Article

On the $(29,5)$-Arcs in PG(2,7) and Some Generalized Arcs in PG $(2, q)$

Iliya Bouyukliev ${ }^{1}$, Eun Ju Cheon ${ }^{2, *}$, Tatsuya Maruta ${ }^{3}$ and Tsukasa Okazaki ${ }^{3}$
1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Veliko Tarnovo, Bulgaria; iliyab@math.bas.bg
2 Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Korea
3 Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; maruta@mi.s.osakafu-u.ac.jp (T.M.); chicken15154649@yahoo.co.jp (T.O.)
* Correspondence: enju1000@naver.com

Received: 27 January 2020; Accepted: 25 February 2020; Published: 2 March 2020

Abstract

Using an exhaustive computer search, we prove that the number of inequivalent $(29,5)$-arcs in $\operatorname{PG}(2,7)$ is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classification result is based on the fact that arcs and linear codes are related, which enables us to apply an algorithm for classifying the associated linear codes instead. Related to this result, several infinite families of arcs and multiple blocking sets are constructed. Lastly, the relationship between these arcs and the Barlotti arc is explored using a construction that we call transitioning.

Keywords: projective plane; arc; blocking set; linear code; Griesmer code
MSC: 94B27; 94B05; 51E20; 05B25

1. Introduction

Let \mathbb{F}_{q} be the finite field with q elements, q a prime power. We denote by $\operatorname{PG}(2, q)$ the projective plane over \mathbb{F}_{q}. Two subsets K_{1} and K_{2} in $\operatorname{PG}(2, q)$ are projectively equivalent (denoted by $K_{1} \sim K_{2}$) if there exists a projectivity τ such that $\tau\left(K_{1}\right)=K_{2}$. An (n, r)-arc K in $\operatorname{PG}(2, q)$ is an n-set in $\operatorname{PG}(2, q)$ such that each line contains at most r points of K and some lines contain exactly r points of K. An $(n, 2)$-arc in $\operatorname{PG}(2, q)$ is simply called an n-arc. A fundamental problem of $(n, r)-\operatorname{arcs}$ in $\operatorname{PG}(2, q)$ is the following.

Problem. Let r be an integer with $2 \leq r \leq q-1$.
(1) Find $m_{r}(2, q)$, the maximum value of n for which an (n, r)-arc exists in $\operatorname{PG}(2, q)$.
(2) Classify (n, r)-arcs in $\operatorname{PG}(2, q)$ for $n=m_{r}(2, q)$ up to projective equivalence.

In the cases $3 \leq q \leq 16$, the values of $m_{r}(2, q)$ are known as given in Table 1, see [1,2]. It is also known that every $(q+1)$-arc is projectively equivalent to a conic $V\left(x_{1}^{2}-x_{0} x_{2}\right)$ when q is odd, and that every $(q+2)$-arc is projectively equivalent to a conic plus a point (called the nucleus) when $q=4$ or 8 [3]. Marcugini et al. [4,5] proved with the aid of a computer that (15,3)-arcs in PG(2,7) are unique, and Hill and Love [6] showed that there are three $(22,4)$-arcs in $\operatorname{PG}(2,7)$ up to projective equivalence, see Table 2 (see also [7,8] for $q=8,9$). In unpublished work, the authors of [7] have classified the $(33,5)$-arcs in $\operatorname{PG}(2,8)$.

Table 1. The known values and bounds on $m_{r}(2, q), 3 \leq q \leq 16$.

$\boldsymbol{r} \backslash \boldsymbol{q}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{1 6}$
2	4	6	6	8	10	10	12	14	18
3		9	11	15	15	17	21	23	28
4			16	22	28	28	32	$38-40$	52
5			29	33	37	$43-45$	$49-53$	65	
6			36	42	48	56	$64-66$	$78-82$	
7			49	55	67	79	$93-97$		
8				65	78	92	120		
9					$89-90$	105	$129-130$		
10					$100-102$	$118-119$	$142-148$		
11						$132-133$	$159-164$		
12						$145-147$	$180-181$		
13							$195-199$		
14							$210-214$		
15							231		

Table 2. The number of inequivalent $\left(m_{r}(2, q), r\right)$-arcs.

$\boldsymbol{r} \backslash \boldsymbol{q}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
2	1	1	1	1	1	1
3		3	2	1	19	4
4			6	3	1	$?$
5				$\mathbf{2 2}$	6	$?$
6				$\mathbf{1 9 4}$	5	1
7					$?$	$?$
8						$?$

For 5-arcs in $\operatorname{PG}(2,7)$, it has been known that the maximal size is $n=29$ [9,10], but it was not known how many inequivalent arcs of maximal size exist. In [11], the second author presented 13 inequivalent $(29,5)$-arcs in PG(2,7). Subsequently, Professor M. Grassl, attending the same conference, found in total 22 inequivalent linear codes corresponding to $(29,5)$-arcs with the help of the computer algebra system Magma [12]. Those results have been presented in [13]. Finally, using the package Q-EXTENSION developed by the first author [14] (see Section 2), the following extended result has been confirmed.

Theorem 1. There are exactly 22 inequivalent $(29,5)$-arcs in $\mathrm{PG}(2,7)$ as listed in Table 3.

Table 3. The $(29,5)$-arcs in $\operatorname{PG}(2,7)$.

Arc	$\boldsymbol{a}_{\mathbf{0}}$	$\boldsymbol{a}_{\mathbf{1}}$	$\boldsymbol{a}_{\mathbf{2}}$	$\boldsymbol{a}_{\mathbf{3}}$	$\boldsymbol{a}_{\mathbf{4}}$	$\boldsymbol{a}_{\mathbf{5}}$	$\|\mathrm{Aut}\|$	Construction
K_{1}	0	5	3	9	6	24	6	
K_{2}	0	8	0	0	21	28	336	Barlotti [10]
K_{3}	1	3	4	8	8	33	2	
K_{4}	1	4	3	5	13	31	2	
K_{5}	2	1	5	7	10	32	2	
K_{6}	2	1	6	4	13	31	1	
K_{7}	2	2	2	10	9	32	2	
K_{8}	2	2	4	4	15	30	2	
K_{9}	2	2	4	4	15	30	2	
K_{10}	2	3	2	4	17	29	2	
K_{11}	3	0	3	9	11	31	1	Theorem 4 (3)
K_{12}	3	0	3	9	11	31	6	
K_{13}	3	0	4	6	14	30	2	Theorem 3
K_{14}	3	1	1	9	13	30	1	Theorem 4 (2)
K_{15}	3	1	2	6	16	29	1	
K_{16}	3	1	2	6	16	29	1	
K_{17}	3	1	2	6	16	29	2	
K_{18}	3	1	3	3	19	28	3	
K_{19}	3	2	0	6	18	28	2	
K_{20}	3	2	0	6	18	28	6	Theorem 5
K_{21}	4	0	0	8	17	28	8	Example 2.3 in [15]
K_{22}	4	0	1	5	20	27	2	Theorem 7

In Section 2, we explain the algorithms in the package Q-EXTENSION, which is used for classification of linear codes with many different parameters over different fields including codes with given restrictions (self-orthogonal, self-complementary, etc.). Many published results are based on calculations with Q-EXTENSION and most of them are verified with other software, programs and theoretical proofs (for example [16]).

An $[n, k]_{q}$ code \mathcal{C} is a linear code over \mathbb{F}_{q} of length n and dimension $k . \mathcal{C}$ is called an $[n, k, d]_{q}$ code if it has minimum weight d. A $k \times n$ matrix over \mathbb{F}_{q} whose rows form a basis of \mathcal{C} is called a generator matrix of \mathcal{C}. A code \mathcal{C} is projective if any two columns of G are linearly independent. Consequently, G has no all-zero column if \mathcal{C} is projective. Two q-ary codes are equivalent if one can be obtained from the other by a sequence of the following transformations: (1) a permutation of the coordinate positions of all codewords; (2) a multiplication of a coordinate of all codewords with a nonzero element of \mathbb{F}_{q}; (3) a field automorphism. The set of all automorphisms of \mathcal{C} forms the automorphism group of \mathcal{C}, denoted by $\operatorname{Aut}(\mathcal{C})$. Two codes are monomially equivalent if one can be obtained from the other by a sequence of the transformations (1) and (2). The equivalent codes over a prime field are monomially equivalent. For $i=1,2$, let G_{i} be a generator matrix of a projective $[n, k, d]_{q}$ code \mathcal{C}_{i} and let K_{i} be the n-set in $\operatorname{PG}(k-1, q)$ corresponding to the n columns of G_{i}. Then \mathcal{C}_{1} and \mathcal{C}_{2} are monomially equivalent if and only if $K_{1} \sim K_{2}$.

For a projective $[n, 3, d]_{q}$ code \mathcal{C} with a generator matrix G, the n columns of G can be considered as an $(n, n-d)$-arc in $\operatorname{PG}(2, q)$ and vice versa. For more details about the equivalence between sets in projective spaces over a finite field and linear codes, see Chapter 16 in [17].

An (f, m)-blocking set B in $\operatorname{PG}(2, q)$ is an f-set such that each line contains at least m points of B and some lines contain exactly m points of B. If $n+f=q^{2}+q+1$ and $r+m=q+1$, then the complement K^{c} of an (n, r)-arc K in $\operatorname{PG}(2, q)$ is an (f, m)-blocking set. Thus, (n, r)-arcs and (f, m)-blocking sets are equivalent objects.

Lemma $1([17,18])$. Let \mathcal{C} be a projective $[n, 3]_{q}$ code with a generator matrix G and let K be the n-set in $P G(2, q)$ given by the n columns of G. Then, \mathcal{C} has minimum weight d if and only if K is an $(n, n-d)$-arc (equivalently, K^{c} is a $\left(q^{2}+q+1-n, q+1-(n-d)\right)$-blocking set) in $\operatorname{PG}(2, q)$.

For an $[n, k, d]_{q}$ code, we have $n \geq d+\left\lceil\frac{d}{q}\right\rceil+\cdots+\left\lceil\frac{d}{q^{k-1}}\right\rceil$, which is called the Griesmer bound. A linear code attaining the Griesmer bound is called a Griesmer code. Since Griesmer $[n, k, d]_{q}$ codes with $d \leq q^{k-1}$ are projective [18], the $(29,5)$-arcs in $\operatorname{PG}(2,7)$ and the $[29,3,24]_{7}$ codes are equivalent objects. For a set K in $\operatorname{PG}(2, q)$, a line is called an i-line if it meets K in exactly i points. We denote $a_{i}(K)$ (or simply a_{i} when no confusion arises) the number of i-lines of K. The list $\left\{a_{i}\right\}$ is called the spectrum of K. Let $\operatorname{Aut}(K)$ be the automorphism group of K, that is, the set of projectivities τ in $P G L(3, q)$ with $\tau(K)=K$. The spectra, together with the order of the automorphism group for the 22 projectively inequivalent $(29,5)$-arcs in $\operatorname{PG}(2,7)$ are given in Table 3.

