Article

The Relations between Residuated Frames and Residuated Connections

Yong Chan Kim ${ }^{\dagger}$ and Ju-Mok Oh ${ }^{*, t}$
Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 25457, Korea; yck@gwnu.ac.kr
* Correspondence: jumokoh@gwnu.ac.kr; Tel.: +82-33-640-2823
\dagger These authors contributed equally to this work.

Received: 6 January 2020; Accepted: 17 February 2020; Published: 21 February 2020
Abstract: We introduce the notion of (dual) residuated frames as a viewpoint of relational semantics for a fuzzy logic. We investigate the relations between (dual) residuated frames and (dual) residuated connections as a topological viewpoint of fuzzy rough sets in a complete residuated lattice. As a result, we show that the Alexandrov topology induced by fuzzy posets is a fuzzy complete lattice with residuated connections. From this result, we obtain fuzzy rough sets on the Alexandrov topology. Moreover, as a generalization of the Dedekind-MacNeille completion, we introduce $R-R$ (resp. $D R-D R$) embedding maps and $R-R$ (resp. $D R-D R$) frame embedding maps.

Keywords: complete residuated lattice; (dual) residuated frames; (dual) residuated connections; $R-R$ (resp. $D R-D R$) embedding maps

1. Introduction

Blyth and Janovitz [1] introduced the residuated connection as a pair (f, g) of maps from a partially ordered set $\left(X, \leq_{X}\right)$ to a partially ordered set $\left(Y, \leq_{Y}\right)$ such that for all $x \in X, y \in Y, f(x) \leq_{Y} y$ if and only if $x \leq_{X} g(y)$. Examples of maps which form residuated connections play an important role [2-4]. Orłowska and Rewitzky [5-7] introduced the residuated frame of logical relational systems for residuated connections.

Pawlak [8,9] introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. Rough sets form residuated connections in the following sense: let R be an equivalence relation on X. For $A \subset X$ and $[x]_{R}=\{y \in X \mid(x, y) \in R\}$,

$$
\begin{equation*}
\bar{R}(A)=\left\{x \in X \mid[x]_{R} \cap A \neq \varnothing\right\}, \underline{R}(A)=\left\{x \in X \mid[x]_{R} \subset A\right\} . \tag{1}
\end{equation*}
$$

Let $P(X)$ be the class of all subsets of X and $(P(X), \subset)$ be a partially ordered set. A rough set (\underline{R}, \bar{R}) forms a residuated connection because for all $A, B \subset X, \bar{R}(A) \subset B$ if and only if $A \subset \underline{R}(B)$.

Ward et al. [10] introduced a complete residuated lattice L as an important algebraic structure for many valued logics [11-16]. For an extension of Pawlak's rough sets, many researchers have developed L-lower and L-upper approximation operators in algebraic structures L [17-25]. She and Wang [26] developed an L-fuzzy rough set (G, H) with L-lower approximation operator G and L-upper approximation operator F in complete residuated lattices as follows. Let (X, e_{X}) be an L-fuzzy partially ordered set. For $A, B \in L^{X}$,

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(e_{X}(x, y) \odot A(x)\right), G(B)(x)=\bigwedge_{y \in X}\left(e_{X}(x, y) \rightarrow B(y)\right) \tag{2}
\end{equation*}
$$

Moreover, fuzzy rough sets form residuated connections in the following sense: for all $A, B \subset X$,

$$
\begin{equation*}
e_{L^{\gamma}}(F(A), B)=\bigwedge_{y \in X}(F(A)(y) \rightarrow B(y))=\bigwedge_{x \in X}(A(x) \rightarrow G(B)(x))=e_{L^{X}}(A, G(B)) \tag{3}
\end{equation*}
$$

Perfilieva [27-30] introduced the theory of fuzzy transform and inverse fuzzy transform in complete residuated lattices, which is similar to other well-known transform theories such as the Fourier, Laplace, Hilbert and wavelet transforms, as well as fuzzy various concept analysis and fuzzy relation equations [31-33]. Oh and Kim [34] interpreted Perfilieva's fuzzy transform as a residuated connection ($e_{L^{X}}, F, G, e_{L^{\gamma}}$) with fuzzy transform and inverse fuzzy transform G. By using the residuated connection, F is a fuzzy join preserving map and G is a fuzzy meet preserving map in a Kim's fuzzy complete lattice sense [20], as a generalization of a complete lattice [35-38]. If X and Y are solutions of fuzzy relation equations $F(X)=B$ and $G(Y)=A$, then $G(B)$ and $F(A)$ are solutions, respectively.

Discrete and stone dualities are dualities between algebras and logical relational systems such as Boolean algebras and classical propositional logics; MV-algebra and Lukasiewicz logic; and BL-algebra and basic fuzzy logics [3-6,39-41]. The duality leads in a natural way to relational semantics for a logic [39-41].

