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Abstract: We introduce the notion of (dual) residuated frames as a viewpoint of relational semantics
for a fuzzy logic. We investigate the relations between (dual) residuated frames and (dual) residuated
connections as a topological viewpoint of fuzzy rough sets in a complete residuated lattice. As a
result, we show that the Alexandrov topology induced by fuzzy posets is a fuzzy complete lattice with
residuated connections. From this result, we obtain fuzzy rough sets on the Alexandrov topology.
Moreover, as a generalization of the Dedekind–MacNeille completion, we introduce R-R (resp.
DR-DR) embedding maps and R-R (resp. DR-DR) frame embedding maps.

Keywords: complete residuated lattice; (dual) residuated frames; (dual) residuated connections; R-R
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1. Introduction

Blyth and Janovitz [1] introduced the residuated connection as a pair ( f , g) of maps from a
partially ordered set (X,≤X) to a partially ordered set (Y,≤Y) such that for all x ∈ X, y ∈ Y, f (x) ≤Y y
if and only if x ≤X g(y). Examples of maps which form residuated connections play an important
role [2–4]. Orłowska and Rewitzky [5–7] introduced the residuated frame of logical relational systems
for residuated connections.

Pawlak [8,9] introduced the rough set theory as a formal tool to deal with imprecision and
uncertainty in the data analysis. Rough sets form residuated connections in the following sense: let R
be an equivalence relation on X. For A ⊂ X and [x]R = {y ∈ X | (x, y) ∈ R},

R(A) = {x ∈ X | [x]R ∩ A 6= ∅}, R(A) = {x ∈ X | [x]R ⊂ A}. (1)

Let P(X) be the class of all subsets of X and (P(X),⊂) be a partially ordered set. A rough set
(R, R) forms a residuated connection because for all A, B ⊂ X, R(A) ⊂ B if and only if A ⊂ R(B).

Ward et al. [10] introduced a complete residuated lattice L as an important algebraic structure
for many valued logics [11–16]. For an extension of Pawlak’s rough sets, many researchers have
developed L-lower and L-upper approximation operators in algebraic structures L [17–25]. She and
Wang [26] developed an L-fuzzy rough set (G, H) with L-lower approximation operator G and L-upper
approximation operator F in complete residuated lattices as follows. Let (X, eX) be an L-fuzzy partially
ordered set. For A, B ∈ LX ,

F(A)(y) =
∨

x∈X
(eX(x, y)� A(x)), G(B)(x) =

∧
y∈X

(eX(x, y)→ B(y)) . (2)
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Moreover, fuzzy rough sets form residuated connections in the following sense: for all A, B ⊂ X,

eLY (F(A), B) =
∧

y∈X
(F(A)(y)→ B(y)) =

∧
x∈X

(A(x)→ G(B)(x)) = eLX (A, G(B)). (3)

Perfilieva [27–30] introduced the theory of fuzzy transform and inverse fuzzy transform in
complete residuated lattices, which is similar to other well-known transform theories such as the
Fourier, Laplace, Hilbert and wavelet transforms, as well as fuzzy various concept analysis and
fuzzy relation equations [31–33]. Oh and Kim [34] interpreted Perfilieva’s fuzzy transform as a
residuated connection (eLX , F, G, eLY ) with fuzzy transform and inverse fuzzy transform G. By using
the residuated connection, F is a fuzzy join preserving map and G is a fuzzy meet preserving map in a
Kim’s fuzzy complete lattice sense [20], as a generalization of a complete lattice [35–38]. If X and Y
are solutions of fuzzy relation equations F(X) = B and G(Y) = A, then G(B) and F(A) are solutions,
respectively.

Discrete and stone dualities are dualities between algebras and logical relational systems such as
Boolean algebras and classical propositional logics; MV-algebra and Lukasiewicz logic; and BL-algebra
and basic fuzzy logics [3–6,39–41]. The duality leads in a natural way to relational semantics for a
logic [39–41].

In this paper, as a duality between algebras and logical relational systems, we introduce the notion
of residuated connections and residuated frames in fuzzy logics. In Theorems 3 and 4, we show that
(dual) residuated frames induce (dual) residuated connections.

Let (X, eX) be an L-fuzzy partially ordered set. As a generalization of the classic Tarski’s fixed point
theorem [42,43] for isotone maps, we show that τeX = {A ∈ LX | A = F(A) =

∨
x∈X(eX(x, y)� A(x))}

is an Alexandrov L-topology and (τeX ,∨,∧, eτeX
) is a fuzzy complete lattice [20].

If (eX, R, S, eY) is a residuated frame, then we show that F : τeX → τeY and G : τeY → τeX are
well-defined and (eτeX

, F, G, eτeY
) is a residuated connection; eτeY

(F(A), B) = eτeX
(A, G(B)) is defined

by
F(A)(y) =

∨
x∈X

(A(x)� R(x, y)), G(B)(x) =
∧

y∈Y
(S(y, x)→ B(y)) (4)

where τeX and τeY are Alexandrov L-topologies induced by fuzzy posets (X, eX) and (Y, eY) in
Theorem 1. Using this result, one can show that the pair (F(A), G(A)) is an fuzzy rough set for
A on τeX because (eX , R = eX , S = e−1

X , eX) is a residuated frame. Moreover, we show the existence of
fuzzy rough sets from residuated connections.

Similarly, by Theorem 4, dual residuated frames induce dual residuated connections. In Theorem 5
(resp. 9), (resp. dual) residuated connections induce (resp. dual) residuated frames. Under various
relations, we investigate the (dual) residuated connections and frames on Alexandrov L-topologies.

As a generalization of the Dedekind–MacNeille completion [37], we prove the existence of R-R
(resp. DR-DR) embedding maps and R-R (resp. DR-DR) frame embedding maps.

2. Preliminaries

Definition 1 ([10]). An algebra (L,∧,∨,�,→,⊥,>) is called a complete residuated lattice if it satisfies the
following conditions:
(L1) (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and the least element ⊥;
(L2) (L,�,>) is a commutative monoid;
(L3) x� y ≤ z if and only if x ≤ y→ z for x, y, z ∈ L.

In this paper, we always assume that (L,≤,�,→, ∗) is a complete residuated lattice with x∗ =
x → ⊥ and (x∗)∗ = x.

For α ∈ L, A ∈ LX, we denote (α → A), (α� A), αX ∈ LX by (α → A)(x) = α → A(x), (α�
A)(x) = α� A(x), αX(x) = α.
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Lemma 1 ([2]). Let x, y, z, xi, yi, w ∈ L. Then the following hold:
(1) > → x = x, ⊥� x = ⊥;
(2) If y ≤ z, then x� y ≤ x� z, x → y ≤ x → z and z→ x ≤ y→ x;
(3) x ≤ y if and only if x → y = >;
(4) x → (

∧
i yi) =

∧
i(x → yi);

(5) (
∨

i xi)→ y =
∧

i(xi → y);
(6) x� (

∨
i yi) =

∨
i(x� yi);

(7) (x� y)→ z = x → (y→ z) = y→ (x → z);
(8) (x → y)� (z→ w) ≤ (x� z)→ (y� w) and x→ y ≤ (x� z)→ (y� z);
(9) (x → y)� (y→ z) ≤ x → z;
(10)

∨
i∈Γ xi →

∨
i∈Γ yi ≥

∧
i∈Γ(xi → yi) and

∧
i∈Γ xi →

∧
i∈Γ yi ≥

∧
i∈Γ(xi → yi);

(11) x → y ≤ (y→ z)→ (x → z) and x → y ≤ (z→ x)→ (z→ y);
(12) (x� y∗)∗ = x → y and x → y = y∗ → x∗.

Definition 2 ([21]). Let X be a set. A function eX : X× X → L is called:
(E1) Reflexive if eX(x, x) = > for all x ∈ X;
(E2) Transitive if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X;
(E3) If eX(x, y) = eX(y, x) = >, then x = y. If eX satisfies (E1) and (E2), then (X, eX) is called a fuzzy
preorder set. If e satisfies (E1), (E2) and (E3), then (X, eX) is called a fuzzy partially order set (simply,
fuzzy poset).

Definition 3 ([18]). (1) A subset τX ⊂ LX is called an Alexandrov L-topology on X if it satisfies the
following conditions:
(O1) αX ∈ τX ;
(O2) If Ai ∈ τX for all i ∈ I, then

∨
i∈I Ai,

∧
i∈I Ai ∈ τX ;

(O3) If A ∈ τX and α ∈ L, then α � A, α → A ∈ τX. The pair (X, τX) is called an Alexandrov
L-topological space.

Lemma 2. Let τX ⊂ LX . Define eτX : τX × τX → L by eτX (A, B) =
∧

x∈X(A(x)→ B(x)). Then (τX , eτX )

is a fuzzy poset.

Proof. (E1) For all A ∈ τX , we have eτX (A, A) =
∧

x∈X(A(x)→ A(x)) = >.
(E2) Let A, B, C ∈ τX . Then by Lemma 1(9), we have

eτX (A, B)� eτX (B, C) =
∧

x∈X
(A(x)→ B(x))�

∧
x∈X

(B(x)→ C(x))

≤
∧

x∈X
((A(x)→ B(x))� (B(x)→ C(x)))

≤ eτX (A, C).

