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Abstract: A simple theorem is presented that automatically generates the topological transversality
theorem and Leray–Schauder alternatives for weakly upper semicontinuous, weakly compact maps.
An application is given to illustrate our results.
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1. Introduction

Many problems arising in natural phenomena give rise to problems of the form x ∈ F x, for some
map F. In applications for a complicated F, the intent is to attempt to relate it to a simpler (and solvable)
problem x ∈ G x, where the map G is homotopic (in an appropriate way) to F, and then to hopefully
deduce that x ∈ F x is solvable. This approach was initiated by Leray and Schauder and extended to a
very general formulation in, for example, [1,2]. The goal, to begin with, is to consider a class of maps that
arise in applications and then to present the notion of homotopy for the class of maps that are fixed point
free on the boundary of the considered set.

In this paper we consider weakly upper semicontinuous, weakly compact maps F and G, with F ∼= G.
We present the topological transversality theorem, which states that F is essential if, and only if, G is
essential. The proof is based on a new result (Theorem 1) for weakly upper semicontinuous, weakly
compact maps. Our topological transversality theorem will then immediately generate Leray–Schauder
type alternatives (see Theorem 4 and Corollary 1). In addition, we note that these results are useful from
an application viewpoint (see Theorem 5).

2. Topological Transversality Theorem

Let X be a Hausdorff locally convex topological vector space and U be a weakly open subset of C,
where C is a closed convex subset of X. First we present the class of maps, M, that we will consider in
this paper.

Definition 1. We sayF ∈ M(Uw, C) if F : Uw → K(C) is a weakly upper semicontinuous, weakly compact map;
here Uw denotes the weak closure of U in C and K(C) denotes the family of nonempty, convex, weakly compact
subsets of C.

Definition 2. We say F ∈ M∂U(Uw, C) if F ∈ M(Uw, C) and x /∈ F(x) for x ∈ ∂U; here ∂U denotes the weak
boundary of U in C.
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Now we present the notion of homotopy for the class of maps, M, with the fixed point free on
the boundary.

Definition 3. Let F, G ∈ M∂U(Uw, C). We write F ∼= G in M∂U(Uw, C) if there exists a weakly upper
semicontinuous, weakly compact map Ψ : Uw × [0, 1]→ K(C) with x /∈ Ψt(x) for x ∈ ∂ U and t ∈ (0, 1) (here
Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G.

Definition 4. Let F ∈ M∂U(Uw, C). We say that F is essential in M∂U(Uw, C) if, for every map J ∈
M∂U(Uw, C) with J|∂U = F|∂U , there exists a x ∈ U with x ∈ J (x).

We present a simple theorem that will immediately yield the so called topological transversality
theorem (motivated from [1]) for weakly upper semicontinuous, weakly compact maps (see Theorem 2).
The topological transversality theorem essentially states that if a map F is essential and F ∼= G then the
map G is essential (and so in particular has a fixed point).

Theorem 1. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, C be a
closed convex subset of X, F ∈ M∂U(Uw, C) and G ∈ M∂U(Uw, C) is essential in M∂U(Uw, C). Also suppose{

for any map J ∈ M∂U(Uw, C) with J|∂U = F|∂U
we have G ∼= J in M∂U(Uw, C).

(1)

Then F is essential in M∂U(Uw, C).

Proof. Let J ∈ M∂U(Uw, C) with J|∂U = F|∂U . We must show there exists a x ∈ U with x ∈ J(x). Let
H J : Uw × [0, 1] → K(C) be a weakly upper semicontinuous, weakly compact map with x /∈ H J

t (x) for
any x ∈ ∂U and t ∈ (0, 1) (here H J

t (x) = H J(x, t)), H J
0 = G and H J

1 = J (this is guaranteed from (2.1)). Let

Ω =
{

x ∈ Uw : x ∈ H J(x, t) for some t ∈ [0, 1]
}

and
D =

{
(x, t) ∈ Uw × [0, 1] : x ∈ H J(x, t)

}
.

