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Abstract: This study applies the extended L2 Sobolev type inequality to the Lp Sobolev type inequality
using Hölder’s inequality. The sharp constant and best function of the Lp Sobolev type inequality are
found using a Green function for the nth order ordinary differential equation. The sharp constant is
shown to be equal to the Lp norm of the Green function and to the pth root of the value of the origin
of the best function.
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1. Introduction

The Sobolev inequality also called the Sobolev embedding theorem, is often the core inequality
in partial differential equations and variation calculations. Nonetheless, there have been few studies
explicitly seeking the sharp (small) constant and best function calculation of the Sobolev inequality,
the so-called “best evaluation of the Sobolev inequality”.

In 1976, Aubin [1] and Talenti [2] independently discovered the sharp constants and best functions
of Sobolev inequalities calculated the sharp constant, and found the best function by applying
symmetric rearrangement to the Sobolev inequality:

‖u‖Lq(Rn) ≤ C‖∇u‖Lp(Rn) ∀u ∈W1,p(Rn) = {u ∈ Lq(Rn), ∇u ∈ Lp(Rn)}. (1)

On the other hand, in this study, the sharp constant of Sobolev inequality is primarily calculated
using the Green function of various boundary value problems when p ≤ 2 and q = ∞. We have found
that the sharp constant can be obtained using the Green function, which is the reproducing kernel of a
Hilbert space [3]. Specifically, the sharp constant of the corresponding Sobolev inequality is expressed
as the maximum diagonal value of the Green function. Kametaka et al. [3] presented an earlier result
for this sharp constant, using a unique approach that differs from symmetric rearrangement. The best
evaluation of the Sobolev inequality obtained thus far has been applied to beam deflection [4], electrical
circuits [5], and a range of other practical problems.

This paper aims to extend the result of the L2 Sobolev type inequality to the Lp Sobolev
type inequality, i.e., to generalize the best evaluation of the Sobolev type inequality. Results from
studies [5–7] and [8] are prior works related to the subject of the present paper.

Mathematics 2020, 8, 296; doi:10.3390/math8020296 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8020296
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/296?type=check_update&version=2


Mathematics 2020, 8, 296 2 of 11

For n = 1, 2, 3, · · · , we consider the following boundary value problem for an nth order ordinary
differential operator P(d/dt):

P(d/dt)u = f (t) (t ∈ R) (2)

with the following conditions,

u(i)(t) ∈ Lq(R) (0 ≤ i ≤ n), (3)

where exponent q satisfies 1 < q ≤ 2. The condition (3) corresponds to boundary condition at t = ±∞.
The characteristic polynomial with real coefficients

P(z) =
n−1

∏
j=0

(z + aj)

is assumed to be a Hurwitz polynomial with real characteristic roots −a0,−a1, · · · ,−an−1.
For simplicity, we impose the following two assumptions:

Assumption 1. The real coefficients ai (i = 0, 1, · · · , n− 1) satisfy the following inequality:

0 < a0 < a1 < · · · < an−1.

Assumption 2. The two exponents p and q satisfy both 1 < q ≤ p < ∞ and the relation

1
p
+

1
q
= 1.

To describe the main theorem, we introduce a function G(t), which is defined by

G(t) = Y(t)
n−1

∑
j=0

bje
−ajt (t ∈ R), bj =

1
P′(−aj)

=
1

n−1

∏
k=0,k 6=j

(−aj + ak)

where Y(t) is a unit step function, i.e., Y(t) = 1 (t ≥ 0), and 0 (t < 0). It is shown in Section 3 that
the function G(t, s) = G(t− s) is the Green function of (2). Note that coefficient bj is bounded for
0 ≤ j ≤ n− 1. Hereafter, for convenience, bmax is defined as the maximum of the absolute value for
bj (0 ≤ j ≤ n− 1), such that

bmax = max
0≤j≤n−1

|bj|.

This paper is organized as follows. In Section 2, we use the Fourier transform to construct a Green
function for the boundary value problem of the nth order ordinary differential equation. In Section 3,
we derive a Sobolev type inequality from its solution formula. Section 4 describes the property of the
best function of the Sobolev type inequality. Finally, in Section 5, we calculate the sharp constants for
two special cases.