(5)

(E3) Let eτX (A, B) = eτX (B, A) = >. Then by Lemma 1(3), A = B.
Hence (τX , eτX ) is a fuzzy poset.

Theorem 1. ([18]) Let (X, eX) be a fuzzy poset. Define

τeX = {A ∈ LX | A(x)� eX(x, z) ≤ A(z)}. (6)

Then τeX is an Alexandrov L-topology on X.

Remark 1. (1) Let (X,>4X ) be a fuzzy poset where >4X (x, x) = > and >4X (x, y) = ⊥ for x 6= y ∈ X.
Then τ>4X

= LX and eτ>4X
= eLX : LX × LX → L as eLX (A, B) =

∧
x∈X(A(x)→ B(x)).
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(2) Let (X,>X×X) be a fuzzy poset where >X×X(x, y) = > for each x, y ∈ X. Then τ>X×X = {αX ∈ LX |
α ∈ L} and eτ>X×X

: τ>X×X × τ>X×X → L by eτ>X×X
(αX , βX) = α→ β.

3. Fuzzy Residuated Frames and Fuzzy Residuated Connections on Alexandrov L-topologies

Definition 4. Let (X, eX) and (Y, eY) be fuzzy posets. Let f : X → Y and g : Y → X be maps.
(1) (eX , f , g, eY) is a residuated connection if eY( f (x), y) = eX(x, g(y)) for all x ∈ X, y ∈ Y;
(2) (eX , f , g, eY) is a dual residuated connection if eY(y, f (x)) = eX(g(y), x) for all x ∈ X, y ∈ Y;
(3) f is an isotone map if eY( f (x1), f (x2)) ≥ eX(x1, x2) for all x1, x2 ∈ X;
(4) f is an antitone map if eY( f (x1), f (x2)) ≥ eX(x2, x1) for all x1, x2 ∈ X;
(5) f is an embedding map if eY( f (x1), f (x2)) = eX(x1, x2) for all x1, x2 ∈ X.

Theorem 2. Let (X, eX) and (Y, eY) be fuzzy posets. Let f : X → Y and g : Y → X be maps.
(1) (eX, f , g, eY) is a residuated connection if and only if f , g are isotone maps and eY( f (g(y)), y) =

eX(x, g( f (x))) = > for all x, y ∈ X;
(2) (eX, f , g, eY) is a dual residuated connection if and only if f , g are isotone maps and eY(y, f (g(y))) =

eX(g( f (x)), x) = > for all x, y ∈ X.

Proof. (1) Let ( f , g) be a residuated connection. Since eY( f (x), y) = eX(x, g(y)), we have > =

eY( f (x), f (x)) = eX(x, g( f (x))) and eY( f (g(y)), y) = eX(g(y), g(y)) = >. Furthermore,

eY( f (x1), f (x2)) = eX(x1, g( f (x2))) ≥ eX(x1, x2)� eX(x2, g( f (x2))) = eX(x1, x2).

Conversely,

eY( f (x), y) ≥ eY( f (g(y)), y)� eY( f (x), f (g(y))) = eY( f (x), f (g(y))) ≥ eX(x, g(y)).

Similarly, eY( f (x), y) ≤ eX(x, g(y)).
(2) Since eY( f (x), y) = eX(g(y), x), we have> = eY( f (x), f (x)) = eX(g( f (x)), x) and eY( f (g(y)), y) =
eX(g(y), g(y)) = >. Furthermore,

eY( f (x1), f (x2)) = eX(g( f (x2)), x1) ≥ eX(x2, x1)� eX(g( f (x2)), x2) = eX(x2, x1).

For R1 ∈ LX×Y and R2 ∈ LY×Z, define

R1 ◦ R2(x, z) =
∨
y
(R1(x, y)� R2(y, z)), R−1

1 (y, x) = R1(x, y). (7)

Lemma 3. Let (X, eX) and (X, eY) be fuzzy posets. Let R ∈ LX×Y. Then the following hold:
(1) (eX ◦ R)−1 = R−1 ◦ e−1

X and (R ◦ eX)
−1 = e−1

X ◦ R−1;
(2) eX ◦ R ≤ R if and only if e−1

X ◦ R∗ ≤ R∗;
(3) R ◦ e−1

X ≤ R if and only if R∗ ◦ eX ≤ R∗;
(4) eX ◦ R ◦ eY ≤ R if and only if eX ◦ R ≤ R and R ◦ eY ≤ R ;
(5) e−1

X ◦ R ◦ e−1
Y ≤ R if and only if e−1

X ◦ R ≤ R and R ◦ e−1
Y ≤ R ;

(6) e−1
X ◦ R ◦ e−1

Y ≤ R if and only if eX ◦ R∗ ◦ eY ≤ R∗.

Proof. (1) (eX ◦R)−1(y, x) = eX ◦R(x, y) =
∨

z∈X(eX(x, z)�R(z, y)) =
∨

z∈X(e
−1
X (z, x)�R−1(y, z)) =

R−1 ◦ e−1
X (y, x). Similarly, (R ◦ eX)

−1 = e−1
X ◦ R−1.

(2) eX(x, z) � R(z, y) ≤ R(x, y) if and only if R(z, y) ≤ eX(x, z) → R(x, y) if and only if eX(x, z) �
R∗(x, y) ≤ R∗(z, y) if and only if e−1

X (z, x)� R∗(x, y) ≤ R∗(z, y).
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(3) R(w, y)� e−1
X (y, x) ≤ R(w, x) if and only if R(w, y)� eX(x, y) ≤ R(w, x) if and only if eX(x, y)→

R∗(w, y) ≥ R∗(w, x) if and only if eX(x, y)� R∗(w, x) ≤ R∗(w, y).
(4) eX ◦ R ◦ eY(x, y) =

∨
y1∈Y(eX ◦ R)(x, y1) � eY(y1, y) ≥ (eX ◦ R)(x, y) � eY(y, y) = (eX ◦ R)(x, y).

Similarly, R ◦ eY ≤ R. The converse part can be proved easily.
(5) and (6) can be proved easily by using (2)–(4).

Definition 5. Let (X, eX) and (Y, eY) be fuzzy posets. Let R ∈ LX×Y and S ∈ LY×X. A structure
(eX , R, S, eY) is called:
(1) A residuated frame if S = R−1 and eX ◦ R ◦ eY ≤ R;
(2) A dual residuated frame if S = R−1 and e−1

X ◦ R ◦ e−1
Y ≤ R.

Lemma 4. Let (X, eX) and (Y, eY) be fuzzy posets. Then the following hold:
(1) Let (eX , f , g, eY) be a residuated connection. Define maps R : X×Y → L and S : Y× X → L by

R(x, y) = eX(x, g(y)) = eY( f (x), y), S(y, x) = R(x, y). (8)

Then (eX , R, S, eY) is a residuated frame;
(2) Let (eX , f , g, eY) be a dual residuated connection. Define maps R : X×Y → L and S : Y× X → L by

R(x, y) = eX(g(y), x) = eY(y, f (x)), S(y, x) = R(x, y). (9)

Then (eX , R, S, eY) is a dual residuated frame;
(3) If g is isotone and R1(x, y) = eX(x, g(y)) (resp. R2(x, y) = eX(g(y), x)), then eX ◦ R1 ◦ eY ≤ R1 (resp.
e−1

X ◦ R2 ◦ e−1
Y ≤ R2);

(4) If f is isotone and R1(x, y) = eY(y, f (x)) (resp. R2(x, y) = eY( f (x), y)), then e−1
X ◦ R1 ◦ e−1

Y ≤ R1 (resp.
eX ◦ R2 ◦ eY ≤ R2).

Proof. (1) For all x, x1 ∈ X and y, y1 ∈ Y,

eX(x, x1)� R(x1, y1)� eY(y1, y) = eX(x, x1)� eX(x1, g(y1))� eY(y1, y)

≤ eX(x, g(y1))� eX(y1, y)

= eY( f (x), y1)� eY(y1, y)

≤ eY( f (x), y) = R(x, y).

(10)

Hence eX ◦ R ◦ eY ≤ R.
(3) For all x, x1 ∈ X and y, y1 ∈ Y,

eX(x, x1)� R1(x1, y1)� eY(y1, y) = eX(x, x1)� eX(x1, g(y1))� eY(y1, y)

≤ eX(x, x1)� eX(x1, g(y1))� eX(g(y1), g(y))

≤ eX(x, x1)� eX(x1, g(y))

≤ eX(x, g(y)) = R(x, y).

(11)

Hence eX ◦ R1 ◦ eY ≤ R1.
(2) and (4) can be proved similarly.