Now recall that X = (X, w), the space X endowed with the weak topology, is completely regular.
First, D 6= ∅ (note G is essential in M∂U(Uw, C)) and D is weakly closed (note H J is weakly upper
semicontinuous) and so D is weakly compact (note H J is a weakly compact map). Let π : Uw× [0, 1]→ Uw

be the projection. Now Ω = π(D) is weakly closed (see Kuratowski’s theorem ([3] p. 126)) and so in fact
weakly compact. Also note that Ω ∩ ∂U = ∅ (since x /∈ H J

t (x) for any x ∈ ∂U and t ∈ [0, 1]). Thus there
exists a weakly continuous map µ : Uw → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1. We define the map R
by R(x) = H J(x, µ(x)) = H J ◦ g(x), where g : Uw → Uw × [0, 1] is given by g(x) = (x, µ(x)). Note that
R ∈ M∂U(Uw, C) with R|∂U = G|∂U (note, if x ∈ ∂U, then R(x) = H J(x, 0) = G(x)) so the essentiality
of G guarantees a x ∈ U with x ∈ R(x) i.e., x ∈ H J

µ(x)(x)). Thus x ∈ Ω so µ(x) = 1 and as a result

x ∈ H J
1(x) = J(x).

Before we state the topological transversality theorem we note two things:
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(a). If Λ, Θ ∈ M∂U(Uw, C) with Λ|∂U = Θ|∂U then Λ ∼= Θ in M∂U(Uw, C). To see this let Ψ(x, t) =

(1− t)Λ(x) + tΘ(x) and note that Ψ : Uw × [0, 1] → K(C) is a weakly upper semicontinuous, weakly
compact map [some authors prefer to assume (but it is not necessary) the following property:{

if W is a weakly compact subset of
C then co (W) is weakly compact

to guarantee that Ψ is weakly compact. Note, this property is a Krein–Šmulian type property [4,5], which
we know is true if X is a quasicomplete locally convex linear topological space]. Note, x /∈ Ψt(x) for
x ∈ ∂U and t ∈ [0, 1] (note, Λ|∂U = Θ|∂U).
(b). A standard argument guarantees that ∼= in M∂U(Uw, C) is an equivalence relation.

Theorem 2. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, and C
be a closed convex subset of X. Suppose F and G are two maps in M∂U(Uw, C) with F ∼= G in M∂U(Uw, C). Then
F is essential in M∂U(Uw, C) if, and only if, G is essential in M∂U(Uw, C).

Proof. Assume G is essential in M∂U(Uw, C). To show that F is essential in M∂U(Uw, C) let J ∈
M∂U(Uw, C) with J|∂U = F|∂U . Now since F ∼= G in M∂U(Uw, C), then (a) and (b) above guarantees
that G ∼= J in M∂U(Uw, C) i.e., (2.1) holds. Then Theorem 1 guarantees that F is essential in M∂U(Uw, C).
A similar argument shows that if F is essential in M∂U(Uw, C), then G is essential in M∂U(Uw, C).

Next, we present an example of an essential map in M∂U(Uw, C), which will be useful from an
application viewpoint (see Corollary 1 and Theorem 5).

Theorem 3. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
and C be a closed convex subset of X. Then the zero map is essential in M∂U(Uw, C).

Proof. Let J ∈ M∂U(Uw, C) with J|∂U = {0}|∂U . We must show there exists a x ∈ U with x ∈ J(x).
Consider the map R given by

R(x) =

{
J(x), x ∈ Uw

{0}, x ∈ C \Uw.

Note, R : C → K(C) is a weakly upper semicontinuous, weakly compact map, thus [6] guarantees that
there exists a x ∈ C with x ∈ R(x). If x ∈ C \Uw then since R(x) = {0} and 0 ∈ U we have a contradiction.
Thus x ∈ U so x ∈ R(x) = J(x).