In Section 3, we construct the arcs K_{1}, \ldots, K_{22} in Table 3 without computer. We show how to construct these arcs from the well-known arc found by Barlotti [10] by exchanging some points, an operation called transition. From the geometrical point of view, we show how to distinguish K_{8} and K_{9} (also K_{15} and K_{16}), which can not be distinguished from their spectra and automorphism group orders.

In Section 4, we generalize some of the $(29,5)$-arcs given in Section 3 to $\left(q^{2}-3 q+1, q-2\right)$-arcs (equivalently, $(4 q, 3)$-blocking sets) in $\operatorname{PG}(2, q)$.

Remark 1. We have also confirmed that there are exactly 194 inequivalent $(36,6)$-arcs in $\mathrm{PG}(2,7)$ by exhaustive search using the package Q-ExTENSION as in Table 2. For the 194 inequivalent $(36,6)$-arcs in $\operatorname{PG}(2,7)$, see http://mars39.lomo.jp/opu/36_3_30.txt.

Remark 2. A similar interesting problem in the real projective plane is so called the real configuration problem. A configuration of lines and points is called an $\left(n_{k}\right)$ configuration if it consists of n lines and n points, each of which is incident to exactly k of the other type. It is called geometric if these are points and lines in the real projective plane. Especially, the problem concerning the existence of geometric $\left(n_{4}\right)$ configurations remains open only for the case $n=23$, see [19].

Remark 3. The $(29,5)$-arc K_{2} in Table 3 is given as $K_{2}=C \cup \mathcal{I}(C)$, in Section 3, where C is a conic and $\mathcal{I}(C)$ is the interior of C. In [20], they gave a realization of the configuration (214 $)$ and Coxeter's coordinates of them in the plane $P G(2,7)$, which is equals to $\mathcal{I}(C)$ where C is the conic defined by the equation $x^{2}+y^{2}+z^{2}=0$.

2. Algorithms in the Package Q-Extension

We have proved that there are exactly 22 inequivalent $(29,5)$-arcs (and also 194 inequivalent $(36,6)$-arcs) in $\operatorname{PG}(2,7)$ by exhaustive computer search using the package Q-ExTENSION [14]. It is available on the web page http:/ /www.moi.math.bas.bg/ ~iliya/Q_ext.htm of the first author for fields with $q \leq 5$ elements (for larger fields write to Iliya Bouyukliev). In this section we briefly describe the algorithms in the package. We present the explanation in terms of linear codes because Q-EXTENSION is a software for construction and investigations of linear codes. We discuss the background and give the main ideas.

Each linear code is completely determined by its generator matrix. The main problem we solve is how to construct generator matrices of all inequivalent linear codes with length n, dimension k, and minimum distance d over the field \mathbb{F}_{p}, where p is a prime. If we know a part of the generator matrix,
the problem will be much easier. This previously given part (submatrix) can be a generator matrix of a residual code or the identity matrix of size k, since any code has a generator matrix in systematic form.

Let G be a generator matrix of an $[n, k, d]_{p} \operatorname{code} \mathcal{C}$. Then the residual code $\operatorname{Res}(\mathcal{C}, c)$ of \mathcal{C} with respect to a codeword c is the code generated by the restriction of G to the columns where c has zero entries.

Lemma 2 ([21]). Let \mathcal{C} be an $[n, k, d]$ code over \mathbb{F}_{p} and let $c \in \mathcal{C}$ be a codeword of weight $w<(p /(p-1))$ d. Then $\operatorname{Res}(\mathcal{C}, c)$ is an $\left[n-w, k-1, d^{\prime}\right]$ code with $d^{\prime} \geq d-w+\lceil w / p\rceil$.

Let \mathcal{C} be an $[n, k, d]_{p}$ code with generator matrix G and let G_{0} be a $k \times(n-m)$ matrix with rows g_{1}, \ldots, g_{k} such that $G=\left(G_{0} X\right)$. The main idea of our approach is to construct all inequivalent codes with given parameters on the current step and to use these codes (their generator matrices) in the next step of the extension.

Let Ω_{1} be the set consisting of the codes generated by a matrix in the form

$$
G_{1}=\left(\begin{array}{c|c}
g_{1} & a_{11} \ldots a_{1 m} \\
\hline g_{2} & \\
\vdots & O \\
g_{k} &
\end{array}\right)
$$

where O is the zero matrix, and $a=\left(a_{11}, \ldots, a_{1 m}\right)$ is such a vector that the first row of G has weight $\geq d$. We can assume that $a_{11}=\ldots=a_{1 j}=0$ and $a_{1, j+1}=\ldots, a_{1 m}=1$. The codes from Ω_{1} form the root of our search tree. We define Ω_{s} to be the set of all codes which have a generator matrix of the form

$$
G_{s}=\left(\begin{array}{c|ccc}
g_{1} & a_{11} & \ldots & a_{1 m} \\
\vdots & \vdots & \ddots & \vdots \\
g_{s} & a_{s 1} & \ldots & a_{s m} \\
\hline g_{s+1} & & & \\
\vdots & & O & \\
g_{k} & & &
\end{array}\right)
$$

such that the first s rows of G_{s} generate an $[n, s]_{p}$ code whose minimum weight is at least d.
We use the equivalence of codes in terms of group action on a proper set. We consider the action of the group M_{n} of all monomial matrices of size n on the set Ω of linear codes with length n over the field \mathbb{F}_{p}. This action induces an equivalence relation in Ω as two codes $\mathcal{C}_{1}, \mathcal{C}_{2} \in \Omega$ are equivalent if and only if they belong to the same orbit. Hence the equivalence classes for the defined relation are the orbits with respect to this action. The set of matrices $\sigma \in M_{n}$ such that $\mathcal{C} \sigma=\mathcal{C}$ form the automorphism group $\operatorname{Aut}(\mathcal{C})$ of the linear code \mathcal{C}.

The nodes in our search tree are objects from the search space $\Omega=\Omega_{1} \cup \Omega_{2} \cup \cdots \cup \Omega_{k}$. From a linear code $A \in \Omega_{s-1}$ corresponding to the node \bar{A}, we obtain linear codes from Ω_{s} which are children of the code A. We denote the set of inequivalent children by $\operatorname{Child}(A)$. The elements of Child (A) correspond to the nodes of the next level which are connected to \bar{A} by edges. To find only the inequivalent children in $\Omega_{s}, s<k$, we use a special type of equivalence which we call equivalence up to extension. This type of equivalence is defined considering the action of the subgroup of M_{n} consisting of the monomial matrices of block-diagonal form with two blocks of sizes $n-m$ and m, respectively. Obviously, such a matrix acts on the first $n-m$ coordinates and the last m coordinates of the given linear code \mathcal{C} separately.

It is easy to see that two equivalent codes up to extension have equivalent children. Practically, the rule $A \rightarrow C h i l d(A)$, which connects all children to a code, defines our search tree. The execution of the algorithm can be considered as traversing the search tree and visiting all nodes through the edges. This can be done by a depth first search.

We use the algorithm only in the case when the search tree is not so big. That is why our isomorph rejection approach is very natural, and it is known as isomorph rejection with recorded objects [22]. The basic idea of this technique is to keep a global record R of the objects seen so far during traversal of a search tree. Whenever an object \mathcal{C} is constructed, it is checked for equivalence against the recorded objects in R. If \mathcal{C} is equivalent to an object in R, then the subtree rooted at \mathcal{C} is pruned. This approach is fast enough for us because of concepts of canonical form. The use of canonical form reduces the problem of equivalence test of codes to comparison of codes (for more details see [22]).

We obtain the automorphism group and a canonical form of a given code \mathcal{C} using a modification of the algorithm presented in [23]. This algorithm gives the order of the group, a set of generating elements, and a canonical permutation. One of the advantages of the algorithm is the effective construction of child codes. We give an example.

Example 1. Let us try to construct all $[13,3,9]_{3}$ codes taking their generator matrices in a systematic form:

$$
G=\left(\begin{array}{l|l}
100 & \\
010 & X \\
001 &
\end{array}\right)
$$

Any row in the unknown matrix X must have at least eight nonzero coordinates. For a row a in X, consider the triple $\left(x_{0}, x_{1}, x_{2}\right)$, where x_{i} is the number of coordinates in a equal to $i, i=0,1,2$. We are looking for all triples with $x_{0}+x_{1}+x_{2}=10$ and $x_{1}+x_{2} \geq 8$. The number of nonnegative triples which satisfy these constrains is 30 . They form the set S_{1} of possible solutions.

Without loss of generality we can take the first row of X to be (0011111111), (0111111111) or (1111111111). This means that the root Ω_{1} consists of three codes with generator matrices

$$
\left(\begin{array}{l|l}
100 & 00111111111 \\
010 & 0000000000 \\
001 & 0000000000
\end{array}\right), \quad\left(\begin{array}{l|l}
100 & 01111111111 \\
010 & 0000000000 \\
001 & 0000000000
\end{array}\right), \quad\left(\begin{array}{l|l}
100 & 1111111111 \\
010 & 0000000000 \\
001 & 0000000000
\end{array}\right) .
$$

Consider in detail the first node. We can divide the matrix X into two parts, $X=\left(X_{1} X_{2}\right)$ where X_{1} and X_{2} have 2 and 8 columns respectively. Using the possible solutions from S_{1}, the algorithm finds by exhaustive search all possible solutions for the next rows as tuples of triples $\left\{\left(x_{00}, x_{01}, x_{02}\right),\left(x_{10}, x_{11}, x_{12}\right)\right\}$ such that $x_{0 i}=\left|\left\{b_{j}=i, 1 \leq j \leq 2\right\}\right|, x_{1 i}=\left|\left\{b_{j}=i, 3 \leq j \leq 10\right\}\right|$, where $b=\left(b_{1}, b_{2}, \ldots, b_{10}\right)$ is the second or third row of X. The constrains for $x_{i j}$ are

$$
x_{00}+x_{01}+x_{02}=2, x_{10}+x_{11}+x_{12}=8, x_{0 i}+x_{1 i}=x_{i}, i=0,1,2 .
$$

We denote by S_{2} the set of all possible solutions in this step. Furthermore, the code generated by the vectors (100011111111) and $(010 \mid b)$ must have minimum distance at least 9 which reduces the possibilities and the algorithm obtains

$$
S_{2}=\{\{(0,2,0),(2,3,3)\},\{(0,1,1),(2,3,3)\},\{(0,0,2),(2,3,3)\}\} .
$$

This gives us the information that the first two coordinates of b are not zeros, but two of the other 8 coordinates are zeros, three of them are 1 and three are equal to 2 . It turns out that, up to a permutation, the second row of X must be (1100111222), (1200111222) or (2200111222). The codes which correspond to these solutions have generator matrices

$$
\left(\begin{array}{l|l}
100 & 0011111111 \\
010 & 1100111222 \\
001 & 0000000000
\end{array}\right), \quad\left(\begin{array}{l|l}
100 & 0011111111 \\
010 & 1200111222 \\
001 & 0000000000
\end{array}\right), \quad\left(\begin{array}{l|l}
100 & 0011111111 \\
010 & 2200111222 \\
001 & 0000000000
\end{array}\right) .
$$

Obviously, these three codes are equivalent, therefore there is only one node in the second level of the tree connected with the considered root node.