2. Derivation of Green Function

In this section, we will obtain a concrete expression of the Green function G(t, s) = G(t − s).
Concerning the uniqueness and existence of the solution to (2), we have the following theorem. Strictly
speaking, the Green function G(t, s) = G(t − s) is a two-variable function. However, we call the
function G(t) the Green function for the sake of convenience.
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Theorem 1. For any function f ∈ Lq(R), (2) has a unique solution u expressed as

u(t) =
∫ ∞

−∞
G(t− s) f (s) ds (t ∈ R). (4)

By using the functions

Gj(t) = Y(t)e−ajt (t ∈ R, 0 ≤ j ≤ n− 1),

the Green function can be expressed as

G(t) =

{
(G0 ∗ G1 ∗ · · · ∗ Gn−1) (t ≥ 0),

0 (t < 0).
(5)

The Green function is then rewritten as

G(t) = Y(t)
n−1

∑
j=0

1
n−1

∏
k=0,k 6=j

(−aj + ak)

Gj(t)

= (−1)n−1Y(t)

∣∣∣∣∣ ai
j

Gj(t)

∣∣∣∣∣
/ ∣∣∣ ai

j

∣∣∣ (t ∈ R). (6)

In the above determinants, exponent i and index j are such that 0 ≤ i ≤ n− 2 and 0 ≤ j ≤ n− 1 in the
numerator and 0 ≤ i, j ≤ n− 1 in the denominator.

Before proving Theorem 1, the following proposition is prepared. We define the Fourier transform
F : L1(R) ∩ Lq(R) → Lp(R) of the function u ∈ Lq(R) as

F [u(t)](ω) ≡ û(ω) ≡
∫ ∞

−∞
u(t)e−

√
−1ωt dt.

Proposition 1.

Gj(t) = Y(t)e−ajt F−→ Ĝj(ω) =
1√

−1ω + aj
(t, ω ∈ R, 0 ≤ j ≤ n− 1).

In order to prove Theorem 1, we transform the expansion of 1/P(z) to a partial fraction. For the
partial fraction expansion

1
P(z)

=
n−1

∑
j=0

bj

z + aj
, bj =

1
P′(−aj)

=
1

n−1

∏
k=0,k 6=j

(−aj + ak)

,

using well-known facts (see reference [9] p.120 (18))

bi

 =

 (−aj)
i


−1


0...
0
1
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and

taA−1b = −
∣∣∣∣∣ A b

ta 0

∣∣∣∣∣
/ ∣∣∣ A

∣∣∣ ,

where A is any n× n regular matrix and a and b are n× 1 matrices, we have the following partial
fraction expansion:

1
P(z)

=
n−1

∑
j=0

bj

z + aj
= (−1)n−1

∣∣∣∣∣ ai
j

(z + aj)
−1

∣∣∣∣∣
/ ∣∣∣ ai

j

∣∣∣ . (7)

The above method is a well-known technique in Heaviside calculus (see reference [10] A. §5, 22.2,
for example).

Proof of Theorem 1. By applying the Fourier transform to the differential equation of (2), we have

P(d/dt)u = f (t) F−→ P(
√
−1ω)û = f̂ (ω),

and hence

û(ω) = Ĝ(ω) f̂ (ω),

Ĝ(ω) =
1

P(
√
−1ω)

=
n−1

∑
j=0

bj√
−1ω + aj

=
n−1

∑
j=0

bj

∫ ∞

0
e−(
√
−1ω+aj)t dt

=
∫ ∞

0

( n−1

∑
j=0

bje
−ajt
)

e−
√
−1ωt dt =

∫ ∞

−∞

{
Y(t)

n−1

∑
j=0

bjGj(t)
}

e−
√
−1ωt dt.

The only solution of (2) is given by

u(t) =
∫ ∞

−∞
G(t, s) f (s) ds =

∫ ∞

−∞
G(t− s) f (s) ds (t ∈ R),

where G(t, s) = G(t− s) is the Green function. For Ĝ(ω), using Proposition 1 and (7), we have (6). (5)
follows immediately from

Ĝ(ω) =
n−1

∏
j=0

Ĝj(ω),

which completes the proof of Theorem 1.