In this paper, as a duality between algebras and logical relational systems, we introduce the notion of residuated connections and residuated frames in fuzzy logics. In Theorems 3 and 4, we show that (dual) residuated frames induce (dual) residuated connections.

Let $\left(X, e_{X}\right)$ be an L-fuzzy partially ordered set. As a generalization of the classic Tarski's fixed point theorem [42,43] for isotone maps, we show that $\tau_{e_{X}}=\left\{A \in L^{X} \mid A=F(A)=\bigvee_{x \in X}\left(e_{X}(x, y) \odot A(x)\right)\right\}$ is an Alexandrov L-topology and $\left(\tau_{e_{X}}, \vee, \wedge, e_{\tau_{e_{X}}}\right)$ is a fuzzy complete lattice [20].

If (e_{X}, R, S, e_{Y}) is a residuated frame, then we show that $F: \tau_{e_{X}} \rightarrow \tau_{e_{Y}}$ and $G: \tau_{e_{Y}} \rightarrow \tau_{e_{X}}$ are well-defined and ($e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}$) is a residuated connection; $e_{\tau_{e_{Y}}}(F(A), B)=e_{\tau_{e_{X}}}(A, G(B))$ is defined by

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(A(x) \odot R(x, y)), \quad G(B)(x)=\bigwedge_{y \in Y}(S(y, x) \rightarrow B(y)) \tag{4}
\end{equation*}
$$

where $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ are Alexandrov L-topologies induced by fuzzy posets $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ in Theorem 1. Using this result, one can show that the pair $(F(A), G(A))$ is an fuzzy rough set for A on $\tau_{e_{X}}$ because ($\left.e_{X}, R=e_{X}, S=e_{X}^{-1}, e_{X}\right)$ is a residuated frame. Moreover, we show the existence of fuzzy rough sets from residuated connections.

Similarly, by Theorem 4, dual residuated frames induce dual residuated connections. In Theorem 5 (resp. 9), (resp. dual) residuated connections induce (resp. dual) residuated frames. Under various relations, we investigate the (dual) residuated connections and frames on Alexandrov L-topologies.

As a generalization of the Dedekind-MacNeille completion [37], we prove the existence of $R-R$ (resp. $D R-D R$) embedding maps and $R-R$ (resp. $D R-D R$) frame embedding maps.

2. Preliminaries

Definition 1 ([10]). An algebra $(L, \wedge, \vee, \odot, \rightarrow, \perp, \top)$ is called a complete residuated lattice if it satisfies the following conditions:
(L1) $(L, \leq, \vee, \wedge, \perp, \top)$ is a complete lattice with the greatest element \top and the least element \perp;
(L2) (L, \odot, \top) is a commutative monoid;
(L3) $x \odot y \leq z$ if and only if $x \leq y \rightarrow z$ for $x, y, z \in L$.
In this paper, we always assume that $(L, \leq, \odot, \rightarrow, *)$ is a complete residuated lattice with $x^{*}=$ $x \rightarrow \perp$ and $\left(x^{*}\right)^{*}=x$.

For $\alpha \in L, A \in L^{X}$, we denote $(\alpha \rightarrow A),(\alpha \odot A), \alpha_{X} \in L^{X}$ by $(\alpha \rightarrow A)(x)=\alpha \rightarrow A(x),(\alpha \odot$ $A)(x)=\alpha \odot A(x), \alpha_{X}(x)=\alpha$.

Lemma 1 ([2]). Let $x, y, z, x_{i}, y_{i}, w \in L$. Then the following hold:
(1) $\top \rightarrow x=x, \perp \odot x=\perp$;
(2) If $y \leq z$, then $x \odot y \leq x \odot z, x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$;
(3) $x \leq y$ if and only if $x \rightarrow y=\mathrm{T}$;
(4) $x \rightarrow\left(\bigwedge_{i} y_{i}\right)=\bigwedge_{i}\left(x \rightarrow y_{i}\right)$;
(5) $\left(\bigvee_{i} x_{i}\right) \rightarrow y=\bigwedge_{i}\left(x_{i} \rightarrow y\right)$;
(6) $x \odot\left(\bigvee_{i} y_{i}\right)=\bigvee_{i}\left(x \odot y_{i}\right)$;
(7) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$;
(8) $(x \rightarrow y) \odot(z \rightarrow w) \leq(x \odot z) \rightarrow(y \odot w)$ and $x \rightarrow y \leq(x \odot z) \rightarrow(y \odot z)$;
(9) $(x \rightarrow y) \odot(y \rightarrow z) \leq x \rightarrow z$;
(10) $\bigvee_{i \in \Gamma} x_{i} \rightarrow \bigvee_{i \in \Gamma} y_{i} \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right)$ and $\bigwedge_{i \in \Gamma} x_{i} \rightarrow \bigwedge_{i \in \Gamma} y_{i} \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right)$;
(11) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$ and $x \rightarrow y \leq(z \rightarrow x) \rightarrow(z \rightarrow y)$;
(12) $\left(x \odot y^{*}\right)^{*}=x \rightarrow y$ and $x \rightarrow y=y^{*} \rightarrow x^{*}$.

