ+1tβ − ξβtβ+1

]
, a2(t) =

1
Λ

[
tβ(1− δµβ+1)− tβ+1(1− δµβ)

]
, (5)

and it is assumed that
Λ = ξβ+1(1− δµβ)− ξβ(1− δµβ+1) 6= 0. (6)

Proof. Applying the left and right fractional integrals Iα
1− and Iβ

0+ successively to the
integro-differential equation in (3), and then using Lemma 1, we get

y(t) = Iβ
0+ Iα

1−F(t)− λIβ
0+ Iα+p

1− Iq
0+H(t) + c0

tβ

Γ(β + 1)
+ c1

tβ+1

Γ(β + 2)
+ c2tβ−1, (7)

where c0, c1 and c2 are unknown arbitrary constants.
In view of the condition y(0) = 0, it follows from (7) that c2 = 0. Inserting c2 = 0 in (7) and then

using the nonlocal boundary conditions y(ξ) = 0, y(1) = δy(µ) in the resulting equation, we obtain
a system of equations in c0 and c1 given by

c0

( 1− δµβ

Γ(β + 1)

)
+ c1

(1− δµβ+1

Γ(β + 2)

)
= δA1 − A2,

c0

( ξβ

Γ(β + 1)
)
+ c1

( ξβ+1

Γ(β + 2)

)
= −A3,

(8)

where

A1 = Iβ
0+ Iα

1−F(µ)− λIβ
0+ Iα+p

1− Iq
0+H(µ), A2 = Iβ

0+ Iα
1−F(1)− λIβ

0+ Iα+p
1− Iq

0+H(1),

A3 = Iβ
0+ Iα

1−F(ξ)− λIβ
0+ Iα+p

1− Iq
0+H(ξ).

Solving the system (8), we find that

c0 =
Γ(β + 1)

Λ

[
ξβ+1(δA1 − A2

)
+ (1− δµβ+1)A3

]
,

c1 =
−Γ(β + 2)

Λ

[
ξβ
(
δA1 − A2

)
+ (1− δµβ)A3

]
,

where Λ is defined by (6). Substituting the values of c0 and c1 together with the notations (5) in (7),
we obtain the solution (4). The converse follows by direct computation. This completes the proof.
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LetX = C([0, 1],R) denote the Banach space of all continuous functions from [0, 1]→ R equipped
with the norm ‖y‖ = sup {|y(t)| : t ∈ [0, 1]}. By Lemma 2, we define an operator G : X → X associated
with the problem (1) and (2) as

Gy(t) =
∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

+a1(t)

[
δ
∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

−
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds

]

+a2(t)
∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1− f (s, y(s))− λIα+p

1− Iq
0+h(s, y(s))

]
ds.

Notice that the fixed points of the operator G are solutions of the problem (1) and (2).
In the forthcoming analysis, we use the following estimates:

∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds =
∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α+p−1

Γ(α + p)

∫ u

0

(u− r)q−1

Γ(q)
dr du ds

≤ tβ

Γ(β + 1)Γ(α + p + 1)Γ(q + 1)
,

∫ t

0

(t− s)β−1

Γ(β)
Iα
1−ds =

∫ t

0

(t− s)β−1

Γ(β)

∫ 1

s

(u− s)α−1

Γ(α)
du ds ≤ tβ

Γ(α + 1)Γ(β + 1)
,

where we have used uq ≤ 1, (1− s)α+p < 1; p, q > 0, 1 < α ≤ 2.
In the sequel, we set

Ω1 =
∆

Γ(α + 1)
, Ω2 =

|λ|∆
Γ(α + p + 1)Γ(q + 1)

, (9)

where
∆ =

1
Γ(β + 1)

[
1 + a1(|δ|µβ + 1) + a2ξβ

]
,

a1 = max
t∈[0,1]

|a1(t)|, a2 = max
t∈[0,1]

|a2(t)|.

3.1. Existence Results

In the following, we prove our first existence result for the problem (1) and (2), which relies on
Krasnoselskii’s fixed point theorem [24].

Theorem 1. Assumed that:

(B1) There exist L > 0 such that | f (t, x)− f (t, y)| ≤ L|x− y|, ∀t ∈ [0, 1], x, y ∈ R;
(B2) There exist K > 0 such that |h(t, x)− h(t, y)| ≤ K|x− y|, ∀t ∈ [0, 1], x, y ∈ R;
(B3) | f (t, y)| ≤ σ(t) and |h(t, y)| ≤ ρ(t), where σ, ρ ∈ C([0, 1],R+).