Now we divide the matrix X into four parts (cells), $X=\left(X_{1} X_{20} X_{21} X_{22}\right)$ where X_{20}, X_{21} and X_{22} have 2,3 and 3 columns respectively. One possible solution for the matrix G is

$$
\left(\begin{array}{c|c}
100 & 0011111111 \\
010 & 1100111222 \\
001 & 1212012012
\end{array}\right)
$$

This solution turns out to be unique up to equivalence. The solution for the third row comes from $\{(0,1,1),(2,3,3)\} \in S_{2}$. The algorithm also provides that the code \mathcal{C} must be projective. It is easy to prove that the matrix G in systematic form cannot have rows with weights 9 and 10 (the algorithm proves this by exhaustive search).

The same code can be constructed using as a prescribed part its residual code with respect to a codeword of weight 9 . The residual code has parameters $[4,2,3]_{3}$. There is a unique ternary code with these parameters, so we are looking for a generator matrix of \mathcal{C} in the form

$$
\left(\begin{array}{c|c}
0000 & 111111111 \\
1011 & \ldots \\
0112 & \ldots
\end{array}\right)
$$

The algorithm in this case works in a similar way and it is even more effective, but it is a little bit more complicated to explain.

Consider now the construction of the $[29,3,24]_{7}$ codes. If \mathcal{C} is a code with these parameters, then its residual code with respect to a codeword of weight 24 is a $[5,2,4]_{7}$ code. It is easy to prove (even by hand) that the code with a generator matrix $\binom{10111}{01123}$ is, up to equivalence, the only $[5,2,4]_{7}$ code. Therefore we are looking for a generator matrix of \mathcal{C} of the form

$$
G=\left(\begin{array}{c|c}
00000 & 1111111111111111111111111 \\
10111 & \ldots \\
01123 & \ldots
\end{array}\right)
$$

The program finds all inequivalent solutions in about 23 hours on a computer with Intel Xeon E5-2640 processor. The constructed tree consists of 8 nodes on the second level and 22 nodes on the third level. In this case the tree is not big, but finding solutions for the last level is computationally expensive. Since this search is exhaustive, we can conclude that there are exactly $22[29,3,24]_{7}$ codes up to equivalence, which proves Theorem 1.

Remark 4. Many problems for classification of combinatorial objects are solved using computer programs. But there are only a few more general software packages for such classification, for example "Split" by David Jaffe [24] and "Orbiter" by Anton Betten [25]. Q-EXTENSION is convenient for our purposes, we have experience with it and therefore we use exactly this package in our classification.

3. Construction of $(29,5)$-Arcs in PG(2,7)

We start with the conic

$$
C=\left\{\mathbf{P}\left(1, a, a^{2}\right) \mid a \in \mathbb{F}_{q}\right\} \cup\{\mathbf{P}(0,0,1)\} .
$$

A line ℓ in $\operatorname{PG}(2, q)$ is called external, tangent or secant to C if $|C \cap \ell|=0,1$ or 2 , respectively. For odd q, a point $P \notin C$ in $\operatorname{PG}(2, q)$ is called internal or external if the number of tangent lines on
P is 0 or 2 , respectively. Let $\mathcal{I}(C)$ (resp. $\mathcal{E}(C)$) be the set of all internal (resp. external) points of C. Then, $|\mathcal{I}(C)|=q(q-1) / 2,|\mathcal{E}(C)|=q(q+1) / 2$, see ([3] Chapter 8). The following construction of a $\left(\frac{q^{2}+q+2}{2}, \frac{q+3}{2}\right)$-arc in $\operatorname{PG}(2, q)$ is due to [10].

Theorem 2. For q odd, let $K=\mathcal{I}(C) \cup C$. Then
(1) K forms a $\left(\frac{q^{2}+q+2}{2}, \frac{q+3}{2}\right)$-arc in $\operatorname{PG}(2, q)$ with spectrum

$$
\left(a_{1}, a_{(q+1) / 2}, a_{(q+3) / 2}\right)=(q+1, q(q-1) / 2, q(q+1) / 2)
$$

(2) $\quad \operatorname{Aut}(K) \cong P G L(2, q)$ and $|\operatorname{Aut}(K)|=q\left(q^{2}-1\right)$.

Proof. The tangents, the secants and the external lines of C are 1 -lines, $(q+3) / 2$-lines and $(q+$ 1)/2-lines for the arc K, respectively. Recall that $\operatorname{Aut}(C) \cong P G L(2, q)$ [3]. Since any automorphism σ of K satisfies $\sigma(\mathcal{E}(C))=\mathcal{E}(C), \sigma$ maps any tangent line of C to a tangent line. Then, $\sigma(C)=C$ and $\sigma(\mathcal{I}(C))=\mathcal{I}(C)$. Hence, we get the assertion.

Let K_{2} be the above arc K for $q=7$. We denote the line $\{\mathbf{P}(x, y, z) \in \operatorname{PG}(2, q) \mid a x+b y+c z=0\}$ by $[a, b, c]$ or $[a b c]$. There is another simple construction of a $(29,5)$-arc in $\operatorname{PG}(2,7)$.

Lemma 3 (Example 2.3 in [15]). Let B_{0} be the set of points on the lines [100], [010], [001], [111] together with the points $\mathbf{P}(-1,1,1), \mathbf{P}(1,-1,1)$. Then, the complement of B_{0} forms $a\left(q^{2}-3 q+2, q-2\right)$-arc if q is even and $a\left(q^{2}-3 q+1, q-2\right)$-arc if q is odd.

The arc K_{21} given below is such an arc obtained by the above lemma for $q=7$. We give another construction for K_{21} later. See Section 4 for the spectra of the arcs in Lemma 3.

In the following, we show how to construct the arcs in Table 3 from $K_{2}=C \cup \mathcal{I}(C)$. For two $(29,5)-\operatorname{arcs} K_{i}$ and K_{j}, we define the distance between them as

$$
d\left(K_{i}, K_{j}\right)=\min _{K^{\prime} \sim K_{j}}\left(29-\left|K_{i} \cap K^{\prime}\right|\right) .
$$

We also define the transition number of K_{i} as

$$
t\left(K_{i}\right)=\min _{K_{j} \nsucc K_{i}} d\left(K_{i}, K_{j}\right)
$$

Then, one can obtain some arc $K_{j}\left(\nsim K_{i}\right)$ from K_{i} by exchanging $t\left(K_{i}\right)$ or $t\left(K_{j}\right)$ points, denoted by $K_{i} \rightarrow K_{j}$, that is, $K_{j}=\left(K_{i} \backslash D\right) \cup A$ for some disjoint t-sets $D \subset K_{i}$ and $A \subset \mathrm{PG}(2,7) \backslash K_{i}$ with $t=t\left(K_{i}\right)$ or $t\left(K_{j}\right)$, see Table 4. In what follows, we discuss how to find the set D to be deleted from the $\operatorname{arc} K_{i}$ and the set A to be added to get K_{j} in Table 4 . Here by $x y z$ we denote the point $\mathbf{P}(x, y, z)$ in $\operatorname{PG}(2,7)$. For two points P and $Q,\langle P, Q\rangle$ denotes the line through P and Q. Table 4 follows from the following lemmas.

Table 4. Transition $K_{i} \rightarrow K_{j}=\left(K_{i} \backslash D\right) \cup A$, together with the values $t_{i}=t\left(K_{i}\right)$ and $t_{j}=t\left(K_{j}\right)$.

$\boldsymbol{K}_{\boldsymbol{i}}$	$\boldsymbol{t}_{\boldsymbol{i}}$	\boldsymbol{D}	\boldsymbol{A}	$\boldsymbol{K}_{\boldsymbol{j}}$	$\boldsymbol{t}_{\boldsymbol{j}}$	$\boldsymbol{K}_{\boldsymbol{i}}$	$\boldsymbol{t}_{\boldsymbol{i}}$	\boldsymbol{D}	\boldsymbol{A}	$\boldsymbol{K}_{\boldsymbol{j}}$
K_{2}	3	$001,100,111$	$131,145,153$	K_{20}	2	K_{22}	1	146	120	K_{14}
K_{2}	3	$136,146,151$	$131,145,153$	K_{1}	3	K_{22}	1	133	120	K_{15}
K_{20}	2	$115,163,165$	$015,103,106$	K_{3}	3	K_{22}	1	165	120	K_{16}
K_{20}	2	101,131	015,130	K_{4}	2	K_{22}	1	101	120	K_{17}
K_{20}	2	124,131	015,114	K_{10}	2	K_{22}	1	152	120	K_{19}
K_{20}	2	131,132	015,122	K_{18}	2	K_{22}	1	131	111	K_{21}
K_{20}	2	132,154	152,164	K_{22}	1	K_{17}	1	134	014	K_{7}
K_{10}	2	102,144	016,141	K_{6}	2	K_{17}	1	113	014	K_{8}
K_{22}	1	113,155	103,105	K_{9}	2	K_{14}	1	126	130	K_{11}
K_{9}	2	145,153	123,135	K_{5}	2	K_{14}	1	104	130	K_{13}
K_{21}	1	102,146	120,140	K_{12}	2					