We combine Theorem 2 and Theorem 3 and we obtain:

Theorem 4. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
and C be a closed convex subset of X. Suppose F ∈ M∂U(Uw, C) with

x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1). (2)

Then F is essential in M∂U(Uw, C) (in particular there exists a x ∈ U with x ∈ F(x)).

Proof. Note, Theorem 3 guarantees that the zero map is essential in M∂U(Uw, C). The result will follow
from Theorem 2 if we note the usual homotopy between the zero map and F, namely, Ψ(x, t) = t F(x)
(note x /∈ Ψt(x) for x ∈ ∂U and t ∈ [0, 1]; see (2.2)).
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Corollary 1. Let X be a Hausdorff locally convex topological vector space, U be a weakly open subset of C, 0 ∈ U,
C be a closed convex subset of X, and Uw be a Šmulian space (i.e., for any Ω ⊆ Uw if x ∈ Ωw then there exists a
sequence {xn} in Ω with xn ⇀ x). Suppose F : Uw → K(C) is a weakly sequentially upper semicontinuous i.e., for
any weakly closed set A of C we have that F−1(A) = {x ∈ Uw : F(x) ∩ A 6= ∅} is a weakly sequentially closed),
weakly compact map with

x /∈ t F(x) for x ∈ ∂U and t ∈ (0, 1]. (3)

Then F is essential in M∂U(Uw, C) (in particular there exists a x ∈ U with x ∈ F(x)).

Proof. The result follows from Theorem 4, as F ∈ M∂U(Uw, C). To see this we simply need to show that
F : Uw → K(C) is weakly upper semicontinuous. The argument is similar to that in [2,7]. Let A be a weakly
closed subset of C and let x ∈ F−1(A)

w. As Uw is Šmulian then there exists a sequence {xn} in F−1(A)

with xn ⇀ x. Now, x ∈ F−1(A) since F−1(A) is weakly sequentially closed. Thus, F−1(A)
w
= F−1(A) so

F−1(A) is weakly closed.

We consider the second order differential inclusion{
y′′ ∈ f (t, y, y′) a.e. on [0, 1]
y(0) = y(1) = 0

(4)

where f : [0, 1] × R2 → CK(R) is a Lp–Carathéodory function (here p > 1 and CK(R) denotes the
family of nonempty, convex, compact subsets of R); by this we mean
(a). t 7→ f (t, x, y) is measurable for every (x, y) ∈ R2,
(b). (x, y) 7→ f (t, x, y) is upper semicontinuous for a.e. t ∈ [0, 1],
and
(c). for each r > 0, ∃ hr ∈ Lp[0, 1] with | f (t, x, y)| ≤ hr(t) for a.e. t ∈ [0, 1] and every (x, y) ∈ R2 with
|x| ≤ r and |y| ≤ r.

We present an existence principle for (2.4) using Corollary 1. For notational purposes for appropriate
functions u, let

‖u‖0 = sup
[0,1]
|u(t)|, ‖u‖1 = max{‖u‖0, ‖u′‖0} and ‖u‖Lp =

(∫ 1

0
|u(t)|p dt

) 1
p

.

Recall that Wk,p[0, 1], 1 ≤ p < ∞ denotes the space of functions u : [0, 1] → Rn , with u(k−1) ∈
AC[0, 1] and u(k) ∈ Lp[0, 1]. Note, Wk,p[0, 1] is reflexive if 1 < p < ∞.

Theorem 5. Let f : [0, 1]× R2 → CK(R) be a Lp–Carathéodory function (1 < p < ∞) and assume there exists
a constant M0 (independent of λ) with ‖y‖1 6= M0 for any solution y ∈W2,p[0, 1] to{

y′′ ∈ λ f (t, y, y′) a.e. on [0, 1]
y(0) = y(1) = 0

for 0 < λ ≤ 1. Then (2.4) has a solution in W2,p[0, 1].