Then the problem (1) and (2) has at least one solution on [0, 1] if Lγ1 + Kγ2 < 1, where

γ1 =
1

Γ(β + 1)Γ(α + 1)
, γ2 =

|λ|
Γ(β + 1)Γ(α + p + 1)Γ(q + 1)

. (10)
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Proof. Introduce the ball Bθ = {y ∈ X : ‖y‖ ≤ θ}, where ‖σ‖ = supt∈[0,1] |σ(t)|, ‖ρ‖ =

supt∈[0,1] |ρ(t)| and

θ ≥ ‖σ‖Ω1 + ‖ρ‖Ω2. (11)

Let us split the operator G : X → X on Bθ as G = G1 + G2, where

G1y(t) =
∫ t

0

(t− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds− λ

∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds,

G2y(t) = a1(t)

[
δ

( ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds− λ

∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds
)

−
( ∫ 1

0

(1− s)β−1

Γ(β)
Iα
1− f (s, y(s))ds− λ

∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds
)]

+a2(t)
[ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1− f (s, y(s))ds− λ

∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+h(s, y(s))ds
]

.

Now, we verify that the operators G1 and G2 satisfy the hypothesis of Krasnoselskii’s theorem [24]
in three steps.

(i) For y, x ∈ Bθ , we have

‖G1y + G2x‖

≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−| f (s, y(s))|ds + |λ|

∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))|ds

+
∣∣a1(t)

∣∣{|δ|( ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−| f (s, x(s))|ds + |λ|

∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, x(s))|ds
)

+

( ∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−| f (s, x(s))|ds + |λ|

∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, x(s))|ds
)}

+
∣∣a2(t)

∣∣{ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−| f (s, x(s))|ds + |λ|

∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, x(s))|ds
}}

≤ ‖σ‖ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−ds +

∣∣a1(t)
∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−ds

]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−ds

}
+‖ρ‖|λ| sup

t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds +
∣∣a1(t)

∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
}

≤
{
‖σ‖

Γ(α + 1)
+

‖ρ‖|λ|
Γ(α + p + 1)Γ(q + 1)

}
∆

= ‖σ‖Ω1 + ‖ρ‖Ω2 < θ,

where we used (11). Thus G1y + G2x ∈ Bθ .
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(ii) Using (B1) and (B2), it is easy to show that

‖G1y− G1x‖ ≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|λ|
∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))− h(s, x(s))|ds
}

≤ (Lγ1 + Kγ2)‖y− x‖,

which, in view of the condition: Lγ1 + Kγ2 < 1, implies that the operator G1 is a contraction.
(iii) Continuity of the functions f , h implies that the operator G2 is continuous. In addition, G2 is

uniformly bounded on Bθ as

‖G2y‖ ≤ sup
t∈[0,1]

{∣∣a1(t)
∣∣{|δ| ∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

}

≤ ‖σ‖ sup
t∈[0,1]

{∣∣a1(t)
∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−ds +

∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−ds

]

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−ds

}
+‖ρ‖|λ| sup

t∈[0,1]

{∣∣a1(t)
∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds +
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
]

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
}

≤ ‖σ‖(Ω1 − γ1) + ‖ρ‖(Ω2 − γ2),

where Ωi, and γi (i = 1, 2) are defined by (9) and (10) respectively.
To show the compactness of G2, we fix sup(t,y)∈[0,1]×Bθ

| f (t, y)| = f , sup(t,y)∈[0,1]×Bθ
|h(t, y)| = h.

Then, for 0 < t1 < t2 < 1, we have

|(G2y)(t2)− (G2y)(t1)|

≤
∣∣a1(t2)− a1(t1)

∣∣{|δ| ∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

+
∣∣a2(t2)− a2(t1)

∣∣{ ∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

≤
(
γ1 f + γ2h

){(
ξβ+1|tβ

2 − tβ
1 |+ ξβ|tβ+1

1 − tβ+1
2 |

) (|δ|µβ + 1)
|Λ|

+
(
|1− δµβ+1||tβ

2 − tβ
1 |+ |1− δµβ||tβ+1

1 − tβ+1
2 |

) ξβ

|Λ|

}
,

which tends to zero independent of y as t2 → t1. This shows that G2 is equicontinuous. It is clear from
the foregoing arguments that the operator G2 is relatively compact on Bθ . Hence, by the Arzelá-Ascoli
theorem, G2 is compact on Bθ .
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In view of the foregoing arguments (i)-(iii), the hypothesis of the Krasnoselskii’s fixed point
theorem [24] holds true. Thus, the operator G1 + G2 = G has a fixed point, which implies that the
problem (1) and (2) has at least one solution on [0, 1]. The proof is finished.