Lemma 4. $K_{20}=\left(K_{2} \backslash\{001,100,111\}\right) \cup\{131,145,153\}$ and $t\left(K_{2}\right)=3$.
Proof. Since every external point Q of the conic C is on the three 5-lines (the secants through Q), we have $t\left(K_{2}\right) \geq 3$. We construct K_{20} from K_{2} by three point exchanges, which implies $t\left(K_{2}\right)=3$. Note that the tangents of C are the 1 -lines for K_{2}. Take three points P_{1}, P_{2}, P_{3} on the conic C. Since $\operatorname{Aut}(C)$ is 3-transitive, we may assume that $P_{1}=161, P_{2}=142, P_{3}=124$. Let ℓ_{i} be the tangent of C at P_{i} for $i=1,2,3$, i.e., $\ell_{1}=[121], \ell_{2}=[134], \ell_{3}=[162]$, and let $Q_{k}=\ell_{i} \cap \ell_{j}$ for $\{i, j, k\}=\{1,2,3\}$. For $i=1,2,3$, the line $\ell_{i}^{\prime}=\left\langle P_{i}, Q_{i}\right\rangle$ is a secant meeting C in P_{i} and P_{i+3} say. Then, $Q_{1}=131$, $Q_{2}=145, Q_{3}=153, \ell_{1}^{\prime}=[106], \ell_{2}^{\prime}=[150], \ell_{3}^{\prime}=[013], P_{4}=111, P_{5}=001, P_{6}=100$. Taking $D=\left\{P_{4}, P_{5}, P_{6}\right\}$ and $A=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, one obtains the transition $K_{2} \rightarrow K_{20}$. Actually, the tangents at P_{4}, P_{5}, P_{6} are the 0 -lines and the tangents at $P_{7}=132$ and $P_{8}=154$ are the 1 -lines for K_{20}, where $C=\left\{P_{1}, P_{2}, \ldots, P_{8}\right\}$.

We confirmed that $\left|\operatorname{Aut}\left(K_{20}\right)\right|=6$ (and similar for the other values of \mid Aut \mid in Table 3 by computer. In what follows, let $C=\left\{P_{1}, P_{2}, \ldots, P_{8}\right\}, \ell_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{3}^{\prime}, Q_{1}, Q_{2}, Q_{3}$, be as in the proof of Lemma 4 and let ℓ_{i} be the tangent at P_{i} to C for $1 \leq i \leq 8$ and $\ell_{i j}=\left\langle P_{i}, P_{j}\right\rangle$ for $1 \leq i<j \leq 8$. Then, $\ell_{4}=[151], \ell_{5}=[100]$, $\ell_{6}=[001], \ell_{7}=[144], \ell_{8}=[112], \ell_{12}=[165], \ell_{13}=[143], \ell_{14}=l_{1}^{\prime}=[106], \ell_{18}=[154], \ell_{28}=[126]$, $\ell_{23}=[111], \ell_{24}=[142], \ell_{25}=l_{2}^{\prime}=[150], \ell_{36}=l_{3}^{\prime}=[013], \ell_{37}=[156], \ell_{38}=[105], \ell_{45}=[160]$, $\ell_{46}=[016], \ell_{56}=[010], \ell_{57}=[120], \ell_{68}=[014], \ell_{78}=[161]$. Note that $\ell_{14}, \ell_{57}, \ell_{68}$ are the secants through Q_{1}. Let $Q_{i j}=\ell_{i} \cap \ell_{j}$ apart from $Q_{1}=Q_{23}, Q_{2}=Q_{13}, Q_{3}=Q_{12}$. For any point R and for a given $\operatorname{arc} K_{i}$, we state that R is of type $i_{1}^{j_{1}} i_{2}^{j_{2}} \ldots$ if there exist $j_{1} i_{1}$-lines and $j_{2} i_{2}$-lines and so on through R for K_{i}.

Lemma 5. $K_{1}=\left(K_{2} \backslash\{136,146,151\}\right) \cup\{131,145,153\}$ and $t\left(K_{1}\right)=3$.
Proof. Let $R_{i}=\ell_{i}^{\prime} \cap \ell_{j k}$ for $\{i, j, k\}=\{1,2,3\}$. Then, $R_{1}=151, R_{2}=146, R_{3}=136$. Taking $D=\left\{R_{1}, R_{2}, R_{3}\right\}$ and $A=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, one can get the transition $K_{2} \rightarrow K_{1}$. The tangents at P_{1}, P_{2}, P_{3} are 3 -lines for K_{1}, while the other five tangents remain 1-lines. The three external lines $\left\langle R_{i}, R_{j}\right\rangle$ ($1 \leq i<j \leq 3$) to C form the 2-lines for K_{1}. Now, take $R \notin K_{1}$. Then the possible types of R are: $1^{1} 2^{1} 3^{2} 5^{4}, 1^{1} 3^{3} 4^{1} 5^{3}, 1^{1} 2^{1} 3^{1} 4^{2} 5^{3}, 1^{2} 2^{1} 5^{5}, 1^{2} 3^{1} 4^{1} 5^{4}, 2^{2} 3^{2} 4^{1} 5^{3}, 1^{2} 4^{3} 5^{3}$. So, $t\left(K_{1}\right) \geq 3$. Now, by the transition $K_{2} \rightarrow K_{1}$, we get K_{1} by exchanging three points. Hence, we determine $t\left(K_{1}\right)=3$.

For a point $R \notin K_{20}$, the possible types of R are: $1^{1} 3^{2} 4^{3} 5^{2}, 0^{1} 3^{1} 4^{4} 5^{2}, 0^{1} 3^{2} 4^{2} 5^{3}, 0^{2} 4^{1} 5^{5}, 0^{1} 1^{1} 4^{2} 5^{4}$, $0^{1} 3^{2} 4^{2} 5^{3}, 1^{2} 4^{3} 5^{3}$. Since every point out of K_{20} is on at least two 5 -lines, we get $t\left(K_{20}\right) \geq 2$. By exhaustive computer search, we get the following.

Lemma 6. $t\left(K_{i}\right) \geq 2$ for $i=4,5,6,9,10,12,18,20$.

Lemma 7. $K_{4}=\left(K_{20} \backslash\{101,131\}\right) \cup\{015,130\}$ and $t\left(K_{4}\right)=t\left(K_{20}\right)=2$.
Proof. Let $S_{1}=\ell_{57} \cap \ell_{1}, S_{2}=\ell_{68} \cap \ell_{1}$ and $R_{4}=\ell_{56} \cap \ell_{1}^{\prime}$. Then, $S_{1}=130, S_{2}=015, R_{4}=101$. Taking $D=\left\{Q_{1}, R_{4}\right\}$ and $A=\left\{S_{1}, S_{2}\right\}$, one can get the transition $K_{20} \rightarrow K_{4}$. Since the two tangents ℓ_{5} and ℓ_{6} contain the points S_{2} and S_{1}, respectively, the two tangents at ℓ_{5}, ℓ_{6} are 1-lines for K_{4}, while the tangent at ℓ_{4} remains a 0 -line. The two 1 -lines for K_{20} remain 1-lines for K_{4}. Now, the transition $K_{20} \rightarrow K_{4}$ yields $t\left(K_{4}\right)=t\left(K_{20}\right)=2$ by Lemma 6 .

Lemma 8. $K_{18}=\left(K_{20} \backslash\{131,132\}\right) \cup\{015,122\}$ and $t\left(K_{18}\right)=2$.
Proof. Take $Q_{18}=\ell_{1} \cap \ell_{8}=122$. Setting $D=\left\{Q_{1}, P_{7}\right\}$ and $A=\left\{S_{2}, Q_{18}\right\}$, we get the transition $K_{20} \rightarrow K_{18}$. As for the 0 -lines $\ell_{4}, \ell_{5}, \ell_{6}$ for K_{20}, two lines ℓ_{4} and ℓ_{6} are also 0 -lines for K_{18}, but ℓ_{5} is a 1 -line for K_{18}. Two 1 -lines ℓ_{7} and ℓ_{8} for K_{20} are a 0 -line and a 2 -line for K_{18}, respectively. The other 2-lines for K_{18} are ℓ_{2} and ℓ_{3}. The transition $K_{20} \rightarrow K_{18}$ yields $t\left(K_{18}\right)=2$ by Lemma 6 .

Lemma 9. $K_{10}=\left(K_{20} \backslash\{124,131\}\right) \cup\{015,114\}$ and $t\left(K_{10}\right)=2$.
Proof. Let $T_{1}=\ell_{37} \cap \ell_{1}, T_{2}=\ell_{38} \cap \ell_{1}$. Then, $T_{1}=S_{2}=015, T_{2}=114$. Taking $D=\left\{Q_{1}, P_{3}\right\}$ and $A=\left\{T_{1}, T_{2}\right\}$, one can get the transition $K_{20} \rightarrow K_{10}$. Since the tangent ℓ_{5} contains T_{1}, it is a 1-line for K_{10}, while the tangents ℓ_{4} and ℓ_{6} remain 0 -lines. The other 1 -lines for K_{10} are the tangents ℓ_{3} and ℓ_{8}. The transition $K_{20} \rightarrow K_{10}$ yields $t\left(K_{10}\right)=2$ by Lemma 6 .

Lemma 10. $K_{22}=\left(K_{20} \backslash\{132,154\}\right) \cup\{052,164\}$.
Proof. Take $Q_{24}=\ell_{2} \cap \ell_{4}=164$ and $Q_{34}=\ell_{3} \cap \ell_{4}=152$. Setting $D=\left\{P_{7}, P_{8}\right\}$ and $A=\left\{Q_{24}, Q_{34}\right\}$, we get the transition $K_{20} \rightarrow K_{22}$. The tangent ℓ_{4} is a 0 -line for K_{20}, but a 2 -line for K_{22}, while the tangents ℓ_{5} and ℓ_{6} remain 0 -lines. The tangents ℓ_{7} and ℓ_{8} are 1 -lines for K_{20}, but 0 -lines for K_{22}.

Lemma 11. $K_{6}=\left(K_{10} \backslash\{102,144\}\right) \cup\{016,141\}$ and $t\left(K_{6}\right)=2$.
Proof. Let $V_{1}=\left\langle Q_{2}, P_{4}\right\rangle \cap \ell_{23}, V_{2}=\left\langle Q_{2}, P_{4}\right\rangle \cap \ell_{13}, V_{3}=\left\langle Q_{2}, P_{5}\right\rangle \cap \ell_{46}, V_{4}=\left\langle Q_{2}, P_{5}\right\rangle \cap \ell_{14}$. Then, $V_{1}=016, V_{2}=102, V_{3}=144, V_{4}=141$. Taking $D=\left\{V_{2}, V_{3}\right\}$ and $A=\left\{V_{1}, V_{4}\right\}$, one can get the transition $K_{10} \rightarrow K_{6}$. The 0 -lines for K_{10} are also 0 -lines for K_{6}. The tangent ℓ_{3} remains a 1 -line, but the other 1-lines for K_{10} are 2-lines for K_{6}. The transition $K_{10} \rightarrow K_{6}$ yields $t\left(K_{6}\right)=2$ by Lemma 6 .