Definition 2 ([21]). Let X be a set. A function $e_{X}: X \times X \rightarrow L$ is called:
(E1) Reflexive if $e_{X}(x, x)=\top$ for all $x \in X$;
(E2) Transitive if $e_{X}(x, y) \odot e_{X}(y, z) \leq e_{X}(x, z)$, for all $x, y, z \in X$;
(E3) If $e_{X}(x, y)=e_{X}(y, x)=\mathrm{T}$, then $x=y$. If e_{X} satisfies (E1) and (E2), then (X, e_{X}) is called a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), then (X, e_{X}) is called a fuzzy partially order set (simply, fuzzy poset).

Definition 3 ([18]). (1) A subset $\tau_{X} \subset L^{X}$ is called an Alexandrov L-topology on X if it satisfies the following conditions:
(O1) $\alpha_{X} \in \tau_{X}$;
(O2) If $A_{i} \in \tau_{X}$ for all $i \in I$, then $\bigvee_{i \in I} A_{i}, \wedge_{i \in I} A_{i} \in \tau_{X}$;
(O3) If $A \in \tau_{X}$ and $\alpha \in L$, then $\alpha \odot A, \alpha \rightarrow A \in \tau_{X}$. The pair $\left(X, \tau_{X}\right)$ is called an Alexandrov L-topological space.

Lemma 2. Let $\tau_{X} \subset L^{X}$. Define $e_{\tau_{X}}: \tau_{X} \times \tau_{X} \rightarrow L$ by $e_{\tau_{X}}(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(x))$. Then $\left(\tau_{X}, e_{\tau_{X}}\right)$ is a fuzzy poset.

Proof. (E1) For all $A \in \tau_{X}$, we have $e_{\tau_{X}}(A, A)=\bigwedge_{x \in X}(A(x) \rightarrow A(x))=\mathrm{T}$.
(E2) Let $A, B, C \in \tau_{X}$. Then by Lemma 1(9), we have

$$
\begin{align*}
e_{\tau_{X}}(A, B) \odot e_{\tau_{X}}(B, C) & =\bigwedge_{x \in X}(A(x) \rightarrow B(x)) \odot \bigwedge_{x \in X}(B(x) \rightarrow C(x)) \\
& \leq \bigwedge_{x \in X}((A(x) \rightarrow B(x)) \odot(B(x) \rightarrow C(x))) \tag{5}\\
& \leq e_{\tau_{X}}(A, C)
\end{align*}
$$

(E3) Let $e_{\tau_{X}}(A, B)=e_{\tau_{X}}(B, A)=T$. Then by Lemma 1(3), $A=B$.
Hence $\left(\tau_{X}, e_{\tau_{X}}\right)$ is a fuzzy poset.
Theorem 1. ([18]) Let $\left(X, e_{X}\right)$ be a fuzzy poset. Define

$$
\begin{equation*}
\tau_{e_{X}}=\left\{A \in L^{X} \mid A(x) \odot e_{X}(x, z) \leq A(z)\right\} \tag{6}
\end{equation*}
$$

Then $\tau_{e_{X}}$ is an Alexandrov L-topology on X.
Remark 1. (1) Let $\left(X, \top_{\triangle_{X}}\right)$ be a fuzzy poset where $\top_{\triangle_{X}}(x, x)=\top$ and $\top_{\triangle_{X}}(x, y)=\perp$ for $x \neq y \in X$. Then $\tau_{\top_{\Delta_{X}}}=L^{X}$ and $e_{\tau_{\top_{\Delta_{X}}}}=e_{L^{X}}: L^{X} \times L^{X} \rightarrow \operatorname{Las} e_{L^{X}}(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(x))$.
(2) Let $\left(X, \top_{X \times X}\right)$ be a fuzzy poset where $\top_{X \times X}(x, y)=\top$ for each $x, y \in X$. Then $\tau_{\top_{X \times X}}=\left\{\alpha_{X} \in L^{X} \mid\right.$ $\alpha \in L\}$ and $e_{\tau_{T_{X \times X}}}: \tau_{\top_{X \times X}} \times \tau_{T_{X \times X}} \rightarrow L$ by $e_{\tau_{\top_{X \times X}}}\left(\alpha_{X}, \beta_{X}\right)=\alpha \rightarrow \beta$.