Remark 1. If we interchange the roles of the operators G1 and G2 in the previous result, the condition Lγ1 +

Kγ2 < 1, is replaced with the following one:

L(Ω1 − γ1) + K(Ω2 − γ2) < 1,

where Ω1, Ω2 and γ1, γ2 are defined by (9), (10) respectively.

The following existence result relies on Leray–Schauder nonlinear alternative [25].

Theorem 2. Suppose that the following conditions hold:

(B4) There exist continuous nondecreasing functions φ, ψ : [0, ∞) → (0, ∞) such that ∀(t, y) ∈ [0, 1]×R,
| f (t, y)| ≤ ω1(t)φ(‖y‖) and |h(t, y)| ≤ ω2(t)ψ(‖y‖), where ω1, ω2 ∈ C([0, T],R+).

(B5) There exist a constant M > 0 such that

M
‖ω1‖φ(M)Ω1 + ‖ω2‖ψ(M)Ω2

> 1,

Then, the problem (1) and (2) has at least one solution on [0, 1].

Proof. First we show that the operator G is completely continuous. This will be established in
several steps.

(i) G maps bounded sets into bounded sets in X .

Let y ∈ Br = {y ∈ X : ‖y‖ ≤ r}, where r is a fixed number. Then, using the strategy employed in
the proof of Theorem 1, we obtain

‖Gy(t)‖ ≤
{
‖ω1‖φ(r)
Γ(α + 1)

+
‖ω2‖ψ(r)|λ|

Γ(α + p + 1)Γ(q + 1)

}
∆

= ‖ω1‖φ(r)Ω1 + ‖ω2‖ψ(r)Ω2 < ∞.

(ii) G maps bounded sets into equicontinuous sets.

Let 0 < t1 < t2 < 1 and y ∈ Br, where Br is bounded set in X . Then we obtain
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|Gy(t2)− Gy(t1)|

≤
∣∣∣∣ ∫ t1

0

(t2 − s)β−1 − (t1 − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
∣∣∣∣

+

∣∣∣∣ ∫ t2

t1

(t2 − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
∣∣∣∣

+
∣∣a1(t2)− a1(t1)

∣∣{|δ|( ∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
)

+

( ∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
)}

+
∣∣a2(t2)− a2(t1)

∣∣{ ∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

≤
[

‖ω1‖φ(r)
Γ(β + 1)Γ(α + 1)

+
‖ω2‖ψ(r)|λ|

Γ(β + 1)Γ(α + p + 1)Γ(q + 1)

]
×
{

2(t2 − t1)
β + |t2

β − t1
β|+ (|δ|µβ + 1)

|Λ|

(
ξβ+1|tβ

2 − tβ
1 |+ ξβ|tβ+1

2 − tβ+1
1 |

)
+

ξβ

|Λ|

(
|1− δµβ+1||tβ

2 − tβ
1 |+ |1− δµβ||tβ+1

2 − tβ+1
1 |

)}
.

Notice that the right-hand side of the above inequality tends to 0 as t2 → t1, independent of
y ∈ Br. In view of the foregoing arguments, it follows by the Arzelá–Ascoli theorem that G : X → X
is completely continuous.

The conclusion of the Leray–Schauder nonlinear alternative [25] will be applicable once it is
shown that there exists an open set U ⊂ C([0, 1],R) with y 6= νGy for ν ∈ (0, 1) and y ∈ ∂U.
Let y ∈ C([0, 1],R) such that y = νGy for ν ∈ (0, 1). As argued in proving that the operator G is
bounded, one can obtain that

|y(t)| = |νGy(t)| ≤ |ω1(t)|φ(‖y‖)Ω1 + |ω2(t)|ψ(‖y‖)Ω2,

which can be written as

‖y‖
‖ω1‖φ(‖y‖)Ω1 + ‖ω2‖ψ(‖y‖)Ω2

≤ 1.

On the other hand, we can find a positive number M such that ‖y‖ 6= M by assumption (B5).
Let us set

U = {y ∈ X : ‖y‖ < M}.