Lemma 12. $K_{9}=\left(K_{22} \backslash\{113,155\}\right) \cup\{103,105\}$ and $t\left(K_{9}\right)=2$.
Proof. Take $W_{1}=\ell_{56} \cap \ell_{2}=103, W_{2}=\ell_{56} \cap \ell_{3}=105, W_{3}=\ell_{13} \cap \ell_{45}=113, W_{4}=\ell_{12} \cap \ell_{46}=155$. Setting $D=\left\{W_{3}, W_{4}\right\}$ and $A=\left\{W_{1}, W_{2}\right\}$, we get the transition $K_{22} \rightarrow K_{9}$. The tangents ℓ_{5}, ℓ_{6} are 0 -lines for K_{9} and the tangents ℓ_{7}, ℓ_{8} are 1-lines for K_{9}. We note that three of the four 2-lines $\ell_{4}, \ell_{45}, \ell_{46}$ and [131] are concurrent at the point P_{4}. The transition $K_{22} \rightarrow K_{9}$ yields $t\left(K_{9}\right)=2$ by Lemma 6 .

Lemma 13. $K_{5}=\left(K_{9} \backslash\{145,153\}\right) \cup\{123,135\}$ and $t\left(K_{5}\right)=2$.
Proof. Take the two points $\ell_{13} \cap \ell_{4}=135$ and $\ell_{12} \cap \ell_{4}=123$ for the set A to be deleted from K_{9}. Setting $D=\left\{Q_{2}, Q_{3}\right\}$, we get the transition $K_{9} \rightarrow K_{5}$. The 0 -lines for K_{9} are also 0-lines for K_{5}. The tangents ℓ_{7} and ℓ_{8} are 2-lines for K_{5} and the unique 1-line for K_{5} is ℓ_{1}. The transition $K_{9} \rightarrow K_{5}$ yields $t\left(K_{5}\right)=2$ by Lemma 6.

Lemma 14. $K_{14}=\left(K_{22} \backslash\{146\}\right) \cup\{120\}, K_{15}=\left(K_{22} \backslash\{133\}\right) \cup\{120\}, K_{16}=\left(K_{22} \backslash\{165\}\right) \cup\{120\}$, $K_{17}=\left(K_{22} \backslash\{101\}\right) \cup\{120\}, K_{19}=\left(K_{22} \backslash\{152\}\right) \cup\{120\}$.

Proof. Take the point $Q_{34}=\ell_{3} \cap \ell_{4}=152$ and let $L=\left\langle Q_{34}, R_{4}\right\rangle=[136], U=L \cap \ell_{2}=120$ and $K^{\prime}=K \cup\{U\}$. Then, K^{\prime} has spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)=(3,1,1,5,14,32,1)$ and L is the unique 6-line for K^{\prime}. The 1-points of L other than U are $U_{1}\left(=R_{2}\right)=146, U_{2}=133, U_{3}=165, U_{4}\left(=R_{4}\right)=101$, $U_{5}\left(=Q_{34}\right)=152$. Then, $K_{13+j}=K^{\prime} \backslash\left\{U_{j}\right\}$ for $1 \leq j \leq 4$ and $K_{19}=K^{\prime} \backslash\left\{U_{5}\right\}$. As can be seen in Table 3, K_{15}, K_{16} and K_{17} have the same spectrum. Nevertheless, one can distinguish them as follows. The 3-lines for K_{15} are $\ell_{1}, \ell_{18}, \ell_{45}, \ell_{56}, \ell_{57}, \ell_{78}$. And there are two points on three 3-lines; the point 106 on $\ell_{1}, \ell_{56}, \ell_{78}$ and the point P_{5} on $\ell_{45}, \ell_{56}, \ell_{57}$. As for K_{16}, the 3-lines are $\ell_{24}, \ell_{45}, \ell_{46}, \ell_{56},[123], \ell_{1}$ and there is only one point on three 3 -lines; the point P_{4} on the three lines $\ell_{24}, \ell_{45}, \ell_{46}$. Meanwhile, the 3 -lines for $K_{17}: \ell_{1}, \ell_{28}, \ell_{37}, \ell_{45}, \ell_{46}, \ell_{78}$ form a 6 -arc of lines (no three of which are concurrent). Thus, K_{15}, K_{16} and K_{17} are projectively inequivalent. K_{19} and K_{20} can be also distinguished similarly as follows. Let \mathcal{L} and \mathcal{L}^{\prime} be the sets of 3 -lines for K_{19} and K_{20}, respectively. Then, $\mathcal{L}^{\prime}=\left\{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{45}, \ell_{46}, \ell_{56}\right\}$ is a 6 -arc of lines, but $\mathcal{L}=\left\{\ell_{1}, \ell_{3}, \ell_{45}, \ell_{46}, \ell_{56}, \ell_{78}\right\}$ is not, for $106=l_{1} \cap \ell_{56} \cap \ell_{78}$ and $110=l_{3} \cap \ell_{45} \cap \ell_{78}$. Hence, K_{19} and K_{20} are projectively inequivalent.

Lemma 15. $K_{21}=\left(K_{22} \backslash\{131\}\right) \cup\{111\}$.
Proof. Taking $D=\left\{Q_{1}\right\}$ and $A=\left\{P_{4}\right\}$, we get the transition $K_{22} \rightarrow K_{21}$. The tangents $\ell_{5}, \ell_{6}, \ell_{7}, \ell_{8}$, no three of which are concurrent, remain 0-lines. The two 0-points out of the 0 -lines are $\ell_{23} \cap \ell_{1}=106$ and Q_{1}. It turns out that K_{21} is projectively equivalent to the arc constructed in Lemma 3. The tangent ℓ_{4} is the 2-line for K_{22}, but a 3-line for K_{21}.

Lemma 16. $K_{7}=\left(K_{17} \backslash\{134\}\right) \cup\{014\}, K_{8}=\left(K_{17} \backslash\{113\}\right) \cup\{014\}$.
Proof. Take the points $Q_{24}=\ell_{2} \cap \ell_{4}=164$ and $X=\left\langle Q_{24}, R_{4}\right\rangle \cap \ell_{3}=014$, where $R_{4}=\ell_{56} \cap \ell_{1}^{\prime}$, and let $K_{17}^{\prime}=K_{17} \cup\{X\}$. Then, the arc K_{17}^{\prime} has spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)=(2,2,2,6,10,34,1)$ and the unique 6-line for K^{\prime} is $L_{1}=\langle X, U\rangle=[131]$. The 1-points of L_{1} other than X are $X_{1}=134, X_{2}=113$, $X_{3}=162, X_{4}=155, X_{5}=120$. Then, $K_{7}=K_{17}^{\prime} \backslash\left\{X_{1}\right\}$ and $K_{8}=K_{17}^{\prime} \backslash\left\{X_{2}\right\} . K_{17}^{\prime} \backslash\left\{X_{3}\right\}, K_{17}^{\prime} \backslash\left\{X_{4}\right\}$, $K_{17}^{\prime} \backslash\left\{X_{5}\right\}$ are projectively equivalent to K_{7}, K_{8}, K_{17}, respectively. We can distinguish K_{8} and K_{9} as follows. The 2 -lines for K_{8} are $\ell_{4}, \ell_{28}, \ell_{45}, \ell_{56}$, which form a 4 -arc of lines. On the other hand, the 2-lines for K_{9} are $\ell_{4}, \ell_{45}, \ell_{46}, L_{1}$, the first three of which are concurrent at the point P_{4}.

Lemma 17. $K_{11}=\left(K_{14} \backslash\{126\}\right) \cup\{130\}, K_{13}=\left(K_{14} \backslash\{104\}\right) \cup\{130\}$.
Proof. Let $E=l_{1}^{\prime} \cap \ell_{2}^{\prime} \cap \ell_{3}^{\prime}=141, L_{2}=\left\langle Q_{34}, E\right\rangle$ and $Y=L_{2} \cap \ell_{1}=130$, where $Q_{34}=152$. Then, $K_{14}^{\prime}=K_{14} \cup\{Y\}$ has spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)=(3,0,2,8,9,34,1)$ and the unique 6 -line for K_{14}^{\prime} is $L_{2}=[125]$. The 1-points of L_{2} other than Y are $Y_{1}=126, Y_{2}=104, Y_{3}=163, Y_{4}=115, Y_{5}=130$. Then, $K_{11}=K_{14}^{\prime} \backslash\left\{Y_{1}\right\}$ and $K_{13}=K_{14}^{\prime} \backslash\left\{Y_{2}\right\} . K_{14}^{\prime} \backslash\left\{Y_{3}\right\}, K_{14}^{\prime} \backslash\left\{Y_{4}\right\}, K_{14}^{\prime} \backslash\left\{Y_{5}\right\}$ are projectively equivalent to K_{11}, K_{13}, K_{14}, respectively.

Lemma 18. $K_{12}=\left(K_{21} \backslash\{102,146\}\right) \cup\{120,140\}$ and $t\left(K_{12}\right)=2$.

Proof. Take the two points $\ell_{13} \cap \ell_{2}^{\prime}\left(=R_{2}\right)=146$ and $\ell_{13} \cap \ell_{56}\left(=V_{2}\right)=102$ for the 2-set D to be deleted and take $A=\left\{Q_{26}=120, Q_{46}=140\right\}$. Then, we get the transition $K_{21} \rightarrow K_{12}$. The 0-line ℓ_{6} for K_{21} becomes a 2 -line for K_{12}, while the tangents $\ell_{5}, \ell_{7}, \ell_{8}$ remain 0 -lines. The arcs K_{11} and K_{12} are projectively inequivalent since their automorphism group orders are different. In addition, we can distinguish K_{11} and K_{12} as follows. The 2 -lines for K_{11} are [101], ℓ_{4}, ℓ_{6}, having no common point. On the other hand, the 2 -lines for K_{12} are [101], ℓ_{5}, ℓ_{6}, which are concurrent at the point 010 . The transition $K_{21} \rightarrow K_{12}$ yields $t\left(K_{12}\right)=2$ by Lemma 6 .