Theorem 3. Let (eX, R, S, eY) be a residuated frame. Let τeX and τeY be Alexandrov L-topologies. Then the
following hold:
(1) (eτeX

, F, G, eτeY
) is a residuated connection where

F(A)(y) =
∨

x∈X
(A(x)� R(x, y)), G(B)(x) =

∧
y∈Y

(S(y, x)→ B(y)); (12)
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(2) (eτeX
, F, G, eτeY

) is an dual residuated connection where

F(A)(y) =
∧

x∈X
(R∗(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R∗(x, y)� B(y)). (13)

Proof. (1) Since R ◦ eY ≤ R and eX ◦ R ≤ R by Lemma 3(4), we have F(A) ∈ τeY and G(B) ∈ τeX from:

F(A)(y)� eY(y, w) =
∨

x∈X
(A(x)� R(x, y)� eY(y, w)) ≤

∨
x∈X

(A(x)� R(x, w)) = F(A)(w), (14)

and

G(B)(x)� eX(x, z)� R(z, y) ≤
∧

y∈Y
((R(x, y)→ B(y))� R(x, y)) ≤ B(y)

⇔ G(B)(x)� eX(x, z) ≤ G(B)(z).
(15)

Moreover, for all A ∈ τeX and B ∈ τeY ,

eτeY
(F(A), B) =

∧
y∈Y

(F(A)(y)→ B(y)) =
∧

y∈Y

( ∨
x∈Y

(R(x, y)� A(x))→ B(y)
)

=
∧

x∈X

∧
y∈Y

(
A(x)→ (R(x, y)→ B(y))

)
=
∧

x∈X

(
A(x)→

∧
x∈X

(R(x, y)→ B(y))
)

=
∧

x∈X

(
A(x)→ G(B)(x)

)
= eτeX

(A, G(B)).

(16)

(2) Since R∗ ◦ e−1
Y ≤ R∗ and e−1

X ◦ R∗ ≤ R∗ by Lemma 3 (5)–(6), we have

F(A)(y)� eY(y, w)� R∗(x, w) = (
∧

x∈X
(R∗(x, y)→ A(x)))� eY(y, w)� R∗(x, w)

≤
∧

x∈X
(R∗(x, y)→ A(x)� R∗(x, y)) ≤ A(x),

G(B)(x)� eX(x, z) ≤
∨

y∈Y
((R∗(x, y)� B(y))� eX(x, z))

≤
∨

y∈Y
(R∗(z, y)� B(y)) = G(B)(z).

(17)

Thus F(A) ∈ τeY and G(B) ∈ τeX .
Moreover, for all A ∈ τeX and B ∈ τeY ,

eτeX
(G(B), A) =

∧
x∈X

(G(B)(x)→ A(x)) =
∧

x∈X

( ∨
y∈Y

(R∗(x, y)� B(y))→ A(x)
)

=
∧

x∈X

∧
y∈Y

(
B(y)→ (R∗(x, y)→ A(x))

)
=
∧

y∈Y

(
B(y)→

∧
x∈X

(R∗(x, y)→ A(x))
)

=
∧

y∈Y

(
B(y)→ F(A)(y)

)
= eτeY

(B, F(A)).

(18)

Remark 2. Since (>4X , eX, e−1
X ,>4X ) is a residuated frame where eX is a fuzzy poset and τ>4X

= LX by
Remark 1(1), (eLX , F, G, eLX ) is a residuated connection where

F(A)(y) =
∨

x∈X
(A(x)� eX(x, y)), G(B)(x) =

∧
y∈X

(eX(x, y)→ B(y)). (19)



Mathematics 2020, 8, 295 7 of 24

The pair (G, F) is a fuzzy rough set ([26]).

Theorem 4. Let (eX , R, S, eY) be a dual residuated frame. Let τeX and τeY be Alexandrov L-topologies. Then the
following hold:
(1) (eτeX

, F, G, eτeY
) is a dual residuated connection where

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R(x, y)� B(y)); (20)

(2) (eτeX
, F, G, eτeY

) is a residuated connection where

F(A)(y) =
∨

x∈X
(A(x)� R∗(x, y)), G(B)(x) =

∧
y∈Y

(R∗(x, y)→ B(y)). (21)

Proof. (1) Since R ◦ e−1
Y ≤ R and e−1

X ◦ R ≤ R by Lemma 3(5), we have

F(A)(y)� eY(y, w)� R(x, w) = (
∧

x∈X
(R(x, y)→ A(x)))� e−1

Y (w, y)� R(x, w)

≤
∧

x∈X
(R(x, y)→ A(x)� R(x, y)) ≤ A(x),

G(B)(x)� eX(x, z) ≤
∨

y∈Y
(R(x, y)� B(y)��eX(x, z)) ≤ G(B)(z).

(22)

Moreover, for all A ∈ τeX and B ∈ τeY ,

eτeX
(G(B), A) =

∧
x∈X

(G(B)(x)→ A(x)) =
∧

x∈X

( ∨
y∈Y

(R(x, y)� B(y))→ A(x)
)

=
∧

x∈X

∧
y∈Y

(
B(y)→ (R(x, y)→ A(x))

)
=
∧

y∈Y

(
B(y)→

∧
x∈X

(R(x, y)→ A(x))
)

=
∧

y∈Y

(
B(y)→ F(A)(y)

)
= eτeY

(B, F(A)).

(23)

Thus F(A) ∈ τeY and G(B) ∈ τeX .
(2) Since R∗ ◦ eY ≤ R∗ and eX ◦ R∗ ≤ R∗ by Lemma 3(2–3), we have

F(A)(y)� eY(y, w) =
∨

x∈X
(A(x)� R∗(x, y)� eY(y, w))

≤
∨

x∈X
(A(x)� R∗(x, w)) = F(A)(w),

G(B)(x)� eX(x, z)� R∗(z, y) ≤
∧

y∈Y
((R∗(x, y)→ B(y))� R∗(x, y)) ≤ B(y).

(24)

Thus F(A) ∈ τeY and G(B) ∈ τeX .
Moreover, for all A ∈ τeX , and B ∈ τeY ,

eτeY
(F(A), B) =

∧
y∈Y

(F(A)(y)→ B(y)) =
∧

y∈Y

( ∨
x∈Y

(R∗(x, y)� A(x))→ B(y)
)

=
∧

x∈X

∧
y∈Y

(
A(x)→ (R∗(x, y)→ B(y))

)
=
∧

x∈X

(
A(x)→

∧
x∈X

(R∗(x, y)→ B(y))
)

=
∧

x∈X

(
A(x)→ G(B)(x)

)
= eτeX

(A, G(B)).

(25)
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Remark 3. Since (>4X , eX , e−1
X ,>4X ) is a dual residuated frame where eX is a fuzzy poset and τ>4X

= LX

by Remark 1(1), (eLX , F, G, eLX ) is a dual residuated connection where

F(A)(y) =
∧

x∈X
(eX(x, y)→ A(x)), G(B)(x) =

∨
y∈X

(eX(x, y)� B(y)). (26)

Example 1. Let (X, eX) and (Y, eY) be fuzzy posets. Let f : X → Y and g : Y → X be maps. Let τeX and τeY

be Alexandrov L-topologies.
(1) Let g be isotone and R(x, y) = eX(x, g(y)). By Lemma 4(3), (eX, R, S = R−1, eY) is a residuated frame.
By Theorem 3(1), (eτeX

, F, G, eτeY
) is a residuated connection with

F(A)(y) =
∨

x∈X
(A(x)� eX(x, g(y))), G(B)(x) =

∧
y∈Y

(eX(x, g(y))→ B(y)). (27)

(2) Let g be isotone and R(x, y) = eX(g(y), x). By Lemma 4(3), (eX, R, S = R−1, eY) is a dual residuated
frame. By Theorem 4(1), (eτeX

, F, G, eτeY
) is a dual residuated connection where

F(A)(y) =
∧

y∈Y
(eX(g(y), x)→ A(x)), G(B)(x) =

∨
y∈Y

(B(y)� eX(g(y), x)). (28)

(3) Let f be isotone and R(x, y) = eY(y, f (x)). By Lemma 4(4), (eX, R, S = R−1, eY) is a dual residuated
frame. By Theorem 4(1), (eτeX

, F, G, eτeX
) is a dual residuated connection where

F(A)(y) =
∧

x∈X
(eY(y, f (x))→ A(x)), G(B)(y) =

∨
y∈Y

(B(y)� eY(y, f (x))). (29)

(4) Let f be isotone and R(x, y) = eY( f (x), y). By Lemma 4(4), (eX, R, S = R−1, eY) is a residuated frame.
By Theorem 3(1), (eτeX

, F, G, eτeY
) is a residuated connection where

F(A)(y) =
∨

x∈X
(eY( f (x), y)� A(x)), G(B)(y) =

∧
y∈Y

(eY( f (x), y)→ B(y)). (30)

Theorem 5. Let (X, eX) and (Y, eY) be fuzzy posets. Let τeX and τeY be Alexandrov L-topologies. Then the
following hold:
(1) (eX, f , g, eY) is a residuated connection. That is, eY( f (x), y) = eX(x, g(y)) for all x, y ∈ X if and only if
there exist relations R : τeX × τeY → L and S : τeY × τeX → L by

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))), S(B, A) =

∧
y∈Y

(A(g(y))→ B(y)) (31)

with isotone maps f : X → Y, g : Y → X such that (eτeX
, R, S, eτeY

) is a residuated frame.
(2) In (1),

R(A, B) = eτeX
(A, f←(B)) = eτeY

(F(A), B) = eτeX
(A, G(B)) (32)

where F(A)(y) =
∨

z∈X(eY( f (z), y)� A(z)) and G(B) =
∧

y∈Y(eY( f (z), y)→ B(y))).