3. Fuzzy Residuated Frames and Fuzzy Residuated Connections on Alexandrov L-topologies

Definition 4. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps.
(1) $\left(e_{X}, f, g, e_{Y}\right)$ is a residuated connection if $e_{Y}(f(x), y)=e_{X}(x, g(y))$ for all $x \in X, y \in Y$;
(2) $\left(e_{X}, f, g, e_{Y}\right)$ is a dual residuated connection if $e_{Y}(y, f(x))=e_{X}(g(y), x)$ for all $x \in X, y \in Y$;
(3) f is an isotone map if $e_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \geq e_{X}\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$;
(4) f is an antitone map if $e_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \geq e_{X}\left(x_{2}, x_{1}\right)$ for all $x_{1}, x_{2} \in X$;
(5) f is an embedding map if $e_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=e_{X}\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$.

Theorem 2. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps.
(1) $\left(e_{X}, f, g, e_{Y}\right)$ is a residuated connection if and only if f, g are isotone maps and $e_{Y}(f(g(y)), y)=$ $e_{X}(x, g(f(x)))=\top$ for all $x, y \in X$;
(2) $\left(e_{X}, f, g, e_{Y}\right)$ is a dual residuated connection if and only if f, g are isotone maps and $e_{Y}(y, f(g(y)))=$ $e_{X}(g(f(x)), x)=\top$ for all $x, y \in X$.

Proof. (1) Let (f, g) be a residuated connection. Since $e_{Y}(f(x), y)=e_{X}(x, g(y))$, we have $\top=$ $e_{Y}(f(x), f(x))=e_{X}(x, g(f(x)))$ and $e_{Y}(f(g(y)), y)=e_{X}(g(y), g(y))=T$. Furthermore,

$$
e_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=e_{X}\left(x_{1}, g\left(f\left(x_{2}\right)\right)\right) \geq e_{X}\left(x_{1}, x_{2}\right) \odot e_{X}\left(x_{2}, g\left(f\left(x_{2}\right)\right)\right)=e_{X}\left(x_{1}, x_{2}\right)
$$

Conversely,

$$
e_{Y}(f(x), y) \geq e_{Y}(f(g(y)), y) \odot e_{Y}(f(x), f(g(y)))=e_{Y}(f(x), f(g(y))) \geq e_{X}(x, g(y))
$$

Similarly, $e_{Y}(f(x), y) \leq e_{X}(x, g(y))$.
(2) Since $e_{Y}(f(x), y)=e_{X}(g(y), x)$, we have $T=e_{Y}(f(x), f(x))=e_{X}(g(f(x)), x)$ and $e_{Y}(f(g(y)), y)=$ $e_{X}(g(y), g(y))=\top$. Furthermore,

$$
e_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=e_{X}\left(g\left(f\left(x_{2}\right)\right), x_{1}\right) \geq e_{X}\left(x_{2}, x_{1}\right) \odot e_{X}\left(g\left(f\left(x_{2}\right)\right), x_{2}\right)=e_{X}\left(x_{2}, x_{1}\right)
$$

For $R_{1} \in L^{X \times Y}$ and $R_{2} \in L^{Y \times Z}$, define

$$
\begin{equation*}
R_{1} \circ R_{2}(x, z)=\bigvee_{y}\left(R_{1}(x, y) \odot R_{2}(y, z)\right), \quad R_{1}^{-1}(y, x)=R_{1}(x, y) \tag{7}
\end{equation*}
$$

Lemma 3. Let $\left(X, e_{X}\right)$ and $\left(X, e_{Y}\right)$ be fuzzy posets. Let $R \in L^{X \times Y}$. Then the following hold:
(1) $\left(e_{X} \circ R\right)^{-1}=R^{-1} \circ e_{X}^{-1}$ and $\left(R \circ e_{X}\right)^{-1}=e_{X}^{-1} \circ R^{-1}$;
(2) $e_{X} \circ R \leq R$ if and only if $e_{X}^{-1} \circ R^{*} \leq R^{*}$;
(3) $R \circ e_{X}^{-1} \leq R$ if and only if $R^{*} \circ e_{X} \leq R^{*}$;
(4) $e_{X} \circ R \circ e_{Y} \leq R$ if and only if $e_{X} \circ R \leq R$ and $R \circ e_{Y} \leq R$;
(5) $e_{X}^{-1} \circ R \circ e_{Y}^{-1} \leq R$ if and only if $e_{X}^{-1} \circ R \leq R$ and $R \circ e_{Y}^{-1} \leq R$;
(6) $e_{X}^{-1} \circ R \circ e_{Y}^{-1} \leq R$ if and only if $e_{X} \circ R^{*} \circ e_{Y} \leq R^{*}$.