Since Gj(t) = Y(t)e−ajt ∈ Lp(R), the Green function G(t) , which is a linear combination of
{Gj(t)}, belongs to Lp(R).

3. The Sharp Constant and the Best Function of Sobolev Type Inequality

In this section, we derive the Sobolev type inequality. This inequality is a special case of Young’s
inequality, for which sharp constants are given in [11]. However, we prove the theorem for the sake of
self containedness. The main conclusion of this paper is as follows.

Theorem 2. For any function u satisfying u(i) ∈ Lq(R) (0 ≤ i ≤ n), there exists a positive constant C, which
is independent of u, such that the following Sobolev type inequality holds:

‖u‖∞ ≤ C‖P(d/dt)u‖q. (8)
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Among such C, the sharp constant C(n; a) is equal to the Lp norm of the Green function G(t) and can be
expressed as

C(n; a) = C(n; a0, a1, · · · , an−1) = ‖G‖p =

{∫ ∞

−∞
|G(t)|p dt

} 1
p

. (9)

Let u(t) = U(t) be a solution of (2) for f (t) = {G(−t)}
p
q (t ∈ R). Then, if C is replaced by C(n; a) in (8),

the inequality holds for

u(t) = c U(t) (t ∈ R),

where c is an arbitrary complex number and U(t) is given by

U(t) =
∫ ∞

−∞
G(t− s){G(−s)}

p
q ds (−∞ < t < ∞).

The physical meaning of a Sobolev type inequality is then that the maximum absolute value of a
solution for (2) is estimated by the constant multiple of the Lq norm of P(d/dt)u(t).

Proof of Theorem 2. For any function u satisfying u(i) ∈ Lq(R) (0 ≤ i ≤ n), we define f ∈ Lq(R) by
the following relation:

f (t) = P(d/dt)u(t) (t ∈ R).

Applying Hölder’s inequality to the solution formula (4), we obtain

∣∣∣∣ ∫ ∞

−∞
G(s− t) f (t) dt

∣∣∣∣ ≤ ( ∫ ∞

−∞
|G(s− t)|p dt

) 1
p
( ∫ ∞

−∞
| f (t)|q dt

) 1
q

,

hence

|u(s)| ≤
( ∫ ∞

−∞
|G(t)|p dt

) 1
p
( ∫ ∞

−∞
| f (t)|q dt

) 1
q

.

Taking the maximum with respect to s on the inequality, we obtain the Sobolev type inequality
as follows:

sup
−∞<s<∞

|u(s)| ≤ ‖G‖p

( ∫ ∞

−∞
| f (t)|q dt

) 1
q

dt = ‖G‖p

( ∫ ∞

−∞
|P(d/dt)u(t)|q dt

) 1
q

.

Taking the solution u(t) = U(t) of (2) for a particular function f (t) = {G(−t)}
p
q (t ∈ R), we obtain

the following relation:

U(s) =
∫ ∞

−∞
G(s− t){G(−t)}

p
q dt (s ∈ R).

From the above equality, we obtain the relation:

U(0) =
∫ ∞

−∞
|G(−t)|1+

p
q dt =

∫ ∞

−∞
|G(−t)|p dt =

∫ ∞

−∞
|G(t)|p dt = ‖G‖p

p.
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We also have:

‖G‖p
p = U(0) ≤ sup

−∞<s<∞
|U(s)| ≤ ‖G‖p

( ∫ ∞

−∞
|P(d/dt)U(t)|q dt

) 1
q

= ‖G‖p

( ∫ ∞

−∞

∣∣∣{G(−t)}
p
q
∣∣∣q dt

) 1
q

= ‖G‖p

( ∫ ∞

−∞
|G(−t)|p dt

) 1
q

= ‖G‖p

{( ∫ ∞

−∞
|G(t)|p dt

) 1
p
} p

q

= ‖G‖
1+ p

q
p = ‖G‖p

p.

This means that

sup
−∞<s<∞

|U(s)| = ‖G‖p

( ∫ ∞

−∞
|P(d/dt)U(t)|q dt

) 1
q

,

which completes the proof of Theorem 2.