S(B, A) = eτeY
(g←(A), B) = eτeY

(F1(A), B) = eτeX
(A, G1(B)) (33)

where F1(A)(w) =
∨

z∈X(eY(z, g(w))� A(z)) and G1(B)(z) =
∧

w∈Y(eY(z, g(w))→ B(w)).
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Proof. (1) (⇒) Let A ∈ τeX and B ∈ τeY . Since B( f (g(y)))� eY( f (g(y)), y) ≤ B(y), eY( f (g(y)), y) =
>, A(x)� eX(x, g( f (x))) ≤ A(g( f (x))) and eX(x, g( f (x))) = >,

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))) ≤

∧
y∈Y

(A(g(y))→ B( f (g(y)))� eY( f (g(y)), y))

≤
∧

y∈Y
(A(g(y))→ B(y)) = S(B, A)

(34)

and

S(B, A) =
∧

x∈X
(A(g(y))→ B(y)) ≤

∧
x∈X

(A(g( f (x)))→ B( f (x)))

≤
∧

y∈X
(A(x)� eX(x, g( f (x)))→ B( f (x))) = R(A, B).

(35)

Thus we have R(A, B) = S(B, A). For all A, A1 ∈ τeX , B, B1 ∈ τeY , we have

eτeX
(A, A1)� R(A1, B1)� eτeY

(B1, B)

= eτeX
(A, A1)�

∧
x∈X

(A1(x)→ B1( f (x)))�
∧

x∈X
(B1( f (x))→ B( f (x)))

≤
∧

x∈X
(A(x)→ B( f (x))) = R(A, B).

(36)

Thus eτeX
◦ R ◦ eτeY

≤ R.
(⇐) Since eY(z, w)� eY(w, y) ≤ eY(z, y) if and only if (eY)

−1∗
y (z)� eY(z, w) ≤ (eY)

−1∗
y (w), we

have (eY)
−1∗
y ∈ τeY . For all (eX)x ∈ τeX and (eY)

−1∗
y ∈ τeY ,

R((eX)x, (eY)
−1∗
y ) =

∧
z∈X

((eX)x(z)→ (eY)
−1∗
y ( f (z)))

≤ (eX)x(x)→ (eY)
−1∗
y ( f (x)) = eY( f (x), y)∗.

(37)

Since eX(x, z) � eY( f (z), y) ≤ eY( f (x), f (z)) � eY( f (z), y) ≤ eY( f (x), y), we have eX(x, z) →
e∗Y( f (z), y) ≥ e∗Y( f (x), y). Hence R((eX)x, (eY)

−1∗
y ) = e∗Y( f (x), y). Moreover,

S((eY)
−1∗
y , (eX)x) =

∧
z∈X

((eX)x(g(z))→ (eY)
−1∗
y (z))

≤ (eX)x(g(y))→ (eY)
−1∗
y (y) = eX(x, g(y))∗.

(38)

Since eX(x, g(z)) � eY(z, y) ≤ eX(x, g(z)) � eX(g(z), g(y)) ≤ eX(x, g(y)), we have eX(x, g(z)) →
e∗Y(z, y) ≥ e∗X(x, g(y)). Hence S((eY)

−1∗
y , (eX)x) = e∗X(x, g(y)). Now, from

R((eX)x, (eY)
−1∗
y ) = e∗Y( f (x), y) = S((eY)

−1∗
y , (eX)x) = e∗X(x, g(y)), (39)

we have eY( f (x), y) = eX(x, g(y)) for all x, y ∈ X.
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(2) Let A ∈ τeX and B ∈ τeY . Since A =
∨

z∈X(A(z)� eX(z,−)) and B =
∧

y∈Y(B∗(y) → e∗Y(−, y)),
we have

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))) =

∧
x∈X

(
∨

z∈X
(A(z)� eX(z, x))→

∧
y∈Y

(B∗(y)→ e∗Y( f (x), y)))

=
∧

x,z∈X

∨
y∈Y

(A(z)� B∗(y)→ (eX(z, x)→ e∗Y( f (x), y)))

=
∧

z∈X

∨
y∈Y

(A(z)� B∗(y)→
∧

x∈X
(eX(z, x)→ e∗Y( f (x), y)))

=
∧

z∈X

∨
y∈Y

(A(z)� B∗(y)→ e∗Y( f (z), y))

=
∧

y∈Y
(
∨

z∈X
(eY( f (z), y)� A(z))→ B(y)) = eτeY

(F(A), B)

=
∧

z∈X
(A(z)→

∧
y∈Y

(eY( f (z), y)→ B(y))) = eτeX
(A, G(B))

(40)

and

S(B, A) =
∧

y∈Y
(A(g(y))→ B(y)) =

∧
y∈Y

(
∨

z∈X
(A(z)� eX(z, g(y)))→

∧
w∈Y

(B∗(w)→ e∗Y(y, w)))

=
∧

y,w∈Y

∨
z∈X

(A(z)� B∗(w)→ (eX(z, g(y))→ e∗Y(y, w)))

=
∧

w∈Y

∨
z∈X

(A(z)� B∗(w)→
∧

y∈Y
(eX(z, g(y))→ e∗Y(y, w)))

=
∧

w∈Y

∨
z∈X

(A(z)� B∗(w)→ e∗Y(z, g(w)))

=
∧

w∈Y
(
∨

z∈X
(eY(z, g(w))� A(z))→ B(w)) = eτeY

(F1(A), B)

=
∧

z∈X
(A(z)→

∧
w∈Y

(eY(z, g(w))→ B(w))) = eτeX
(A, G1(B)).

(41)

Example 2. Let (LX , F, G, LY) be a residuated connection where for R ∈ LX×Y,

F(A)(y) =
∨

x∈X
(R(x, y)� A(x)), G(B)(x) =

∧
y∈Y

(R(x, y)→ B(y)). (42)

Let τeLX = {α ∈ LLX | α(A)� eLX (A, B) ≤ α(B)} and τeLY = {β ∈ LLY | β(A)� eLY (A, B) ≤ β(B)}.
Define two maps T1, S−1

1 : τeLX × τeLY → L by

T1(α, β) =
∧

A∈LX

(α(A)→ β(F(A))), S1(β, α) =
∧

B∈LX

(α(G(B))→ β(B)). (43)

Then (eτe
LX

, T1, S1, eτe
LY
) is a residuated frame.

Theorem 6. Let (X, eX) be a fuzzy poset. Let τeX be an Alexandrov L-topology. Let τeτeX
= {α ∈ LτeX |

α(A)� eτeX
(A, B) ≤ α(B)}. Define a map h : X → τeτeX

by h(x)(A) = x̂(A) = A(x). Then h : (X, eX)→
(τeτeX

, eτeτeX
) is an embedding map.
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Proof. Assume that h(x)(A) = h(y)(A) for all A ∈ τeX . Then h(x)((eX)x) = h(y)((eX)x) = eX(x, y) =
> for (eX)x ∈ τeX , and h(x)((eX)y) = h(y)((eX)y) = eX(y, x) = > for (eX)y ∈ τeX . Thus x = y. Hence
h is injective.
Since

x̂(A)� eτeX
(A, B) = x̂(A)�

∧
y∈X

(A(y)→ B(y)) ≤ A(x)� (A(x)→ B(x)) ≤ B(x) = x̂(B), (44)

we have h(x) = x̂ ∈ τeτeX
. Let A ∈ τeX . Since A(x) =

∧
y∈Y(eX(x, y)→ A(y)), we have

eX(x, y) ≤
∧

A∈τeX

(A(x)→ A(y)) =
∧

A∈τeX

(x̂(A)→ ŷ(A)) = eτeτeX
(x̂, ŷ). (45)

Let (eX)z(x) = eX(z, x). Since (eX)z(x) � eX(x, y) ≤ (eX)z(y), we have (eX)z ∈ τeX for all z ∈ X.
Note that

eτeτeX
(x̂, ŷ) =

∧
A∈τeX

(A(x)→ A(y)) ≤
∧

(eX)z∈τeX

((eX)z(x)→ (eX)z(y))

=
∧

z∈X
(eX(z, x)→ eX(z, y)) = eX(x, y).

(46)

Hence eτeτeX
(x̂, ŷ) = eX(x, y).

Definition 6. Let (eX, f , g, eX) and (eZ, f̃ , g̃, eZ) be residuated connections. An injective function k :
(eX , f , g, eX)→ (eZ, f̃ , g̃, eZ) is an R-R embedding if

eX(x, y) = eZ(k(x), k(y)), eX( f (x), y) = eZ( f̃ (k(x)), k(y)), eX(x, g(y)) = eZ(k(x), g̃(k(y))). (47)

If k is a bijective R-R embedding map, then k is called an R-R isomorphism.