Proof. (1) $\left(e_{X} \circ R\right)^{-1}(y, x)=e_{X} \circ R(x, y)=\bigvee_{z \in X}\left(e_{X}(x, z) \odot R(z, y)\right)=\bigvee_{z \in X}\left(e_{X}^{-1}(z, x) \odot R^{-1}(y, z)\right)=$ $R^{-1} \circ e_{X}^{-1}(y, x)$. Similarly, $\left(R \circ e_{X}\right)^{-1}=e_{X}^{-1} \circ R^{-1}$.
(2) $e_{X}(x, z) \odot R(z, y) \leq R(x, y)$ if and only if $R(z, y) \leq e_{X}(x, z) \rightarrow R(x, y)$ if and only if $e_{X}(x, z) \odot$ $R^{*}(x, y) \leq R^{*}(z, y)$ if and only if $e_{X}^{-1}(z, x) \odot R^{*}(x, y) \leq R^{*}(z, y)$.
(3) $R(w, y) \odot e_{X}^{-1}(y, x) \leq R(w, x)$ if and only if $R(w, y) \odot e_{X}(x, y) \leq R(w, x)$ if and only if $e_{X}(x, y) \rightarrow$ $R^{*}(w, y) \geq R^{*}(w, x)$ if and only if $e_{X}(x, y) \odot R^{*}(w, x) \leq R^{*}(w, y)$.
(4) $e_{X} \circ R \circ e_{Y}(x, y)=\bigvee_{y_{1} \in Y}\left(e_{X} \circ R\right)\left(x, y_{1}\right) \odot e_{Y}\left(y_{1}, y\right) \geq\left(e_{X} \circ R\right)(x, y) \odot e_{Y}(y, y)=\left(e_{X} \circ R\right)(x, y)$.

Similarly, $R \circ e_{Y} \leq R$. The converse part can be proved easily.
(5) and (6) can be proved easily by using (2)-(4).

Definition 5. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $R \in L^{X \times Y}$ and $S \in L^{Y \times X}$. A structure (e_{X}, R, S, e_{Y}) is called:
(1) A residuated frame if $S=R^{-1}$ and $e_{X} \circ R \circ e_{Y} \leq R$;
(2) A dual residuated frame if $S=R^{-1}$ and $e_{X}^{-1} \circ R \circ e_{Y}^{-1} \leq R$.

Lemma 4. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Then the following hold:
(1) Let $\left(e_{X}, f, g, e_{Y}\right)$ be a residuated connection. Define maps $R: X \times Y \rightarrow L$ and $S: Y \times X \rightarrow L$ by

$$
\begin{equation*}
R(x, y)=e_{X}(x, g(y))=e_{Y}(f(x), y), \quad S(y, x)=R(x, y) \tag{8}
\end{equation*}
$$

Then $\left(e_{X}, R, S, e_{Y}\right)$ is a residuated frame;
(2) Let $\left(e_{X}, f, g, e_{Y}\right)$ be a dual residuated connection. Define maps $R: X \times Y \rightarrow L$ and $S: Y \times X \rightarrow L$ by

$$
\begin{equation*}
R(x, y)=e_{X}(g(y), x)=e_{Y}(y, f(x)), \quad S(y, x)=R(x, y) \tag{9}
\end{equation*}
$$

Then $\left(e_{X}, R, S, e_{Y}\right)$ is a dual residuated frame;
(3) If g is isotone and $R_{1}(x, y)=e_{X}(x, g(y))\left(\right.$ resp. $\left.R_{2}(x, y)=e_{X}(g(y), x)\right)$, then $e_{X} \circ R_{1} \circ e_{Y} \leq R_{1}$ (resp. $e_{X}^{-1} \circ R_{2} \circ e_{Y}^{-1} \leq R_{2}$);
(4) If f is isotone and $R_{1}(x, y)=e_{Y}(y, f(x))$ (resp. $R_{2}(x, y)=e_{Y}(f(x), y)$), then $e_{X}^{-1} \circ R_{1} \circ e_{Y}^{-1} \leq R_{1}$ (resp. $\left.e_{X} \circ R_{2} \circ e_{Y} \leq R_{2}\right)$.

Proof. (1) For all $x, x_{1} \in X$ and $y, y_{1} \in Y$,

$$
\begin{align*}
e_{X}\left(x, x_{1}\right) \odot R\left(x_{1}, y_{1}\right) \odot e_{Y}\left(y_{1}, y\right) & =e_{X}\left(x, x_{1}\right) \odot e_{X}\left(x_{1}, g\left(y_{1}\right)\right) \odot e_{Y}\left(y_{1}, y\right) \\
& \leq e_{X}\left(x, g\left(y_{1}\right)\right) \odot e_{X}\left(y_{1}, y\right) \tag{10}\\
& =e_{Y}\left(f(x), y_{1}\right) \odot e_{Y}\left(y_{1}, y\right) \\
& \leq e_{Y}(f(x), y)=R(x, y)
\end{align*}
$$