Clearly, ∂U contains a solution only when ‖y‖ = M. In other words, there is no solution y ∈ ∂U
such that y = νGy for some ν ∈ (0, 1). Therefore, G has a fixed point y ∈ U which is a solution of the
problem (1) and (2). The proof is finished.

3.2. Uniqueness Result

Here we prove a uniqueness result for the problem (1) and (2) with the aid of Banach contraction
mapping principle.

Theorem 3. If the conditions (B1) and (B2) hold, then the problem (1) and (2) has a unique solution on [0, 1] if

LΩ1 + KΩ2 < 1, (12)

where Ω1 and Ω2 are defined by (9).



Mathematics 2020, 8, 336 9 of 13

Proof. In the first step, we show that GBr ⊂ Br, where Br = {y ∈ X : ‖y‖ ≤ r} with

r ≥ f0Ω1 + h0Ω2

1− (LΩ1 + KΩ2)
, f0 = sup

t∈[0,1]
| f (t, 0)|, h0 = sup

t∈[0,1]
|h(t, 0)|.

For y ∈ Br and using the condition (B1), we have

| f (t, y)| = | f (t, y)− f (t, 0) + f (t, 0)| ≤ | f (t, y)− f (t, 0)|+ | f (t, 0)|
≤ L‖y‖+ f0 ≤ Lr + f0. (13)

Similarly, using (B2), we get

|h(t, y)| ≤ Kr + h0. (14)

In view of (13) and (14), we obtain

‖Gy‖ = sup
t∈[0,1]

|Gy(t)|

≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∣∣a1(t)

∣∣{|δ| ∫ µ

0

(µ− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds

+
∫ 1

0

(1− s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)

[
Iα
1−| f (s, y(s))|+ |λ|Iα+p

1− Iq
0+|h(s, y(s))|

]
ds
}

≤ (Lr + f0) sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−ds +

∣∣a1(t)
∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−ds

+
∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−ds

]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−ds

}
+(Kr + h0)|λ| sup

t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds

+
∣∣a1(t)

∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds +
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
]

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
}

≤
{
(Lr + f0)

Γ(α + 1)
+

(Kr + h0)|λ|
Γ(α + p + 1)Γ(q + 1)

}
∆

= (Lr + f0)Ω1 + (Kr + h0)Ω2 < r,

which implies that Gy ∈ Br, for any y ∈ Br. Therefore, GBr ⊂ Br. Next, we prove that G is a
contraction. For that, let x, y ∈ X and t ∈ [0, 1]. Then, by the conditions (B1) and (B2), we obtain
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‖Gy− Gx‖ = sup
t∈[0,1]

∣∣(Gy)(t)− (Gx)(t)
∣∣

≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|λ|
∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))− h(s, x(s))|ds

+
∣∣a1(t)

∣∣[|δ|( ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|λ|
∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))− h(s, x(s))|ds
)

+

( ∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|λ|
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))− h(s, x(s))|ds
)]

+
∣∣a2(t)

∣∣[ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−| f (s, y(s))− f (s, x(s))|ds

+|λ|
∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+|h(s, y(s))− h(s, x(s))|dr du ds
]}

≤ L‖y− x‖ sup
t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα
1−ds

+
∣∣a1(t)

∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα
1−ds +

∫ 1

0

(1− s)β−1

Γ(β)
Iα
1−ds

]
+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα
1−ds

}
+K‖y− x‖|λ| sup

t∈[0,1]

{ ∫ t

0

(t− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds

+
∣∣a1(t)

∣∣[|δ| ∫ µ

0

(µ− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds +
∫ 1

0

(1− s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
]

+
∣∣a2(t)

∣∣ ∫ ξ

0

(ξ − s)β−1

Γ(β)
Iα+p
1− Iq

0+ds
}

≤
{

L∆
Γ(α + 1)

+
K|λ|∆

Γ(α + p + 1)Γ(q + 1)

}
‖y− x‖

= (LΩ1 + KΩ2)‖y− x‖.

From the above inequality, it follows by the assumption (LΩ1 + KΩ2) < 1 that G is a contraction.
Therefore, we deduce by Banach contraction mapping principle that there exists a unique fixed point for
the operator G, which corresponds to a unique solution for the problem (1) and (2) on [0, 1]. The proof
is completed.