Theorem 7. Let (eX , f , g, eX) be a residuated connection, τeX be an Alexandrov L-topology and τeτeX
= {α ∈

LτeX | α(A)� eτeX
(A, B) ≤ α(B)}. Define a map h : X → τeτeX

by h(x)(A) = x̂(A) = A(x). Then the map
h : (eX , f , g, eX)→ (eτeτeX

, F, G, eτeτeX
) is an R-R embedding map with

eX(x, y) = eτeτeX
(x̂, ŷ), F(h(x))(B) = F(x̂)(B) = f̂ (x)(B) (48)

for all B ∈ τeX and G(h(y))(A) = G(ŷ)(A) = ˆg(y)(A) for all A ∈ τeX where

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))), S(B, A) =

∧
y∈X

(A(g(y))→ B(y)), (49)

F(x̂)(B) =
∨

A∈τeX

(R(A, B)� x̂(A)), G(ŷ)(A) =
∧

B∈τeX

(S(B, A)→ ŷ(B)). (50)

Moreover, eτeτeX
(F(x̂), ŷ) = eτeτeX

(x̂, G(ŷ)).

Proof. By Theorem 6, h : (X, eX) → (τeτeX
, eτeτeX

) is an embedding map. By Theorem 5(1),

(eτeX
, R, S, eτeX

) is a residuated frame where

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))), S(B, A) =

∧
y∈X

(A(g(y))→ B(y)). (51)
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By Theorem 3(1), (eτeτeX
, F, G, eτeτeX

) is a residuated connection where

F(α)(B) =
∨

A∈τeX

(R(A, B)� α(A)) =
∨

A∈τeX

( ∧
z∈X

(A(z)→ B( f (z)))� α(A)
)

, (52)

G(α)(A) =
∧

B∈τeX

(S(B, A)→ α(B)) =
∧

B∈τeX

( ∧
z∈X

(A(g(z))→ B(z))→ α(B)
)

. (53)

Moreover,

F(x̂)(B) =
∨

A∈τeX

(R(A, B)� x̂(A)) =
∨

A∈τeX

( ∧
z∈X

(A(z)→ B( f (z)))� A(x)
)

≤ B( f (x)) = f̂ (x)(B).

(54)

Since f is isotone and B ∈ τeX , we have B( f (x))� eX(x, y) ≤ B( f (x))� eX( f (x), f (y)) ≤ B( f (y)).
Hence f←(B) ∈ τeX .

Let A = f←(B). Note that

F(x̂)(B) =
∨

A∈τeX

(R(A, B)� x̂(A)) ≥
( ∧

z∈X
( f←(B)(z)→ B( f (z)))� f←(B)(x)

)
= B( f (x)) = f̂ (x)(B).

(55)

Hence F(x̂) = f̂ (x). Note that

G(ŷ)(A) =
∧

B∈τeX

(S(B, A)→ ŷ(B)) =
∧

B∈τeX

( ∧
z∈X

(A(g(z))→ B(z))→ B(y)
)

≥
∧

B∈τeX

(
A(g(y))→ B(y))→ B(y)

)
≥ A(g(y)) = ĝ(y)(A).

(56)

Since g is isotone, we have g←(A) ∈ τeX . Thus G(ŷ) ≤ ĝ(y). Moreover,

eτeτeX
(F(x̂), ŷ) = eτeτeX

( f̂ (x), ŷ) = eX( f (x), y) = eX(x, g(y)) = eτeτeX
(x̂, ĝ(y)) = eτeτeX

(x̂, G(ŷ)). (57)

Definition 7. Let (eX , R, S, eX) and (eZ, R̃, S̃, eZ) be residuated frames. An injective map k : (eX , R, S, eX)→
(eZ, R̃, S̃, eY) is an R-R frame embedding if

eX(x, y) = eZ(k(x), k(y)), R(x, y) = R̃(k(x), k(y)), S(x, y) = S̃(k(x), k(y)). (58)

If k is a bijective R-R embedding map, then k is called an R-R frame isomorphism.

Theorem 8. Let (eX , R, S, eX) be a residual frame, τeX be an Alexandrov L-topology and τeτeX
= {α ∈ LτeX |

α(A) � eτeX
(A, B) ≤ α(B)}. Define a map k : X → τeτeX

by k(x)(A) = x̂(A) = A(x). Then the map

k : (eX, R, S, eX) → (eτeτeX
, R̂, Ŝ, eτeτeX

) is an R-R frame embedding map with e(x, y) = eτeτeX
(k(x), k(y)),

R(x, y) = R̂(k(x), k(y)) = R̂(x̂, ŷ) and S(x, y) = Ŝ(k(x), k(y)) = Ŝ(x̂, ŷ) where

F(A)(y) =
∨

x∈X
(R(x, y)� A(x)), G(B)(x) =

∧
y∈X

(R(x, y)→ B(y)), (59)
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R̂(α, β) =
∧

A∈τeX

(α(A)→ β(F(A))), Ŝ(β, α) =
∧

B∈τeX

(α(G(B))→ β(B)). (60)

Proof. By Theorem 6, k : (X, eX)→ (τeτeX
, eτeτeX

) is an embedding map. Hence eX(x, y) = eτeτeX
(x̂, ŷ).

By Theorem 3(1), (eτeX
, F, G, eτeX

) is a residuated connection where

F(A)(y) =
∨

x∈X
(R(x, y)� A(x)), G(B)(x) =

∧
y∈X

(R(x, y)→ B(y)). (61)

By Theorem 5(1), (eτeτeX
, R̂, Ŝ, eτeτeX

) is a residuated frame where

R̂(α, β) =
∧

A∈τeX

(α(A)→ β(F(A))), Ŝ(β, α) =
∧

B∈τeX

(α(G(B))→ β(B)). (62)

Note that for all x̂, ŷ ∈ τeτeX
,

R̂(x̂, ŷ) =
∧

A∈τeX

(x̂(A)→ ŷ(F(A))) =
∧

A∈τeX

(A(x)→ F(A)(y))

=
∧

A∈τeX

(
A(x)→

∨
z∈X

(R(z, y)� A(z))
)
≥

∧
A∈τeX

(
A(x)→ (R(x, y)� A(x))

)
≥ R(x, y).

(63)

Let (eX)x(z) = eX(x, z). Then (eX)x ∈ τeX . Since eX ◦ R ◦ eX ≤ R, we have eX ◦ R ≤ R. Thus

R̂(x̂, ŷ) =
∧

A∈τeX

(
A(x)→

∨
z∈X

(R(z, y)� A(z))
)
≤
(
(eX)x(x)→

∨
z∈X

(R(z, y)� (eX)x(z))
)

= R(x, y)

(64)

and

Ŝ(ŷ, x̂) =
∧

B∈τeX

(x̂(G(B))→ ŷ(B)) =
∧

B∈τeX

(G(B)(x)→ B(y))

=
∧

B∈τeX

( ∧
z∈X

(R(x, z)→ B(z))→ B(y)
)
≥

∧
B∈τeX

(
(R(x, y)→ B(y))→ B(y)

)
≥ R(x, y) = S(y, x).

(65)

Since R ◦ eX ≤ eX ◦ R ◦ eX ≤ R, we have R(x, y) � eX(y, w) ≤ R(x, w). Thus Rx = R(x,−) ∈ τeX .
Hence

Ŝ(ŷ, x̂) =
∧

B∈τeX

( ∧
z∈X

(R(x, z)→ B(z))→ B(y)
)
≤
( ∧

z∈X
(R(x, z)→ Rx(z))→ Rx(y)

)
= R(x, y) = S(y, x).

(66)

Corollary 1. Let (eX, R = eX, S = e−1
X , eX) be a residual frame and τeτeX

= {α ∈ LτeX | α(A) �
eτeX

(A, B) ≤ α(B)}. Define a map k : X → τeτeX
by k(x)(A) = x̂(A) = A(x). Then the map

k : (eX , R = eX , S = e−1
X , eX)→ (eτeτeX

, R̂ = êX , Ŝ = ê−1
X , eτeτeX

) (67)
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is an embedding map with eX(x, y) = eτeτeX
(k(x), k(y)), eX(x, y) = êX(x̂, ŷ) and e−1

X (x, y) =

ê−1
X (x̂, ŷ) where

êX(x̂, ŷ) =
∧

A∈τeX

(x̂(A)→ ŷ(F(A))) =
∧

A∈τeX

(A(x)→
∨

z∈X
(eX(z, y)� A(z))) = eX(x, y),

ê−1
X (ŷ, x̂) =

∧
A∈τeX

(x̂(G(B))→ ŷ(B)) =
∧

A∈τeX

(
∧

z∈X
(eX(x, z)→ B(z))→ B(y)) = e−1

X (y, x).
(68)

Example 3. Let X = {a, b, c} be a set. Let f : X → X be a map by f (a) = b, f (b) = a, f (c) = c and
f = f−1. Define a binary operation � on L = [0, 1] by

x� y = max{0, x + y− 1}, x → y = min{1− x + y, 1}. (69)

(1) Let (X = {a, b, c}, eX) be a fuzzy poset where

eX =

 1 0.6 0.5
0.6 1 0.5
0.7 0.7 1

 . (70)

Since eX(x, y) = eX( f (x), f (y)), eX(x, f ( f (x))) = eX( f ( f (x)), x) = 1, we have that (eX , f , f , eX) are both
residuated and dual residuated connections. Since (eX, f , f , eX) is a residuated connection, we have that
eX( f (x), y) = eX(x, f (y)) for all x, y ∈ X if and only if there the exist relations R : τeX × τeX → L and
S : τeX × τeX → L by

R(A, B) =
∧

x∈X
(A(x)→ B( f (x))), S(B, A) =

∧
y∈Y

(A( f (y))→ B(y)) (71)

with an isotone map f : X → Y such that (eτeX
, R, S, eτeX

) is a residuated frame.
Let (eX)z(x) = e(z, x) for all z ∈ X. Then (eX)z ∈ τeX . Now, we have

R((eX)a, (eX)b) =
∧

x∈X
(eX(a, x)→ eX(b, f (x))) = 1,

R((eX)b, (eX)a) = 1, R((eX)a, (eX)a) = R((eX)b, (eX)b) = 0.6, R((eX)c, (eX)c) = 1,

R((eX)a, (eX)c) = 0.7, R((eX)c, (eX)a) = 0.5, R((eX)b, (eX)c) = 0.7, R((eX)c, (eX)b) = 0.5.