Hence $e_{X} \circ R \circ e_{Y} \leq R$.
(3) For all $x, x_{1} \in X$ and $y, y_{1} \in Y$,

$$
\begin{align*}
e_{X}\left(x, x_{1}\right) \odot R_{1}\left(x_{1}, y_{1}\right) \odot e_{Y}\left(y_{1}, y\right) & =e_{X}\left(x, x_{1}\right) \odot e_{X}\left(x_{1}, g\left(y_{1}\right)\right) \odot e_{Y}\left(y_{1}, y\right) \\
& \leq e_{X}\left(x, x_{1}\right) \odot e_{X}\left(x_{1}, g\left(y_{1}\right)\right) \odot e_{X}\left(g\left(y_{1}\right), g(y)\right) \tag{11}\\
& \leq e_{X}\left(x, x_{1}\right) \odot e_{X}\left(x_{1}, g(y)\right) \\
& \leq e_{X}(x, g(y))=R(x, y)
\end{align*}
$$

Hence $e_{X} \circ R_{1} \circ e_{Y} \leq R_{1}$.
(2) and (4) can be proved similarly.

Theorem 3. Let $\left(e_{X}, R, S, e_{Y}\right)$ be a residuated frame. Let $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ be Alexandrov L-topologies. Then the following hold:
(1) $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(A(x) \odot R(x, y)), \quad G(B)(x)=\bigwedge_{y \in Y}(S(y, x) \rightarrow B(y)) \tag{12}
\end{equation*}
$$

(2) $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is an dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}\left(R^{*}(x, y) \rightarrow A(x)\right), \quad G(B)(x)=\bigvee_{y \in Y}\left(R^{*}(x, y) \odot B(y)\right) \tag{13}
\end{equation*}
$$

Proof. (1) Since $R \circ e_{Y} \leq R$ and $e_{X} \circ R \leq R$ by Lemma 3(4), we have $F(A) \in \tau_{e_{Y}}$ and $G(B) \in \tau_{e_{X}}$ from:

$$
\begin{equation*}
F(A)(y) \odot e_{Y}(y, w)=\bigvee_{x \in X}\left(A(x) \odot R(x, y) \odot e_{Y}(y, w)\right) \leq \bigvee_{x \in X}(A(x) \odot R(x, w))=F(A)(w) \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
G(B)(x) \odot e_{X}(x, z) \odot R(z, y) & \leq \bigwedge_{y \in Y}((R(x, y) \rightarrow B(y)) \odot R(x, y)) \leq B(y) \tag{15}\\
& \Leftrightarrow G(B)(x) \odot e_{X}(x, z) \leq G(B)(z)
\end{align*}
$$

Moreover, for all $A \in \tau_{e_{X}}$ and $B \in \tau_{e_{Y}}$,

$$
\begin{align*}
e_{\tau_{e_{Y}}}(F(A), B) & =\bigwedge_{y \in Y}(F(A)(y) \rightarrow B(y))=\bigwedge_{y \in Y}\left(\bigvee_{x \in Y}(R(x, y) \odot A(x)) \rightarrow B(y)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}(A(x) \rightarrow(R(x, y) \rightarrow B(y)))=\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{x \in X}(R(x, y) \rightarrow B(y))\right) \tag{16}\\
& =\bigwedge_{x \in X}(A(x) \rightarrow G(B)(x))=e_{\tau_{e_{X}}}(A, G(B)) .
\end{align*}
$$

(2) Since $R^{*} \circ e_{Y}^{-1} \leq R^{*}$ and $e_{X}^{-1} \circ R^{*} \leq R^{*}$ by Lemma 3 (5)-(6), we have

$$
\begin{align*}
F(A)(y) \odot e_{Y}(y, w) \odot R^{*}(x, w) & =\left(\bigwedge_{x \in X}\left(R^{*}(x, y) \rightarrow A(x)\right)\right) \odot e_{Y}(y, w) \odot R^{*}(x, w) \\
& \leq \bigwedge_{x \in X}\left(R^{*}(x, y) \rightarrow A(x) \odot R^{*}(x, y)\right) \leq A(x) \\
G(B)(x) \odot e_{X}(x, z) & \leq \bigvee_{y \in Y}\left(\left(R^{*}(x, y) \odot B(y)\right) \odot e_{X}(x, z)\right) \tag{17}\\
& \leq \bigvee_{y \in Y}\left(R^{*}(z, y) \odot B(y)\right)=G(B)(z)
\end{align*}
$$