4. The Important Property of the Best Function U(t)

In this section, we show an important property of the best function of the Sobolev type inequality.

Lemma 1. A particular solution U(t) to (2) for f (t) = {G(−t)}
p
q satisfies also (3), that is, is an element of

Lq(R), i.e.,

U(i) ∈ Lq(R) (0 ≤ i ≤ n).

Proof of Lemma 1. Since the best function is a special solution of (2) for f (t) = {G(−t)}
p
q ,

U(s) =
∫ ∞

−∞
G(s− t){G(−t)}

p
q dt.

Specifically,

U(s) =


∫ 0

−∞
G(s− t){G(−t)}

p
q dt (t ≤ 0 ≤ s)∫ s

−∞
G(s− t){G(−t)}

p
q dt (t ≤ s < 0)

 =


∫ ∞

0
G(s + t){G(t)}

p
q dt (−t ≤ 0 ≤ s),∫ ∞

|s|
G(s + t){G(t)}

p
q dt (−t ≤ s < 0).

(i) s ≥ 0
Applying the ith derivative of the best function U(s) with respect to s, we obtain

U(i)(s) =
∫ ∞

0

∂i

∂si

[
G(s + t){G(t)}

p
q

]
dt =

∫ ∞

0

{ n−1

∑
j=0

(−1)iai
jbje
−aj(s+t)

}{ n−1

∑
k=0

bke−akt
} p

q

dt.

Subsequently,

|U(i)(s)| ≤
∫ ∞

0

∣∣∣∣{ n−1

∑
j=0

(−1)iai
jbje
−aj(s+t)

}
(nbmax)

p
q e−

a0 p
q t
∣∣∣∣ dt

≤ (nbmax)
p
q

n−1

∑
j=0

ai
j|bj|e−ajs

∫ ∞

0
e−(aj+

a0 p
q )t dt = (nbmax)

p
q

n−1

∑
j=0

ai
j|bj|e−ajs q

a0 p + ajq

≤ (nbmax)
p
q

a0 p

n−1

∑
j=0

ai
j|bj|e−ajs.



Mathematics 2020, 8, 296 7 of 11

From this inequality, we obtain the following evaluation:

|U(i)(s)| ≤ (nbmax)
p
q

a0 p

n−1

∑
j=0

ai
j|bj|e−ajs (0 ≤ i ≤ n, s ≥ 0).

Therefore,

∫ ∞

0
|U(i)(s)|q ds =

(nbmax)p

(a0 p)q

∫ ∞

0

( n−1

∑
j=0

ai
j|bj|e−ajs

)q

ds

≤ (nbmax)p

(a0 p)q aiq
n−1bq

maxnq
∫ ∞

0
e−a0qs ds =

(nbmax)p+qaiq
n−1

aq+1
0 pqq

< ∞.

(ii) s < 0
Similarly, applying the ith (1 ≤ i ≤ n) derivative of the best function U(s) with respect to s, we obtain

U(i)(s) =−
i

∑
k=1

G(k−1)(0)
(

p
q

)
i−k

(−1)i−k{G(|s|)}
p
q−(i−k)

+
∫ ∞

|s|

∂i

∂si

[
G(s + t){G(t)}

p
q

]
dt.

When i = 0, the above inequality does not have the first term on the right side, such that it is sufficient
to prove the case of i = 1, 2, · · · , n. Subsequently,

|U(i)(s)| ≤
i

∑
k=1

∣∣∣∣G(k−1)(0)
(

p
q

)
i−k
{G(|s|)}

p
q−(i−k)

∣∣∣∣+ ∫ ∞

|s|

∣∣∣∣ ∂i

∂si

[
G(s + t){G(t)}

p
q

]∣∣∣∣ dt

where (x)n = Γ(x + n)/Γ(x) = x(x + 1) · · · (x + n− 1) (n ≥ 1), and 1 (n = 0) is the Pochhammer
symbol. Since