S((eX)x, (eX)y) = R((eX)y, (eX)x) for all x, y ∈ X.

(72)

Moreover,
R((eX)a, (eX)

−1∗
b ) =

∧
x∈X

(eX(a, x)→ e∗X( f (x), b)) = e∗X( f (a), b). (73)

Since f is isotone and R(x, y) = eX(x, f (y)) = eX( f (x), y), we have by Example 1(4) that (eτeX
, F, G, eτeY

) is
a residuated connection with

F(A)(y) =
∨

x∈X
(A(x)� eX(x, f (y)), G(B)(x) =

∧
y∈X

(eX(x, f (y))→ B(y)). (74)

Since f is isotone and R(x, y) = eX( f (y), x) = eX(y, f (x)), we have by Example 1(3) that (eτeX
, F, G, eτeY

) is
a dual residuated connection with

F(A)(y) =
∧

x∈X
(eX( f (y), x)→ A(x)), G(B)(x) =

∨
y∈X

(B(y)� eX( f (y), x)). (75)
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Since (eτeX
, R, S, eτeX

) is a residuated frame, we have by Theorem 7 that (eτeτeX
, F, G, eτeτeX

) is a residuated
connection where

F(α)(B) =
∨

A∈τeX

( ∧
z∈X

(A(z)→ B( f (z)))� α(A)
)

, G(α)(B)

=
∧

C∈τeX

( ∧
z∈X

(B( f (z))→ C(z))→ α(C)
)

. (76)

Since
(A(z)→ B( f (z)))� (B( f (z))→ A(z))� α(A) ≤ α(A), (77)

we have
(A(z)→ B( f (z)))� α(A) ≤ (B( f (z))→ A(z))→ α(A). (78)

Hence F(α)(B) ≤ G(α)(B). Since f is isotone, we have that f←(B) ∈ τeX for all B ∈ τeX , and so

G(α)(B) ≤ (B( f (z))→ B( f (z)))→ α( f←(B))

= (B( f (z))→ B( f (z)))� α( f←(B)) ≤ F(α)(B). (79)

Hence the map h : (eX , f , f , eX)→ (eτeτeX
, F, F, eτeτeX

) is an R-R embedding map.
(2) Let (X = {a, b, c}, eX) be a fuzzy poset where

eX =

 1 0.6 0.5
0.6 1 0.7
0.7 0.5 1

 . (80)

Since
0.7 = eX(c, a) 6≤ eX( f (c), f (a)) = eX(c, b) = 0.5,

f is not an isotone map. Hence (eX, f , f , eX) are neither residuated nor dual residuated connections. Let
R(x, y) = eX(x, f (y)). Then (eτeX

, F, G, eτeY
) is not a residuated connection with

F(A)(y) =
∨

x∈X
(A(x)� eX(x, f (y)), G(B)(x) =

∧
y∈X

(eX(x, f (y))→ B(y)), (81)

because F((eX)c) 6∈ τeX for (eX)c ∈ τeX from F((eX)c)(c)� eX(c, a) = 0.7 6≤ F((eX)c)(a) = 0.5 where

F((eX)c)(c) =
∨

x∈X
((eX)c(x)� eX(x, f (c)) = eX(c, c) = 1,

F((eX)c)(a) =
∨

x∈X
((eX)c(x)� eX(x, f (a)) = eX(c, b) = 0.5.

(82)

Let R(x, y) = eX( f (y), x). Then (eτeX
, F, G, eτeY

) is not a dual residuated connection with

F(A)(y) =
∧

y∈X
(eX( f (y), x)→ A(x)), G(B)(x) =

∨
y∈X

(B(y)� eX( f (y), x)), (83)

because F((e−1∗
X )c) 6∈ τeX for (e−1∗

X )c ∈ τeX from F((e−1∗
X )c)(b) � eX(b, c) = 0.2 6≤ F((e−1∗

X )c)(c) =

0 where

F((e−1∗
X )c)(b) =

∧
y∈X

(eX( f (b), x)→ (e−1∗
X )c(x)) = e∗X( f (b), c) = 0.5,

F((e−1∗
X )c)(c) =

∧
y∈X

(eX( f (c), x)→ (e−1∗
X )c(x)) = e∗X( f (c), c) = 0.

(84)
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(3) Let (X = {a, b, c}, eX) be a fuzzy poset where

eX =

 1 1 0.7
0.6 1 0.7
0.7 0.7 1

 . (85)

Let g, h : X → X be maps by

g(a) = g(b) = a, g(c) = c and h(a) = h(b) = b, h(c) = c. (86)

Since

eX(x, y) ≤ eX(g(x), g(y)), eX(x, y) ≤ eX(h(x), h(y)), g(h(a)) = g(h(b)) = a,

g(h(c)) = c, h(g(a)) = h(g(b)) = b, g(h(c)) = c,
(87)

we have
eX(g(h(x)), x) = eX(x, h(g(x))) = 1, eX(h(g(a)), a) = eX(b, g(h(b))) = 0.6. (88)

Hence (eX, g, h, eX) is a residuated connection, but not a dual residuated connection. Since (eX, g, h, eX) is a
residuated connection, we have by Theorem 5 that (eτeX

, R, S, eτeX
) is a residuated frame where

R(A, B) =
∧

x∈X
(A(x)→ B(g(x))), S(B, A) =

∧
y∈Y

(A(h(y))→ B(y)). (89)

Since (eτeX
, R, S, eτeX

) is a residuated frame, we have by Theorem 7 that (eτeτeX
, F, G, eτeτeX

) is a residuated
connection where

F(α)(B) =
∨

A∈τeX

(R(A, B)� α(A)) =
∨

A∈τeX

( ∧
z∈X

(A(z)→ B(g(z)))� α(A)
)

, (90)

G(α)(A) =
∧

B∈τeX

(S(B, A)→ α(B)) =
∧

B∈τeX

( ∧
z∈X

(A(h(z))→ B(z))→ α(B)
)

. (91)

4. Fuzzy Dual Residuated Connections on Alexandrov L-Topologies

Theorem 9. Let (X, eX) and (Y, eY) be fuzzy posets. Let τeX and τeY be Alexandrov L-topologies. Then the
following hold:
(1) (eX, f , g, eY) is a dual residuated connection. That is, eY(y, f (x)) = eX(g(y), x) for all x, y ∈ X if and
only if there exist maps R : τeX × τeY → L and S : τeY × τeX → L by

R(A, B) =
∧

x∈X
(B( f (x))→ A(x)), S(B, A) =

∧
y∈Y

(B(y)→ A(g(y))) (92)

with isotone maps f : X → Y, g : Y → X such that (eτeX
, R, S, eτeX

) is a dual residuated frame.
(2) In (1),

R(A, B) = eτeX
( f←(B), A) = eτeY

(B, F(A)) = eτeX
(G(B), A) (93)

where F(A)(y) =
∧

z∈X(eY(y, f (z))→ A(z)) and G(B) =
∨

y∈Y(eY(y, f (z))� B(y)).

S(B, A) = eτeY
(B, g←(A)) = eτeY

(B, F1(A)) = eτeX
(G1(B), A) (94)

where F1(A)(w) =
∧

z∈X(eY(g(w), z)→ A(z)) and G1(B)(z) =
∨

w∈Y(eY(g(w), z)� B(w)).
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Proof. (1) (⇒) Let A ∈ τeX . Since A(g( f (x)))� eX(g( f (x)), x) ≤ A(x) and B(y)� eY(y, f (g(y))) ≤
B( f (g(y))) and eX(g( f (x)), x)) = eY(y, f (g(y))) = > by Theorem 2, we have

S(B, A) =
∧

y∈X
(B(y)→ A(g(y))) ≤

∧
x∈X

(B( f (x))→ A(g( f (x)))� eX(g( f (x)), x))

≤
∧

x∈X
(B( f (x))→ A(x)) = R(A, B)

(95)

and

R(A, B) =
∧

x∈X
(B( f (x))→ A(x)) ≤

∧
y∈X

(B( f (g(y)))→ A(g(y)))

≤
∧

y∈X
(B(y)� eY(y, f (g(y)))→ A(g(y)))

= S(B, A).