Thus $F(A) \in \tau_{e_{Y}}$ and $G(B) \in \tau_{e_{X}}$.
Moreover, for all $A \in \tau_{e_{X}}$ and $B \in \tau_{e_{Y}}$,

$$
\begin{align*}
e_{\tau_{e_{X}}}(G(B), A) & =\bigwedge_{x \in X}(G(B)(x) \rightarrow A(x))=\bigwedge_{x \in X}\left(\bigvee_{y \in Y}\left(R^{*}(x, y) \odot B(y)\right) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left(B(y) \rightarrow\left(R^{*}(x, y) \rightarrow A(x)\right)\right)=\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}\left(R^{*}(x, y) \rightarrow A(x)\right)\right) \tag{18}\\
& =\bigwedge_{y \in Y}(B(y) \rightarrow F(A)(y))=e_{\tau_{e Y}}(B, F(A)) .
\end{align*}
$$

Remark 2. Since $\left(\top_{\triangle_{X}}, e_{X}, e_{X}^{-1}, \top_{\triangle_{X}}\right)$ is a residuated frame where e_{X} is a fuzzy poset and $\tau_{T_{\Delta_{X}}}=L^{X}$ by Remark 1(1), $\left(e_{L^{X}}, F, G, e_{L^{X}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, y)\right), \quad G(B)(x)=\bigwedge_{y \in X}\left(e_{X}(x, y) \rightarrow B(y)\right) \tag{19}
\end{equation*}
$$

The pair (G, F) is a fuzzy rough set ([26]).
Theorem 4. Let $\left(e_{X}, R, S, e_{Y}\right)$ be a dual residuated frame. Let $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ be Alexandrov L-topologies. Then the following hold:
(1) $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{y \in Y}(R(x, y) \odot B(y)) \tag{20}
\end{equation*}
$$

(2) $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(A(x) \odot R^{*}(x, y)\right), \quad G(B)(x)=\bigwedge_{y \in Y}\left(R^{*}(x, y) \rightarrow B(y)\right) \tag{21}
\end{equation*}
$$

Proof. (1) Since $R \circ e_{Y}^{-1} \leq R$ and $e_{X}^{-1} \circ R \leq R$ by Lemma 3(5), we have

$$
\begin{align*}
F(A)(y) \odot e_{Y}(y, w) \odot R(x, w) & =\left(\bigwedge_{x \in X}(R(x, y) \rightarrow A(x))\right) \odot e_{Y}^{-1}(w, y) \odot R(x, w) \\
& \leq \bigwedge_{x \in X}(R(x, y) \rightarrow A(x) \odot R(x, y)) \leq A(x), \tag{22}\\
G(B)(x) \odot e_{X}(x, z) & \leq \bigvee_{y \in Y}\left(R(x, y) \odot B(y) \odot \odot e_{X}(x, z)\right) \leq G(B)(z) .
\end{align*}
$$

Moreover, for all $A \in \tau_{e_{X}}$ and $B \in \tau_{e_{Y}}$,

$$
\begin{align*}
e_{\tau_{e_{X}}}(G(B), A) & =\bigwedge_{x \in X}(G(B)(x) \rightarrow A(x))=\bigwedge_{x \in X}\left(\bigvee_{y \in Y}(R(x, y) \odot B(y)) \rightarrow A(x)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}(B(y) \rightarrow(R(x, y) \rightarrow A(x)))=\bigwedge_{y \in Y}\left(B(y) \rightarrow \bigwedge_{x \in X}(R(x, y) \rightarrow A(x))\right) \tag{23}\\
& =\bigwedge_{y \in Y}(B(y) \rightarrow F(A)(y))=e_{\tau_{e_{Y}}}(B, F(A)) .
\end{align*}
$$

Thus $F(A) \in \tau_{e_{Y}}$ and $G(B) \in \tau_{e_{X}}$.
(2) Since $R^{*} \circ e_{Y} \leq R^{*}$ and $e_{X} \circ R^{*} \leq R^{*}$ by Lemma 3(2-3), we have

$$
\begin{align*}
F(A)(y) \odot e_{Y}(y, w) & =\bigvee_{x \in X}\left(A(x) \odot R^{*}(x, y) \odot e_{Y}(y, w)\right) \\
& \leq \bigvee_{x \in X}\left(A(x) \odot R^{*}(x, w)\right)=F(A)(w) \tag{24}\\
G(B)(x) \odot e_{X}(x, z) \odot R^{*}(z, y) & \leq \bigwedge_{y \in Y}\left(\left(R^{*}(x, y) \rightarrow B(y)\right) \odot R^{*}(x, y)\right) \leq B(y)
\end{align*}
$$