Lemma 19. $K_{3}=\left(K_{20} \backslash\{115,163,165\}\right) \cup\{015,103,106\}$ and $t\left(K_{3}\right)=3$.

Proof. Take the points $Z_{1}=\ell_{68} \cap \ell_{1}\left(=S_{2}\right)=015, Z_{2}=\ell_{68} \cap \ell_{23}=115, Z_{3}=\ell_{23} \cap \ell_{1}=106$, $Z_{4}=\ell_{24} \cap \ell_{3}\left(=W_{1}\right)=103, Z_{5}=\ell_{24} \cap \ell_{78}=165, Z_{6}=\ell_{37} \cap\left\langle Z_{3}, Q_{1}\right\rangle=163$. Setting $D=\left\{Z_{2}, Z_{5}, Z_{6}\right\}$ and $A=\left\{Z_{1}, Z_{3}, Z_{4}\right\}$, we get the transition $K_{20} \rightarrow K_{3}$. The 0 -lines ℓ_{4}, ℓ_{5} for K_{20} are 1-lines for K_{3}, while the ℓ_{6} remains a 0 -line. The 1 -lines ℓ_{7} and ℓ_{8} for K_{20} are a 1-line and a 2-line for K_{3}, respectively. Now, there are only two points out of K_{3}, namely 122 and 165 , which are on at most two 5 -lines. The types of 122 and 165 are $2^{1} 3^{3} 4^{2} 5^{2}$ and $2^{1} 3^{3} 4^{2} 5^{2}$, respectively. Hence $t\left(K_{3}\right) \geq 2$. Suppose $t\left(K_{3}\right)=2$. Then, we have a transition $K_{3} \rightarrow\left(K_{3} \backslash\left\{Z, Z^{\prime}\right\}\right) \cup\{122,165\}$ for some points $Z, Z^{\prime} \in K_{3}$. Since the five lines $\langle 122,143\rangle=[103],\langle 122,106\rangle=[121],\langle 165,142\rangle=[142],\langle 165,106\rangle=[161],\langle 122,165\rangle=[155]$ are 6-lines for $K_{3} \cup\{122,165\}$, the points Z and Z^{\prime} must be on the five lines, which is impossible. Thus, $t\left(K_{3}\right) \geq 3$. Now, by the transition $K_{20} \rightarrow K_{3}$, we determine $t\left(K_{3}\right)=3$.

In summary, we have determined the transition numbers of each K_{i} as in Table 4. Considering the graph with vertex set $\left\{K_{i}: t\left(K_{i}\right)=1\right\}$, where two vertices K_{i}, K_{j} are joined if $d\left(K_{i}, K_{j}\right)=1$, we get Figure 1.

Figure 1. Graph of $(29,5)$-arcs with distance 1.

4. Construction of Some Generalized Arcs in PG $(2, q)$

Recall from Lemma 1 that the complement of a $(b, 3)$-blocking set B is a $\left(q^{2}+q+1-b, q-2\right)$ -arc in $\operatorname{PG}(2, q)$. When q is odd, for a $(b, 3)$-blocking set B is known that $b=|B| \geq 4 q$ if B contains a line [26]. The set B_{0} for odd q in Lemma 3 is such a $(4 q, 3)$-blocking set.

In this section, we generalize some construction results in Section 3 by constructing some $(4 q, 3)$-blocking sets in $\operatorname{PG}(2, q)$ for odd q. Obviously, we have $a_{i}(K)=a_{q+1-i}\left(K^{c}\right)$, where K^{c} is the complement of K in $\operatorname{PG}(2, q)$.

Theorem 3. For odd $q \geq 5$, let C be a conic in $\operatorname{PG}(2, q)$. For any three points P_{1}, P_{2}, P_{3} in C, let ℓ_{i} be the tangent of C through P_{i} and $\ell_{i j}$ be the secant of C through P_{i} and P_{j}, and let $P_{i j}=\ell_{i} \cap \ell_{j}$ for $1 \leq i \leq j \leq 3$. Take any two points P and Q from the three points P_{12}, P_{23}, P_{13}, and let $B=C \cup \ell_{12} \cup \ell_{23} \cup \ell_{13} \cup\{P, Q\}$. Then $K=B^{c}$ is a $\left(q^{2}-3 q+1, q-2\right)$-arc with spectrum
$\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(5,1,10,15)$ for $q=5$ and
$\left(a_{0}, a_{q-5}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(3, q-3, \frac{(q-3)(q-4)}{2}, 2 q, \frac{(q+5)(q-2)}{2}\right)$ for $q \geq 7$.
Proof. Let $C=\left\{P_{1}, P_{2}, \ldots, P_{q+1}\right\}$ be a conic in $\operatorname{PG}(2, q)$ and let ℓ be a line. If ℓ contains none of P_{1}, P_{2}, P_{3}, then ℓ meets $\ell_{12} \cup \ell_{23} \cup \ell_{13}$ at three points. Thus, $|\ell \cap B| \geq 3$. If ℓ contains exactly one of P_{1}, P_{2}, P_{3}, say P^{\prime}, ℓ meets $\ell_{12} \cup \ell_{23} \cup \ell_{13}$ at two points. Then, ℓ is a secant or a tangent of C. If ℓ is a secant of C, ℓ meets C at P^{\prime} and another point. So, $|\ell \cap B| \geq 3$. If ℓ is a tangent of C, ℓ is ℓ_{1}, ℓ_{2} or ℓ_{3}, and ℓ contains at least one of the points P and Q. So, $|\ell \cap B| \geq 3$. If ℓ contains two of P_{1}, P_{2} and P_{3}, then ℓ is ℓ_{12}, ℓ_{23} or ℓ_{13}. Thus, B is a $(4 q, 3)$-blocking set. Without loss of generality, we may take $P=P_{13}$ and $Q=P_{12}$. Assume $q \geq 7$. The $(q+1)$-lines for B are $\ell_{12}, \ell_{23}, \ell_{13}$. So, $a_{q+1}(B)=3$. The 6 -lines are the secants through P or Q except $\left\langle P, P_{2}\right\rangle$ and $\left\langle Q, P_{3}\right\rangle$. Hence $a_{6}(B)=2\left(\frac{q-1}{2}-1\right)=q-3$. For $q=5$, the above $(q+1)$-lines are also 6 -lines for B, and $a_{6}(B)=5$. Now, assume $q \geq 5$. The 5 -lines are the secants of C passing through none of P_{1}, P_{2}, P_{3} except the 6-lines. So, $a_{5}(B)=\binom{q+1-3}{2}-a_{6}(B)=$
$(q-3)(q-4) / 2$. The 4 -lines are the external lines of C through P or Q, the secants $\left\langle P, P_{2}\right\rangle,\left\langle Q, P_{3}\right\rangle$, the tangents at $P_{4}, P_{5}, \ldots, P_{q+1}$ and $\langle P, Q\rangle$. Hence, $a_{4}(B)=q-1+2+(q+1-3)+1=2 q$. Finally, $a_{3}(B)=q^{2}+q+1-a_{4}(B)-a_{5}(B)-a_{6}(B)-a_{q+1}(B)=(q+5)(q-2) / 2$.

By some transitions from B in Theorem 3, we get the following.
Theorem 4. Under the conditions of Theorem 3 with $q \geq 7$, take $P=P_{13}, Q=P_{12}$ and a point Q^{\prime} in ℓ_{2} with $Q^{\prime} \notin\left\{Q, P_{2}, l_{13} \cap \ell_{2}\right\}$. Let $B^{\prime}=(B \backslash\{Q\}) \cup\left\{Q^{\prime}\right\}$ and $\ell=\left\langle P, Q^{\prime}\right\rangle$. Then $K=\left(B^{\prime}\right)^{c}$ forms a $\left(q^{2}-3 q+1, q-2\right)$-arc with spectrum
(1) $\left(a_{0}, a_{q-5}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(3, q-3, \frac{(q-3)(q-4)}{2}, 2 q, \frac{(q+5)(q-2)}{2}\right)$ if ℓ is a tangent,
(2) $\left(a_{0}, a_{q-6}, a_{q-5}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(3,1, q-6, \frac{q^{2}-7 q+18}{2}, 2 q-1, \frac{(q+5)(q-2)}{2}\right)$ if ℓ is a secant,
(3) $\left(a_{0}, a_{q-5}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(3, q-4, \frac{q^{2}-7 q+18}{2}, 2 q-3, \frac{q^{2}+3 q-8}{2}\right)$ if ℓ is an external line.

Proof. Since ℓ is a tangent of C if and only if $Q^{\prime}=P_{23}$, we get the spectrum (1) from Theorem 3 if ℓ is a tangent. As we have already seen in the proof of Theorem 3, the tangent $\langle Q, P\rangle$ and the secant $\left\langle Q, P_{3}\right\rangle$ are 4 -lines, the other $(q-3) / 2$ secants through Q are 6 -lines and the $(q-1) / 2$ external lines through Q are 4 -lines for B. Note that $a_{q+1}\left(B^{\prime}\right)=a_{q+1}(B)$, for $Q^{\prime} \in \ell_{2} \backslash\left\{P_{2}, \ell_{13} \cap \ell_{2}\right\}$.

If ℓ is a secant, then for B, the tangent $\left(\neq \ell_{2}\right)$ through Q^{\prime} is a 4 -line, the secant ℓ is a 6 -line, the secants $\left\langle Q^{\prime}, P_{1}\right\rangle,\left\langle Q^{\prime}, P_{3}\right\rangle$ are 3-lines, other $(q-7) / 2$ secants on Q^{\prime} are 5-lines and the $(q-1) / 2$ external lines on Q^{\prime} are 3-lines. Hence, $a_{3}\left(B^{\prime}\right)=a_{3}(B)+2+(q-1) / 2-2-(q-1) / 2=a_{3}(B)$, $a_{4}\left(B^{\prime}\right)=a_{4}(B)-2-(q-1) / 2-1+2+(q-1) / 2=a_{4}(B)-1, a_{5}\left(B^{\prime}\right)=a_{5}(B)+(q-3) / 2+1-$ $(q-7) / 2=a_{5}(B)+3, a_{6}\left(B^{\prime}\right)=a_{6}(B)-(q-3) / 2-1+(q-7) / 2=a_{6}(B)-3, b_{7}^{\prime}=1$.