(96)

Thus S = R−1. For all A, A1 ∈ τeX and B, B1 ∈ τeY , we have

e−1
τeX

(A, A1)� R(A1, B1)� e−1
τeY

(B1, B)

≤ eτeX
(A1, A)�

∧
x∈X

(B1( f (x))→ A1(x))�
∧

x∈X
(B( f (x))→ B1( f (x)))

≤
∧

x∈X
(B( f (x))→ A(x)) = R(A, B).

(97)

(⇐) For all (eX)
−1∗
x ∈ τeX and (eY)y ∈ τeY , we have

R((eX)
−1∗
x , (eY)y) =

∧
z∈X

((eY)y( f (z))→ (eX)
−1∗
x (z)) ≤ (eY)y( f (x))→ (eX)

−1∗
x (x)

= eY(y, f (x))∗.
(98)

Since
eY(y, f (z))� eX(z, x) ≤ eY(y, f (z))� eY( f (z), f (x)) ≤ eY(y, f (x)), (99)

we have eX(x, z)→ e∗Y(y, f (z)) ≥ e∗Y(y, f (x)). Hence R((eX)
−1∗
x , (eY)y) = e∗Y(y, f (x)). Additionally,

S((eY)y, (eX)
−1∗
x ) =

∧
z∈X

((eY)y(z)→ (eX)
−1∗
x (g(z))

≤ (eY)y(y)→ (eY)
−1∗
x (g(y)) = eX(g(y), x)∗.

(100)

Since
eX(g(z), x)� eY(y, z) ≤ eX(g(z), x)� eX(g(y), g(z)) ≤ eX(g(y), x), (101)

we have eY(y, z)→ e∗X(g(z), x) ≥ e∗X(g(y), x). Hence S((eY)y, (eX)
−1∗
x ) = e∗X(g(y), x). Since

e∗Y(y, f (x)) = R((eX)
−1∗
x , (eY)y) = S((eY)y, (eX)

−1∗
x ) = e∗X(g(y), x), (102)

we have that (eX , f , g, eY) is a dual residuated connection.

Example 4. Let (eLX , F, G, eLY ) be a dual residuated connection for R ∈ LX×Y defined by

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R(x, y)� B(y)), (103)
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and τeLX = {α ∈ LLX | α(A)� eLX (A, B) ≤ α(B)} and τeLY = {β ∈ LLY | β(A)� eLY (A, B) ≤ β(B)}.
Two maps T1, S1 : τeLX × τeLY → L are defined by

T1(α, β) =
∧

A∈LX

(β(F(A))→ α(A)), S1(β, α) =
∧

B∈LX

(β(B)→ α(G(B))). (104)

Then (eτe
LX

, T1, S1, eτe
LY
) is a dual residuated frame.

Definition 8. Let (eX, f , g, eX) and (eZ, f̃ , g̃, eZ) be dual residuated connections. An injective function
k : (eX , f , g, eX)→ (eZ, f̃ , g̃, eZ) is a DR-DR embedding if

eX(x, y) = eZ(k(x), k(y)), eX(y, f (x)) = eZ(k(y), f̃ (k(x))), eX(g(y), x) = eZ(g̃(k(y)), k(x)). (105)

If k is a bijective DR-DR embedding map, then k is called a DR-DR isomorphism.

Theorem 10. Let (eX , f , g, eX) be a dual residuated connection, τeX be an Alexandrov L-topology and τeτeX
=

{α ∈ LτeX | α(A) � eτeX
(A, B) ≤ α(B)}. Define a map h : X → τeτeX

by h(x)(A) = x̂(A) = A(x).
Then h : (eX, f , g, eX) → (eτeτeX

, F, G, eτeτeX
) is a DR-DR embedding map with eX(x, y) = eτeτeX

(x̂, ŷ),

F(h(x))(B) = F(x̂)(B) = f̂ (x)(B) and G(h(y))(A) = G(ŷ)(A) = ĝ(y)(A) for all A ∈ τeX where

R(A, B) =
∧

x∈X
(B( f (x))→ A(x)), S(B, A) =

∧
y∈X

(B(y)→ A(g(y))),

F(α)(B) =
∧

A∈τeX

(R(A, B)→ α(A)), G(α)(A) =
∨

B∈τeX

(S(B, A)� α(B)).
(106)

Moreover, eτeτeX
(ŷ, F(x̂)) = eτeτeX

(G(ŷ), x̂).

Proof. By Theorem 9, (eτeX
, R, S, eτeX

) is a dual residuated frame where

R(A, B) =
∧

x∈X
(B( f (x))→ A(x)), S(B, A) =

∧
y∈X

(B(y)→ A(g(y))). (107)

By Theorem 4(1), (eτeτeX
, F, G, eτeτeX

) is a dual residuated connection where

F(α)(B) =
∧

A∈τeX

(R(A, B)→ α(A)) =
∧

A∈τeX

( ∧
z∈X

(B( f (z))→ A(z))→ α(A)
)

,

G(α)(A) =
∨

B∈τeX

(S(B, A)� α(B)) =
∨

B∈τeX

( ∧
z∈X

(B(z)→ A(g(z)))� α(B)
)

.
(108)

By Theorem 6, a map h : X → τeτeX
by h(x)(A) = x̂(A) = A(x) is embedding. That is, eX(x, y) =

eτeτeX
(x̂, ŷ). For all B ∈ τeX , we have

F(x̂)(B) =
∧

A∈τeX

(R(A, B)→ x̂(A)) =
∧

A∈τeX

( ∧
z∈X

(B( f (z))→ A(z))→ A(x)
)

≥
∧

A∈τeX

(
(B( f (x))→ A(x))→ A(x)

)
≥ B( f (x)) = f̂ (x)(B).

(109)

Since f is isotone and B ∈ τeX , we have

B( f (x))� eX(x, y) ≤ B( f (x))� eX( f (x), f (y)) ≤ B( f (y)). (110)
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Hence f←(B) ∈ τeX .
Let A = f←(B). For all A, B ∈ τeX ,

F(x̂)(B) =
∧

A∈τeX

( ∧
z∈X

(B( f (z))→ A(z))→ A(x)
)
≤
∧

z∈X
(B( f (z))→ B( f (z))→ B( f (x)))

= > → B( f (x)) = B( f (x)) = f̂ (x)(B)

(111)

and

G(ŷ)(A) =
∨

B∈τeX

(S(B, A)� ŷ(B)) =
∨

B∈τeX

( ∧
z∈X

(B(z)→ A(g(z)))� B(y)
)

≤
∧

B∈τeX

(
B(y)→ A(g(y)))� B(y)

)
≤ A(g(y)) = ĝ(y)(A).

(112)

Let B(y) = g←(A)(y) = A(g(y)) for all y ∈ X. Since

g←(A)(y)� eY(y, w) ≤ A(g(y))� eX(g(y), g(w)) ≤ A(g(w)), (113)

we have g←(A) ∈ τeX . Moreover,

G(ŷ)(B) =
∨

A∈τeX

( ∧
z∈X

(B(z)→ A(g(z)))� B(y)
)
≥
∧

z∈X
(A(g(z))→ A(g(z)))� A(g(y))

)
= >� A(g(y)) = A(g(y)) = ĝ(y)(A).

(114)

Moreover,

eτeτeX
(ŷ, F(x̂)) = eτeτeX

(ŷ, f̂ (x)) = eX(y, f (x)) = eX(g(y), x) = eτeτeX
(ĝ(y), x̂) = eτeτeX

(G(ŷ), x̂). (115)

Definition 9. Let (eX, R, S, eX) and (eZ, R̃, S̃, eZ) be dual residuated frames. An injective map k :
(eX , R, S, eX)→ (eZ, R̃, S̃, eZ) is a DR-DR frame embedding if

eX(x, y) = eZ(k(x), k(y)), R(x, y) = R̃(k(x), k(y)), S(x, y) = S̃(k(x), k(y)). (116)

If k is a bijective DR-DR frame embedding map, then k is called a DR-DR frame isomorphism.