G(k−1)(0) =
n−1

∑
j=0

(−aj)
k−1bje

−ajs
∣∣∣∣
s=0

=
n−1

∑
j=0

(−1)k−1ak−1
j bj,

G(|s|) =
n−1

∑
j=0

bje
−aj |s| ≤ nbmaxe−a0|s|

and

∂i

∂si G(s + t) =
n−1

∑
j=0

(−1)iai
jbje
−aj(s+t),

|U(i)(s)| is similarly estimated from above as follows:

|U(i)(s)| ≤
i

∑
k=1

{ n−1

∑
j=0

ak−1
j |bj|

}∣∣∣∣( p
q

)
i−k

∣∣∣∣(nbmaxe−a0|s|)
p
q−(i−k)

+
∫ ∞

|s|

{ n−1

∑
j=0

ai
j|bj|e−aj(s+t)

}
(nbmaxe−a0t)

p
q dt

≤
i

∑
k=1

{
nak−1

n−1bmax|(p− 1)i−k|(nbmaxe−a0|s|)
p
q
}
+

(nbmax)pai
n−1

a0 p
e−

a0 p
q |s|.
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In summary, the following evaluation can be obtained:

|U(i)(s)| ≤ Ai(s) + Bi(s),

Ai(s) =
i

∑
k=1

{
nak−1

n−1bmax|(p− 1)i−k|(nbmaxe−a0|s|)
p
q
}

,

Bi(s) =
(nbmax)pai

n−1
a0 p

e−
a0 p

q |s| (0 ≤ i ≤ n, s < 0).

From the above estimation, it is possible to obtain the following inequality using Jensen’s inequality:

∫ 0

−∞
|U(i)(s)|q ds =

∫ 0

t
|U(i)(s)|q ds

≤ 2q−1
∫ 0

t
{|Ai(s)|q + |Bi(s)|q} ds

= 2q−1
∫ |t|

0
{|Ai(−s)|q + |Bi(−s)|q} ds.

Finally, we confirm the boundedness of each term on the right side:

∫ |t|
0
|Ai(−s)|q ds ≤

∫ |t|
0

∣∣∣∣inai−1
n−1bmax|(p− 1)i−1|(nbmaxe−a0s)

p
q

∣∣∣∣q ds

= {inai−1
n−1bmax|(p− 1)i−1|(nbmax)

p
q }q

∫ |t|
0

e−a0 ps ds

<
1

a0 p
{inai−1

n−1bmax|(p− 1)i−1|(nbmax)
p
q }q < ∞

and ∫ |t|
0
|Bi(−s)|q ds =

{
(nbmax)pai

n−1
a0 p

}q ∫ |t|
0

e−a0 ps ds <
{(nbmax)pai

n−1}q

(a0 p)q+1 < ∞.

Since the boundedness of each term is shown in the above evaluation formula, the following formula
is obtained: ∫ 0

−∞
|U(i)(s)|q ds < ∞ (0 ≤ i ≤ n).

Therefore, the boundedness of the Lq norm for U(i)(s) is shown using (i) and (ii).

‖U(i)‖q
q =

∫ ∞

−∞
|U(i)(s)|q ds =

∫ 0

−∞
|U(i)(s)|q ds +

∫ ∞

0
|U(i)(s)|q ds < ∞.

This completes the proof of Lemma 1.

5. Examples of Sharp Constant

In this section, we calculate the sharp constants for each of the two special cases.

5.1. In the Case of p = 2, 3, 4 · · ·

From Assumption 2, the exponent p is a real number greater than or equal to 2, but the following
lemma holds when p is an integer greater than or equal to 2:
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Lemma 2. For p = 2, 3, 4, · · · , the sharp constant C0(n; a) is specifically calculated as follows:

C0(n; a) =
[

∑
j0+···+jn−1=p

p!
j0! · · · jn−1!

( n−1

∑
k=0

ak jk

)−1 n−1

∏
l=0

n−1

∏
k=0,k 6=l

(−al + ak)
−jl
] 1

p

.

Proof of Lemma 2. From the sharp constant formula (9)

C0(n; a) = ‖G‖p =

{ ∫ ∞

0

( n−1

∑
j=0

bje
−ajt
)p

dt
} 1

p

,

we focus on only the integrand of the sharp constant, and calculate the function specifically.