If ℓ is an external line, then for B, the tangent $\left(\neq \ell_{2}\right)$ through Q^{\prime} is a 4-line, the secants $\left\langle Q^{\prime}, P_{1}\right\rangle$, $\left\langle Q^{\prime}, P_{3}\right\rangle$ are 3-lines, other $(q-5) / 2$ secants on Q^{\prime} are 5-lines, the external line ℓ is a 4 -line and the $(q-3) / 2$ external lines on Q^{\prime} are 3-lines. Hence, $a_{3}\left(B^{\prime}\right)=a_{3}(B)+2+(q-1) / 2-2-(q-3) / 2=$ $a_{3}(B)+1, a_{4}\left(B^{\prime}\right)=a_{4}(B)-2-(q-1) / 2-1+2-1+(q-3) / 2=a_{4}(B)-3, a_{5}\left(B^{\prime}\right)=a_{5}(B)+(q-$ 3) $/ 2+1-(q-5) / 2+1=a_{5}(B)+3, a_{6}\left(B^{\prime}\right)=a_{6}(B)-(q-3) / 2+(q-5) / 2=a_{6}(B)-1$.

We note that the construction of a $(4 q, 3)$-blocking set with spectrum (1) or (3) in Theorem 4 is also valid for $q=5$, but not for the spectrum (2) since ℓ is a secant if and only if $Q^{\prime}=\ell_{13} \cap \ell_{2}$ when $q=5$.

For $q=7$, the $\left(q^{2}-3 q+1, q-2\right)$-arcs of Theorem 4 (1), (2) and (3) are equivalent to K_{13}, K_{14} and K_{11}, respectively. The next lemma is given in [3, Corollary 7.5].

Lemma 20 ([3]). In $\operatorname{PG}(2, q)$ with $q \geq 4$, there is a unique conic through a 5-arc.

We can get one more $(4 q, 3)$-blocking set in $\operatorname{PG}(2, q)$ from the set B in Theorem 3 by exchanging two points.

Theorem 5. Let $q=p^{h} \geq 7$ for an odd prime $p \neq 3$. Under the conditions of Theorem 3, let C be the conic $\left\{\mathbf{P}\left(1, a, a^{2}\right): a \in \mathbb{F}_{q}\right\} \cup\{\mathbf{P}(0,0,1)\}$ and take $P_{1}=\mathbf{P}(1,1,1), P_{2}=\mathbf{P}(0,0,1), P_{3}=\mathbf{P}(1,0,0)$, $P_{4}=\mathbf{P}\left(1,2^{-1}, 2^{-2}\right), P_{5}=\mathbf{P}\left(1,2,2^{2}\right), S=\left\langle P_{1}, P_{4}\right\rangle \cap\left\langle P_{2}, P_{5}\right\rangle$ and $T=\left\langle P_{1}, P_{5}\right\rangle \cap\left\langle P_{3}, P_{4}\right\rangle$. Let $B_{1}=$ $\left(B \backslash\left\{P_{4}, P_{5}\right\}\right) \cup\{S, T\}$. Then $K^{\prime}=\left(B_{1}\right)^{c}$ is a $\left(q^{2}-3 q+1, q-2\right)$-arc, which is not projectively equivalent to any arc in Theorems 3 and 4.

Proof. Note that $P_{4} \neq P_{5}$ if $p \neq 3$ and that $S=\mathbf{P}\left(1,2,2+2^{-1}\right), T=\mathbf{P}\left(2+2^{-1}, 2,1\right)$. Since $P=\ell_{1} \cap \ell_{3}=\mathbf{P}\left(1,2^{-1}, 0\right)$ and $Q=\ell_{1} \cap \ell_{2}=\mathbf{P}(0,1,2)$, the lines $\left\langle P, P_{2}\right\rangle$ and $\left\langle Q, P_{3}\right\rangle$ are passing through P_{4} and P_{5}, respectively. Let $B_{1}^{-}=B \backslash\left\{P_{4}, P_{5}\right\}$. Then, the 2-lines for B_{1}^{-} are $\left\langle P_{1}, P_{4}\right\rangle,\left\langle P_{1}, P_{5}\right\rangle,\left\langle P_{2}, P_{5}\right\rangle$ and $\left\langle P_{3}, P_{4}\right\rangle$. Hence, adding $S=\left\langle P_{1}, P_{4}\right\rangle \cap\left\langle P_{2}, P_{5}\right\rangle$ and $T=$ $\left\langle P_{1}, P_{5}\right\rangle \cap\left\langle P_{3}, P_{4}\right\rangle$ to $B_{1}^{-}, B_{1}=B_{1}^{-} \cup\{S, T\}$ forms a $(4 q, 3)$-blocking set. It can be checked using computer that B_{1} has spectrum $\left(a_{3}\left(B_{1}\right), a_{4}\left(B_{1}\right), a_{5}\left(B_{1}\right), a_{7}\left(B_{1}\right), a_{8}\left(B_{1}\right)\right)=(28,18,6,2,3)$ for $q=7,\left(a_{3}\left(B_{1}\right), a_{4}\left(B_{1}\right), a_{5}\left(B_{1}\right), a_{6}\left(B_{1}\right), a_{7}\left(B_{1}\right), a_{12}\left(B_{1}\right)\right)=(66,38,16,8,2,3)$ for $q=11$ and
$\left(a_{3}\left(B_{1}\right), a_{4}\left(B_{1}\right), a_{5}\left(B_{1}\right), a_{6}\left(B_{1}\right), a_{14}\left(B_{1}\right)\right)=(93,44,27,16,3)$ for $q=13$. Hence, B_{1} is not projectively equivalent to any blocking set in Theorems 3 and 4 . Assume $q \geq 17$ and suppose B_{1} contains a conic C^{\prime}. Since $C \neq C^{\prime}$, it follows from Lemma 20 that C^{\prime} could contain at most 4 points from $C, 6$ points from $\ell_{12} \cup \ell_{13} \cup \ell_{23}$ and the other 4 points, in total at most 14 points from B_{1}, a contradiction. Thus, B_{1} contains no conic for $q \geq 17$. On the other hand, the blocking sets in Theorem 3 and 4 contain a conic. Hence, the arc $\left(B_{1}\right)^{c}$ is not projectively equivalent to any of the arcs in the previous theorems.

For $q=7$, the $\left(q^{2}-3 q+1, q-2\right)$-arc of Theorem 5 is equivalent to K_{20}.
Remark 5. (1) Assume $q=5$ in Theorem 5. From Table 2 in Section 1, there exist two inequivalent (11,3)-arcs (equivalently, $(20,3)$-blocking sets) in $\operatorname{PG}(2,5)$, see also ([3], Table 12.5). The $(11,3)$-arcs have spectrum
(a) $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(5,1,10,15)$ or
(b) $\quad\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(4,4,7,16)$.

There are four 6 -lines $\ell_{12}, \ell_{13}, \ell_{23}$ and $\langle S, T\rangle$ for the arc $\left(B_{1}\right)^{c}$ in Theorem 5 when $q=5$. So, $\left(B_{1}\right)^{c}$ has spectrum (b) and hence $\left(B_{1}\right)^{c}$ is projectively equivalent to the arc in Theorem 4 (3).
(2) When $q=7$, the line $\langle P, S\rangle$ in the proof of Theorem 5 is a secant of C. On the other hand, when $q=13$, $\langle P, S\rangle$ is an external line of C. Thus, depending on the value of q, the line $\langle P, S\rangle$ can form a tangent, a secant or an external line of C. That is why we could not determine the spectrum of the $\left(q^{2}-3 q+1, q-2\right)$-arc in Theorem 5.

Next, we determine the spectrum of the arc B_{0} in Lemma 3 for odd q to find one more inequivalent arc.

Theorem 6. For odd $q \geq 5$, let $B=\ell_{1} \cup \ell_{2} \cup \ell_{3} \cup \ell_{4} \cup\left\{P_{1}, P_{2}\right\}$, consisting of the lines $\ell_{1}=$ [100], $\ell_{2}=[010], \ell_{3}=[001], \ell_{4}=[111]$ and the points $P_{1}=\mathbf{P}(-1,1,1), P_{2}=\mathbf{P}(1,-1,1)$. Then, B^{c} forms a $\left(q^{2}-3 q+1, q-2\right)$-arc with spectrum $\left(a_{0}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(4,2 q-6, q^{2}-7 q+17,6 q-14\right)$.

Proof. Note that no three of the lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ are concurrent. Let $\mathcal{Q}=\left\{Q_{i j}=l_{i} \cap \ell_{j}: 1 \leq i<j \leq 4\right\}$, $r_{1}=\left\langle Q_{14}, Q_{23}\right\rangle, r_{2}=\left\langle Q_{13}, Q_{24}\right\rangle$ and $r_{3}=\left\langle Q_{12}, Q_{34}\right\rangle$. Then, P_{1} and P_{2} are equal to $r_{2} \cap r_{3}$ and $r_{1} \cap r_{3}$, respectively. Hence, $r_{3}=\left\langle P_{1}, P_{2}\right\rangle$ is a 4 -line. Let ℓ be a line. Then ℓ meets $\bigcup_{i=1}^{4} \ell_{i}$ at two, three or four points. When $\left|\ell \cap\left(\bigcup_{i=1}^{4} \ell_{i}\right)\right|=2, \ell$ is r_{1}, r_{2} or r_{3}. So, ℓ contains P_{1} or P_{2}. Thus, B^{c} is a $\left(q^{2}-3 q+1, q-2\right)$-arc. Now, the $(q+1)$-lines for B are $\ell_{1}, \ldots, \ell_{4}$, and $a_{q+1}(B)=4$. The 5 -lines for B are the lines containing one of P_{1}, P_{2} but none of \mathcal{Q}. Hence, $a_{5}(B)=2(q+1-4)$. The 3-lines for B are the lines through one of two points Q_{12}, Q_{34} containing no other point of \mathcal{Q}, the lines through one point $\left(\neq Q_{12}, Q_{34}\right)$ of \mathcal{Q} containing none of $\left\{P_{1}, P_{2}\right\}$, and two more lines r_{1}, r_{2}. Thus, $a_{3}(B)=2(q+1-3)+$ $4(q+1-4)+2=6 q-14$. Finally, $a_{4}(B)=q^{2}+q+1-a_{q+1}(B)-a_{5}(B)-a_{3}(B)=q^{2}-7 q+17$.