Theorem 11. Let (eX , R, S, eX) be a dual residual frame, τeX be an Alexandrov L-topology and τeτeX
= {α ∈

LτeX | α(A)� eτeX
(A, B) ≤ α(B)}. Define a map k : X → τeτeX

by k(x)(A) = x̂(A) = A(x). Then the map

k : (eX , R, S, eX)→ (eτeτeX
, R̂, Ŝ, eτeτeX

) is a DR-DR frame embedding map with eX(x, y) = eτeτeX
(k(x), k(y)),

R(x, y) = R̂(x̂, ŷ) and S(x, y) = Ŝ(x̂, ŷ) where

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
x∈X

(S(y, x)� B(y)),

R̂(α, β) =
∧

A∈τeX

(β(F(A))→ α(A)), Ŝ(β, α) =
∧

B∈τeX

(β(B)→ α(G(B))).
(117)

Proof. By Theorem 4(1), (τeX , F, G, τeX ) is a dual residuated connection where

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R(x, y)� B(y)). (118)
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By Theorem 9, (eτeτeX
, R̂, Ŝ, eτeτeX

) is a dual residuated frame where

R̂(α, β) =
∧

A∈τeX

(β(F(A))→ α(A)), Ŝ(β, α) =
∧

B∈τeX

(β(B)→ α(G(B))). (119)

By Theorem 6, eX(x, y) = eτeτeX
(x̂, ŷ). Moreover,

R̂(x̂, ŷ) =
∧

A∈τeX

(ŷ(F(A))→ x̂(A)) =
∧

A∈τeX

(
∧

z∈X
(R(z, y)→ A(z))→ A(x))

≥
∧

A∈τeX

((R(x, y)→ A(x))→ A(x)) ≥ R(x, y).
(120)

Let R−1
y (z) = R(z, y). Since e−1

X ◦ R ≤ e−1
X ◦ R ◦ e−1

X ≤ R, we have

R−1
y (x)� eX(x, z) = e−1

X (z, x)� R(x, y) ≤ R−1
y (z). (121)

Thus R−1
y ∈ τeX , and so

R̂(x̂, ŷ) =
∧

A∈τeX

(
∧

z∈X
(R(z, y)→ A(z))→ A(x))

≤
∧

z∈X
((R(z, y)→ R−1

y (z))→ R−1
y (x)) = R(x, y), (122)

Ŝ(ŷ, x̂) =
∧

B∈τeX

(ŷ(B)→ x̂(G(B))) =
∧

B∈τeX

(B(y)→
∨

z∈X
(S(z, x)� B(z))

≥
∧

B∈τeX

(B(y)→ (S(y, x)� B(y)) ≥ S(y, x).
(123)

For all R−1
y ∈ τeX ,

Ŝ(ŷ, x̂) =
∧

B∈τeX

(ŷ(B)→ x̂(G(B))) ≤ (R−1
y (y)→

∨
z∈X

(R(x, z)� R−1
y (z))

≤ > → R(x, y) = R(x, y) = S(y, x).
(124)

Hence k : (eX , R, S, eX)→ (eτeτeX
, R̂, Ŝ, eτeτeX

) is a DR-DR frame embedding map.

Example 5. Let X = {a, b, c} be a set. Let f : X → X a map and ([0, 1],�) defined as in Example 3.
(1) Let (X = {a, b, c}, eX) be a fuzzy poset defined as in Example 3(1). Since (eX , f , f , eX) is a dual residuated
connection, that is, eX( f (x), y) = eX(x, f (y)) for all x, y ∈ X, there exist maps R : τeX × τeX → L and
S : τeX × τeX → L by

R(A, B) =
∧

x∈X
(B( f (x))→ A(x)), S(B, A) =

∧
y∈Y

(B(y)→ A(g(y))) (125)

with an isotone map f : X → Y such that (eτeX
, R, S, eτeX

) is a dual residuated frame. For all (eX)a, (eX)b ∈ τeX ,

R((eX)a, (eX)b) =
∧

x∈X
(eX(b, f (x))→ eX(a, x)) = 1, R((eX)b, (eX)a) = 1,

R((eX)a, (eX)a) = R((eX)b, (eX)b) = 0.6, R((eX)c, (eX)c) = 1, R((eX)a, (eX)c) = 0.5,

R((eX)c, (eX)a) = 0.7, R((eX)b, (eX)c) = 0.5, R((eX)c, (eX)b) = 0.7,

S((eX)x, (eX)y) = R((eX)y, (eX)x) for all x, y ∈ X.

(126)
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Moreover,
R((eX)

−1∗
a , (eX)b) =

∧
x∈X

((eX)b( f (x))→ eX)
−1∗
a (x)) = e∗X(b, f (a)). (127)

By Theorem 4(1), (eτeτeX
, F, G, eτeτeX

) is a dual residuated connection where

F(α)(B) =
∧

A∈τeX

(R(A, B)→ α(A)) =
∧

A∈τeX

( ∧
z∈X

(B( f (z))→ A(z))→ α(A)
)

,

G(α)(A) =
∨

B∈τeX

(S(B, A)� α(B)) =
∨

B∈τeX

( ∧
z∈X

(B(z)→ A(g(z)))� α(B)
)

.
(128)

By a similar method used in Example 3, one can see that F = G.
(2) Let (X = {a, b, c}, eX) be a fuzzy poset and g, h : X → X defined as in Example 3(3). Since (eX, h, g, eX)

is a dual residuated connection, that is, eX(h(x), y) = eX(x, g(y)) for all x, y ∈ X, there exist relations
R : τeX × τeX → L and S : τeX × τeX → L by

R(A, B) =
∧

x∈X
(B(h(x))→ A(x)), S(B, A) =

∧
y∈Y

(B(y)→ A(g(y))) (129)

such that (eτeX
, R, S, eτeX

) is a dual residuated frame. By Theorem 4(1), (eτeτeX
, F, G, eτeτeX

) is a dual residuated
connection where

F(α)(B) =
∧

A∈τeX

(R(A, B)→ α(A)) =
∧

A∈τeX

( ∧
z∈X

(B(h(z))→ A(z))→ α(A)
)

,

G(α)(A) =
∨

B∈τeX

(S(B, A)� α(B)) =
∨

B∈τeX

( ∧
z∈X

(B(z)→ A(g(z)))� α(B)
)

.
(130)

Example 6. (1) Let (X = {a, b, c}, eX) be a fuzzy poset where

eX =

 1 0.6 0.5
0.6 1 0.7
0.5 0.7 1

 . (131)

Define a binary operation � on [0, 1] by

x� y = max{0, x + y− 1}, x → y = min{1− x + y, 1}. (132)

Then (L = [0, 1],�,→, 0, 1) is a complete residuated lattice. Let

R =

 0.7 0.4 0.3
0.6 0.8 0.5
0.3 0.5 0.8

 . (133)

Since (eX, R, S, eX) is a residuated frame, we have by Theorem 3(1) that (eτeX
, F, G, eτeX

) is a residuated
connection where

F(A)(y) =
∨

x∈X
(R(x, y)� A(x)), G(B)(x) =

∧
y∈X

(R(x, y)→ B(y)). (134)

By Theorem 11, (eτeτeX
, R̂, Ŝ, eτeτeX

) is a residuated frame where

R̂(α, β) =
∧

A∈τeX

(α(A)→ β(F(A))), Ŝ(β, α) =
∧

B∈τeX

(α(G(B))→ β(B)). (135)
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Since (eX , R, S, eX) is a dual residuated frame, we have by Theorem 4(1) that (τeX , F, G, τeX ) is a dual residuated
connection where

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R(x, y)� B(y)). (136)

By Theorem 11, (eτeτeX
, R̂, Ŝ, eτeτeX

) is a dual residuated connection where

R̂(α, β) =
∧

A∈τeX

(β(F(A))→ α(A)), Ŝ(β, α) =
∧

B∈τeX

(β(B)→ α(G(B))). (137)

(2) Let

eX =

 1 0.7 0.5
0.4 1 0.3
0.3 0.5 1

 . (138)

Then

eX ◦ R ◦ eX =

 0.7 0.5 0.3
0.6 0.8 0.5
0.3 0.5 0.8

 , (139)

and so R < eX ◦ R ◦ eX. Hence (eX, R, S, eX) is not residuated frame. Since G((eX)
−1∗
b )(a)� eX(a, b) =

R∗(a, b)� eX(a, b) = 0.6� 0.7 = 0.3 6≤ 0.2 = R∗(b, b) = G((eX)
−1∗
b )(b), we have G((eX)

−1∗
b ) 6∈ τeX .

However, since R = e−1
X ◦ R ◦ e−1

X , we have that (eτeX
, F, G, eτeX

) is a dual residuated connection defined by

F(A)(y) =
∧

x∈X
(R(x, y)→ A(x)), G(B)(x) =

∨
y∈Y

(R(x, y)� B(y)). (140)

By Theorem 11, (eτeτeX
, R̂, Ŝ, eτeτeX

) is a dual residuated frame where

R̂(α, β) =
∧

A∈τeX

(β(F(A))→ α(A)), Ŝ(β, α) =
∧

B∈τeX

(β(B)→ α(G(B))). (141)

5. Conclusions

As an extension of residuated frames for classical relational semantics, we have introduced (dual)
residuated frames for fuzzy logics. As a generalization of the classical Tarski’s fixed point theorem,
we have shown that an Alexandrov L-topology is a fuzzy complete lattice with residuated connections.
By using residuated connections, we have constructed fuzzy rough sets and have solved fuzzy relation
equations on the Alexandrov L-topology. Moreover, as a generalization of the Dedekind–MacNeille
completion, we have introduced R-R (resp. DR-DR) embedding maps and R-R (resp. DR-DR) frame
embedding maps.

In the future, by using the concepts of (dual) residuated connections and frames, we plan to
investigate fuzzy contexts, information systems and decision rules on Alexandrov L-topologies.
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