3.3. Examples

In this subsection, we construct examples to illustrate the existence and uniqueness results
obtained in the last two subsections. Let us consider the following problem: D3/2

1− D1/2
0+ y(t) + 2I4/3

1− I5/4
0+ h(t, y(t)) = f (t, y(t)), t ∈ J := [0, 1],

y(0) = y(2/3) = 0, y(1) = 1
2 y(3/4).

(15)
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Here α = 3/2, β = 1/2, λ = 2, p = 4/3, q = 5/4, µ = 3/4, δ = 1/2, ξ = 2/3, and

f (t, y) =
1

(t2 + 8)
(

tan−1 y + e−t), h(t, y) =
1

2
√

t2 + 9

( |y|
1 + |y| + e−t). (16)

Using the given data, it is found that L = 1/8, K = 1/6,

a1 = max
t∈[0,1]

|a1(t)| = |a1(t)|t=1 ≈ 1.121394517474712,

a2 = max
t∈[0,1]

|a2(t)| = |a2(t)|t=ta2
≈ 1.168623082364286,

where

ta2 =
β(1− δµβ+1)

(1− δµβ)(β + 1)
≈ 0.396975661732535.

In consequence, we get

Ω1 ≈ 3.022797441671726, Ω2 ≈ 1.451691300771574, |Λ| ≈ 0.242702744426469,

where Ω1,Ω2 are defined by (9) and Λ is given by (6).
(i) For illustrating Theorem 1, we have

| f (t, y)| ≤ σ(t) =
e−t + (π/2)

t2 + 8
, |h(t, y)| ≤ ρ(t) =

e−t + 1

2
√

t2 + 9
,

and that
Lγ1 + Kγ2 ≈ 0.174044436618777 < 1,

where γ1 ≈ 0.848826363156775 and γ2 ≈ 0.407646847345084. Clearly, the hypothesis of Theorem 1 is
satisfied and consequently its conclusion applies to the problem (15).
(ii) In order to explain Theorem 2, we take the following values (instead of (16)) in the problem (15):

f (t, y) =
1√

t2 + 25

(
y cos y + π/2

)
, h(t, y) =

1

5
√

t2 + 4

(
sin y + 1/4

)
, (17)

and note that ω1(t) = 1√
t2+25

,‖ω1‖ = 1/5, ω2(t) = 1
5
√

t2+4
, ‖ω2‖ = 1/10, φ(‖y‖) = ‖y‖+ π/2 and

ψ(‖y‖) = ‖y‖ + 1/4. By the condition (B5), we find that M > 3.939452045479877. Thus, all the
conditions of Theorem 2 are satisfied and, hence the problem (15) with f (t, y) and h(t, y) given by (17)
has at least one solution on [0, 1].
(iii) It is easy to show that f (t, y) and h(t, y) satisfy the conditions (B1) and (B2) respectively with
L = 1/8 and K = 1/6 and that LΩ1 + KΩ2 ≈ 0.619798230337561 < 1. Thus, all the assumptions of
Theorem 3 hold true and hence the problem (15) has a unique solution on [0, 1].

4. Conclusions

We considered a fractional differential equation involving left Caputo and right Riemann–Liouville
fractional derivatives of different orders and a pair of nonlinearities: Ip

1− Iq
0+h(t, y(t)) =∫ 1

t
(s−t)p−1

Γ(p)

∫ s
0

(s−v)q−1

Γ(q) h(v, y(v))dvds (integral type) and f (t, y(t)), equipped with four-point nonlocal
boundary conditions. Different criteria ensuring the existence of solutions for the given problem
are presented in Theorems 1 and 2, while the uniqueness of solutions is shown in Theorem 3.
An interesting and scientific feature of the fractional differential Equation (1) is that the integral
type of nonlinearity can describe composition of a physical quantity (like density) over two different
arbitrary subsegments of the given domain. In the case of p = q = 1, this composition takes the form
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∫ 1
t

∫ s
0 h(v, y(v))dvds. As pointed out in the introduction, fractional differential equations containing

mixed (left Caputo and right Riemann–Liouville) fractional derivatives appear as Euler–Lagrange
equations in the study of variational principles. So, such equations in the presence of the integral type
of nonlinearity of the form introduced in (1) enhances the scope of Euler–Lagrange equations studied
in [26]. Moreover, the fractional integro-differential Equation (1) can improve the description of the
electromagnetic waves in dielectric media considered in [23]. As a special case, our results correspond
to a three-point nonlocal mixed fractional order boundary value problem by letting δ = 0, which is
indeed new in the given configuration.
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