Proof. Since f is Lp–Carathéodory, there exists hM0 ∈ Lp[0, 1] with{
| f (t, u, v)| ≤ hM0(t) for a.e. t ∈ [0, 1] and
every (u, v) ∈ R2 with |u| ≤ M0 and |v| ≤ M0.
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Let

G(t, s) =

{
(t− 1) s, 0 ≤ s ≤ t ≤ 1
(s− 1) t, 0 ≤ t ≤ s ≤ 1

and N = max{N0, N1, M0} where (here 1
p + 1

q = 1),

N0 = ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|G(t, s)|q ds

) 1
q

and

N1 = ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|Gt(t, s)|q ds

) 1
q

.

We also let
N2 = ‖hM0‖Lp .

We will apply Corollary 1 with X = W2,p[0, 1],

C =
{

u ∈W2,p[0, 1] : ‖u‖1 ≤ N and ‖u′′‖Lp ≤ N2

}
and

U =
{

u ∈W2,p[0, 1] : ‖u‖1 < M0 and ‖u′′‖Lp ≤ N2

}
.

Now, let
F = L ◦ N f : C → 2X

where L : Lp[0, 1]→W2,p[0, 1] and N f : W2,p[0, 1]→ 2Lp [0,1] are given by

L y(t) =
∫ 1

0
G(t, s) y(s) ds

and
N f u =

{
y ∈ Lp[0, 1] : y(t) ∈ f (t, u(t), u′(t)) a.e. t ∈ [0, 1]

}
.

Note, N f is well defined, since if x ∈ C then ([8] p. 26 or [9], p. 56) guarantees that N f x 6= ∅.
Notice that C is a convex, closed, bounded subset of X. We first show that U is weakly open in C.

To do this, we will show that C \U is weakly closed. Let x ∈ C \Uw. Then there exists xn ∈ C \U
(see [10] p. 81) with xn ⇀ x (here W2,p[0, 1] is endowed with the weak topology and ⇀ denotes weak
convergence). We must show x ∈ C \U. Now since the embedding j : W2,p[0, 1]→ C1[0, 1] is completely
continuous ([11], p. 144 or [12], p. 213), there is a subsequence S of integers with

xn → x in C1[0, 1] and x′′n ⇀ x′′ in Lp[0, 1]

as n→ ∞ in S. Also

‖x‖1 = lim
n→∞

‖xn‖1 and ‖x′′‖Lp ≤ lim inf ‖x′′n‖Lp ≤ N2.

Note, M0 ≤ ‖x‖1 ≤ N since M0 ≤ ‖xn‖1 ≤ N for all n. As a result, x ∈ C \U, so C \Uw = C \U.
Thus, U is weakly open in C. Also,
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∂ U = {u ∈ C : ‖u‖1 = M0} and Uw = {u ∈ C : ‖u‖1 ≤ M0} ;

note, Uw = U ([5] p. 66) since U is convex (alternatively take x ∈ Uw and follow a similar argument as
above). Also note that Uw is weakly compact (note W2,p[0, 1] is reflexive) so Uw is Šmulian. Notice also
that F : Uw → 2C since if y ∈ Uw then from above we have

‖F y‖0 ≤ ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|G(t, s)|q ds

) 1
q
= N0,

‖(F y)′‖0 ≤ ‖hM0‖Lp sup
t∈[0,1]

(∫ 1

0
|Gt(t, s)|q ds

) 1
q
= N1,

and
‖(F y)′′‖0 ≤ ‖hM0‖Lp = N2.

A standard argument (see for example ([13] p. 283)) guarantees that F : Uw → K(C) is weakly sequentially
upper semicontinuous.

Now we apply Corollary 1 to deduce our result: Note that (2.3) holds since, if there exists x ∈ ∂ U
and λ ∈ (0, 1] with x ∈ λ F x , then ‖x‖1 = M0 (since x ∈ ∂ U) and ‖x‖1 6= M0 by assumption. Thus, F
is essential in M∂U(Uw, C), so in particular, F has a fixed point in U.
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