From the multinomial expansion to the Green function G(t) (t ≥ 0), we get

{G(t)}p =

( n−1

∑
j=0

bje
−ajt
)p

= ∑
j0+···+jn−1=p

p!
j0! · · · jn−1!

(b0e−a0t)j0 · · · (bn−1e−an−1t)jn−1

= ∑
j0+···+jn−1=p

p!
j0! · · · jn−1!

bj0
0 · · · b

jn−1
n−1e−(a0 j0+···+an−1 jn−1)t.

From the above equation, the Lp norm of the Green function is calculated as follows:

‖G‖p
p = ∑

j0+···+jn−1=p

p!
j0! · · · jn−1!

bj0
0 · · · b

jn−1
n−1

∫ ∞

0
e−(a0 j0+···+an−1 jn−1)t dt

= ∑
j0+···+jn−1=p

p!
j0! · · · jn−1!

bj0
0 · · · b

jn−1
n−1

( n−1

∑
k=0

ak jk

)−1

.

Since the definition of the coefficients bj (j = 0, 1, · · · , n− 1) is

bj =
1

P′(−aj)
=

n−1

∏
k=0,k 6=j

(−aj + ak)
−1 (0 ≤ j ≤ n− 1),

the pth power of the Lp norm of the Green function is obtained as follows:

‖G‖p
p = ∑

j0+···+jn−1=p

p!
j0! · · · jn−1!

( n−1

∑
k=0

ak jk

)−1 n−1

∏
l=0

n−1

∏
k=0,k 6=l

(−al + ak)
−jl .

This completes the proof of Lemma 2.

In addition, when p = 1, the L1 norm of the Green function is expressed as follows:

‖G‖1 =
∫ ∞

0

( n−1

∑
j=0

bje
−ajt
)

dt =
n−1

∑
j=0

bj

(
− 1

aj

)
e−ajt

∣∣∣∣∞
0
=

n−1

∑
j=0

bj

aj
=

1
P(0)

=
n−1

∏
k=0

a−1
k < ∞.

5.2. In the Case of aj = j + 1

For real coefficients aj = j + 1 (j = 0, 1, · · · , n− 1) that satisfy Assumption 1, the sharp constants
may be calculated in a concretely closed form.
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Lemma 3. For p ≥ 2 and aj = j + 1 (j = 0, 1, · · · , n − 1), the sharp constant C0(n; a) is specifically
calculated as follows:

C0(n; a) =
1

Γ(n)

{
Γ(p)Γ((n− 1)p + 1)

Γ(np + 1)

} 1
p

.

Proof of Lemma 3. Calculating the value from the definition of the coefficient bj, we obtain

bj =
1

P′(−aj)
=

1
n−1

∏
k=0,k 6=j

(−aj + ak)

=
1

n−1

∏
k=0,k 6=j

(−j + k)

=
1

j−1

∏
k=0

(−j + k)
n−1

∏
k=j+1

(−j + k)

=
(−1)j

j!(n− 1− j)!
=

(−1)j

Γ(n)

(
n− 1

j

)
.

From the above equality, the Green function is composed as follows:

G(t) =
n−1

∑
j=0

bje
−ajt =

n−1

∑
j=0

(−1)j

Γ(n)

(
n− 1

j

)
e−ajt

=
e−t

Γ(n)

n−1

∑
j=0

(−1)j
(

n− 1
j

)
e−jt =

1
Γ(n)

e−t(1− e−t)n−1 (t ≥ 0).

Subsequently,

‖G‖p
p =

∫ ∞

−∞
|G(t)|p dt =

1
{Γ(n)}p

∫ ∞

0
e−pt(1− e−t)p(n−1) dt

=
1

{Γ(n)}p B(p, p(n− 1) + 1) =
Γ(p)Γ((n− 1)p + 1)
{Γ(n)}pΓ(np + 1)

.

Therefore, we obtain the sharp constant

C0 = ‖G‖p =
1

Γ(n)

{
Γ(p)Γ((n− 1)p + 1)

Γ(np + 1)

} 1
p

.

This completes the proof of Lemma 3.
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