Theorem 7. Under the conditions of Theorem 6, let $P_{3}=r_{1} \cap r_{2}$. Take $P_{2}^{\prime} \in r_{1} \backslash\left\{P_{2}, P_{3}, Q_{14}, Q_{23}\right\}$ and let $B^{\prime}=\left(B \backslash\left\{P_{2}\right\}\right) \cup\left\{P_{2}^{\prime}\right\}$. Then, $K=\left(B^{\prime}\right)^{c}$ is a $\left(q^{2}-3 q+1, q-2\right)$-arc with spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=$ $(5,1,10,15)$ for $q=5$ and $\left(a_{0}, a_{q-5}, a_{q-4}, a_{q-3}, a_{q-2}\right)=\left(4,1,2 q-9, q^{2}-7 q+20,6 q-15\right)$ for $q \geq 7$.

Proof. Since the 3-line for B through P_{2} is r_{1} only, B^{\prime} forms a $(4 q, 3)$-blocking set. The lines through P_{2} for K except $r_{1}=\left\langle P_{2}, P_{2}^{\prime}\right\rangle$ are three 4-lines $\left\langle P_{2}, Q_{13}\right\rangle,\left\langle P_{2}, Q_{24}\right\rangle,\left\langle P_{1}, P_{2}\right\rangle$ and $(q-3) 5$-lines. On the other hand, the lines through P_{2}^{\prime} for K other than r_{1} are four 3-lines $\left\langle P_{2}^{\prime}, Q_{i j}\right\rangle$ with $Q_{i j} \in \mathcal{Q} \backslash r_{1}$, one 5-line $\left\langle P_{2}^{\prime}, P_{1}\right\rangle$ and $(q-5) 4$-lines. Hence, $a_{3}\left(B^{\prime}\right)=a_{3}(B)+3-4, a_{4}\left(B^{\prime}\right)=a_{4}(B)-3+(q-3)+4-(q-5)$, $a_{5}\left(B^{\prime}\right)=a_{5}(B)-(q-3)-1+(q-5), a_{6}\left(B^{\prime}\right)=1$ (or $a_{6}\left(B^{\prime}\right)=1+4=5$ for $\left.q=5\right)$. Now, our assertion follows from Theorem 6.

From the above theorems we get the following.

Corollary 1. There exist at least six projectively inequivalent $\left(q^{2}-3 q+1, q-2\right)$-arcs in $\operatorname{PG}(2, q)$ for $q=$ $p^{h} \geq 7$ with odd prime $p \neq 3$.

Finally, we consider the case q is even. Assume $q \geq 4$. Then, it is known that a ($b, 3$)-blocking set B containing a line satisfies $b \geq 4 q-1$ [27]. The set B_{0} for even q in Lemma 3 is such a ($4 q-1,3$)-blocking set with spectrum

$$
\left(a_{3}\left(B_{0}\right), a_{4}\left(B_{0}\right), a_{5}\left(B_{0}\right), a_{q+1}\left(B_{0}\right)\right)=\left(6 q-9, q^{2}-6 q+8, q-2,4\right)
$$

When $q=4$, the complement of a $(4 q-1,3)$-blocking set is a 6 -arc (a hyperoval). So, assume $q \geq 8$. We can construct two more ($4 q-1,3$)-blocking sets as follows.

Theorem 8. For even $q \geq 8$, let C be a conic in $\operatorname{PG}(2, q)$ with nucleus N. For any three points P_{1}, P_{2}, P_{3} in $C \cup\{N\}$ with $P_{1}, P_{2} \in C$, let $\ell_{i j}=\left\langle P_{i}, P_{j}\right\rangle$ for $1 \leq i<j \leq 3$. Then,
(1) $B=C \cup \ell_{12} \cup \ell_{23} \cup \ell_{13}$ is a $(4 q-1,3)$-blocking set with spectrum

$$
\left(a_{3}(B), a_{5}(B), a_{q+1}(B)\right)=\left(\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3\right)
$$

with $|\operatorname{Aut}(B)|=2(q-1)$ if $P_{3}=N$,
(2) $B=C \cup \ell_{12} \cup \ell_{23} \cup \ell_{13} \cup\{N\}$ is a $(4 q-1,3)$-blocking set with spectrum

$$
\left(a_{3}(B), a_{5}(B), a_{q+1}(B)\right)=\left(\frac{(q+6)(q-1)}{2}, \frac{(q-1)(q-2)}{2}, 3\right)
$$

with $|\operatorname{Aut}(B)|=6$ if $P_{3} \neq N$.
The (4q-1,3)-blocking sets in Theorem 8 were first found for $q=8$, see [7].
Corollary 2. There exist at least three projectively inequivalent $\left(q^{2}-3 q+2, q-2\right)$-arcs (equivalently, $(4 q-$ $1,3)$-blocking sets) in $\operatorname{PG}(2, q)$ for every even $q \geq 8$.

Remark 6. From Table 1, $\left(q^{2}-3 q+2, q-2\right)$-arcs are optimal for $q=4,8$ and give the known lower bound on $m_{14}(2,16)$ for $q=16$.

Author Contributions: Writing-original draft, I.B., E.J.C., T.M. and T.O. All authors have read and agreed to the published version of the manuscript.
Funding: The first author was partially supported by the Bulgarian Science Fund under Contract DN-02-2/13.12.2016. The second author was supported by the National Research Foundation of Korea funded by the Korean Government(NRF-2018R1D1A1B07044992). The third author was partially supported by JSPS KAKENHI Grant Number JP16K05256.
Acknowledgments: The second author thanks to M. Grassl for his helpful discussion and computer search with Magma in the earlier version of this paper. The authors are very grateful to the reviewers for their comments.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ball, S. Table of Bounds on Three-Dimensional Linear Codes or (n, r) - Arcs in PG $(2, q)$. Available online: https:/ / mat-web.upc.edu/ people/simeon.michael.ball/codebounds.html (accessed on 20 January 2020).
2. Ball, S.; Hirschfeld, J.W.P. Bounds on (n, r)-arcs and their application to linear codes. Finite Fields Appl. 2005, 3,326-336. [CrossRef]
3. Hirschfeld, J.W.P. Projective Geometries over Finite Fields, 2nd ed.; Clarendon Press: Oxford, UK, 1998.
4. Marcugini, S.; Milani, A.; Pambianco, F. Classification of the $[n, 3, n-3]_{q}$ NMDS codes over $G F(7), G F(8)$ and GF (9). Ars Comb. 2001, 61, 263-269.
5. Marcugini, S.; Milani, A.; Pambianco, F. Classification of the ($n, 3$)-arcs in PG(2,7). J. Geom. 2004, 80, 179-184. [CrossRef]
6. Hill, R.; Love, C.P. On the $(22,4)$-arcs in $\mathrm{PG}(2,7)$ and related codes. Discrete Math. 2003, 266, 253-261. [CrossRef]
7. Betten, A.; Cheon, E.J.; Kim, S.J.; Maruta, T. The classification of $(42,6)_{8}-\operatorname{arcs}$. Adv. Math. Commun. 2011, 5, 209-223. [CrossRef]
8. Maruta, T.; Kikui, A.; Yoshida, Y. On the uniqueness of $(48,6)-\operatorname{arcs}$ in $\operatorname{PG}(2,9)$. Adv. Math. Commun. 2009, 3, 29-34.
9. Ball, S. On the size of a triple blocking set in $\operatorname{PG}(2, q)$. Eur. J. Combin. 1996, 17, 427-435. [CrossRef]
10. Barlotti, A. Some Topics in Finite Geometrical Structures; Institute of Statistics Mimeo Series 439; Univ. of North Carolina: Chapel Hill, NC, USA, 1965.
11. Cheon, E.J.; Jung, S.O.; Kim, S.J. On the (29,5)-arcs in $P G(2,7)$ and linear codes. In Proceedings of the 2012 KIAS International Conference on Coding Theory and Application, Seoul, Korea, 15-17 November 2012.
12. Bosma, W.; Cannon, J.J.; Playoust, C. The Magma algebra system I: The user language. J. Symb. Comput. 1997, 24, 235-265. [CrossRef]
13. Cheon, E.J.; Grassl, M.; Jung, S.O.; Kim, S.J. On the $(29,5)$-arcs in $P G(2,7)$. In Proceedings of the 11th International Conference on Finite Fields and Their Applications, Magdeburg, Germany, 22-26 July 2013.
14. Bouyukliev, I.G. What is Q-Extension? Serdica J. Comput. 2007, 1, 115-130.
15. Hill, R.; Mason, J.R.M. On (k, n)-Arcs and the Falsity of the Lunelli-Sce Conjecture; London Math. Soc. Lecture Note Series 49; Cambridge University Press: Cambridge, UK, 1981; pp. 153-168.
16. Bouyukliev, I.; Bouyuklieva, S.; Aaron, T. Gulliver and Patric Östergård, Classification of optimal binary self-orthogonal codes. J. Combin. Math. Combin. Comput. 2006, 59, 33-87.
17. Bierbrauer, J. Introduction to Coding Theory; Chapman \& Hall/CRC: Boca Raton, FL, USA, 2005.
18. Hill, R. Optimal linear codes. In Cryptography and Coding II; Mitchell, C., Ed.; Oxford Univ. Press: Oxford, UK, 1992; pp. 75-104.
19. Cuntz, M.J. $\left(22_{4}\right)$ and $\left(26_{4}\right)$ configurations of lines. Ars Math. Contemp. 2018, 14, 157-163. [CrossRef]
20. Grünbaum, B.; Rigby, J.F. The real configuration (214). J. Lond. Math. Soc. 1990, 41, 336-346. [CrossRef]
21. Dodunekov, S. Minimal block length of a linear q-ary code with specified dimension and code distance. Probl. Inform. Transm. 1984, 20, 239-249.
22. Kaski, P.; Östergård, P.R. Classification Algorithms for Codes and Designs; Springer: Berlin/Heidelberg, Germany, 2006.
23. Bouyukliev, I. About the code equivalence. In Advances in Coding Theory and Cryptology; Shaska, T., Huffman, W.C., Joyner, D., Ustimenko, V., Eds.; Series on Coding Theory and Cryptology; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2007; pp. 126-151.
24. Jaffe, D.B. Optimal binary linear codes of length ≤ 30. Discrete Math. 2000, 223, 135-155. [CrossRef]
25. Betten, A. Classifying Discrete Objects with Orbiter. ACM Commun. Comput. Algebra 2014, 47, 183-186. [CrossRef]
26. Blokhuis, A. On multiple nuclei and a conjecture of Lunelli and Sce. Bull. Belg. Math. Soc. 1994, 3,349-353. [CrossRef]
27. Bruen, A.A. Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory Ser. A 1992, 60, 19-33. [CrossRef]
(C) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