Thus $F(A) \in \tau_{e_{Y}}$ and $G(B) \in \tau_{e_{X}}$.
Moreover, for all $A \in \tau_{e_{X}}$, and $B \in \tau_{e_{Y}}$,

$$
\begin{align*}
e_{\tau_{e_{Y}}}(F(A), B) & =\bigwedge_{y \in Y}(F(A)(y) \rightarrow B(y))=\bigwedge_{y \in Y}\left(\bigvee_{x \in Y}\left(R^{*}(x, y) \odot A(x)\right) \rightarrow B(y)\right) \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left(A(x) \rightarrow\left(R^{*}(x, y) \rightarrow B(y)\right)\right)=\bigwedge_{x \in X}\left(A(x) \rightarrow \bigwedge_{x \in X}\left(R^{*}(x, y) \rightarrow B(y)\right)\right) \tag{25}\\
& =\bigwedge_{x \in X}(A(x) \rightarrow G(B)(x))=e_{\tau_{e_{X}}}(A, G(B)) .
\end{align*}
$$

Remark 3. Since $\left(\top_{\Delta_{X}}, e_{X}, e_{X}^{-1}, \top_{\Delta_{X}}\right)$ is a dual residuated frame where e_{X} is a fuzzy poset and $\tau_{\top_{\Delta_{X}}}=L^{X}$ by Remark 1(1), $\left(e_{L^{X}}, F, G, e_{L^{X}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}\left(e_{X}(x, y) \rightarrow A(x)\right), \quad G(B)(x)=\bigvee_{y \in X}\left(e_{X}(x, y) \odot B(y)\right) \tag{26}
\end{equation*}
$$

Example 1. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps. Let $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ be Alexandrov L-topologies.
(1) Let g be isotone and $R(x, y)=e_{X}(x, g(y))$. By Lemma 4(3), $\left(e_{X}, R, S=R^{-1}, e_{Y}\right)$ is a residuated frame. By Theorem 3(1), $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a residuated connection with

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, g(y))\right), \quad G(B)(x)=\bigwedge_{y \in Y}\left(e_{X}(x, g(y)) \rightarrow B(y)\right) \tag{27}
\end{equation*}
$$

(2) Let g be isotone and $R(x, y)=e_{X}(g(y), x)$. By Lemma 4(3), $\left(e_{X}, R, S=R^{-1}, e_{Y}\right)$ is a dual residuated frame. By Theorem 4(1), $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{y \in Y}\left(e_{X}(g(y), x) \rightarrow A(x)\right), \quad G(B)(x)=\bigvee_{y \in Y}\left(B(y) \odot e_{X}(g(y), x)\right) \tag{28}
\end{equation*}
$$

(3) Let f be isotone and $R(x, y)=e_{Y}(y, f(x))$. By Lemma 4(4), $\left(e_{X}, R, S=R^{-1}, e_{Y}\right)$ is a dual residuated frame. By Theorem 4(1), $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{X}}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}\left(e_{Y}(y, f(x)) \rightarrow A(x)\right), \quad G(B)(y)=\bigvee_{y \in Y}\left(B(y) \odot e_{Y}(y, f(x))\right) \tag{29}
\end{equation*}
$$

(4) Let f be isotone and $R(x, y)=e_{Y}(f(x), y)$. By Lemma 4(4), $\left(e_{X}, R, S=R^{-1}, e_{Y}\right)$ is a residuated frame. By Theorem 3(1), $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(e_{Y}(f(x), y) \odot A(x)\right), \quad G(B)(y)=\bigwedge_{y \in Y}\left(e_{Y}(f(x), y) \rightarrow B(y)\right) \tag{30}
\end{equation*}
$$

Theorem 5. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ be Alexandrov L-topologies. Then the following hold:
(1) $\left(e_{X}, f, g, e_{Y}\right)$ is a residuated connection. That is, $e_{Y}(f(x), y)=e_{X}(x, g(y))$ for all $x, y \in X$ if and only if there exist relations $R: \tau_{e_{X}} \times \tau_{e_{Y}} \rightarrow L$ and $S: \tau_{e_{Y}} \times \tau_{e_{X}} \rightarrow L$ by

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(f(x))), \quad S(B, A)=\bigwedge_{y \in Y}(A(g(y)) \rightarrow B(y)) \tag{31}
\end{equation*}
$$

with isotone maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{Y}}}\right)$ is a residuated frame. (2) In (1),

$$
\begin{equation*}
R(A, B)=e_{\tau_{e_{X}}}\left(A, f^{\leftarrow}(B)\right)=e_{\tau_{e_{Y}}}(F(A), B)=e_{\tau_{e_{X}}}(A, G(B)) \tag{32}
\end{equation*}
$$

where $F(A)(y)=\bigvee_{z \in X}\left(e_{Y}(f(z), y) \odot A(z)\right)$ and $\left.G(B)=\bigwedge_{y \in Y}\left(e_{Y}(f(z), y) \rightarrow B(y)\right)\right)$.

$$
\begin{equation*}
S(B, A)=e_{\tau_{e_{Y}}}\left(g^{\leftarrow}(A), B\right)=e_{\tau_{e_{Y}}}\left(F_{1}(A), B\right)=e_{\tau_{e_{X}}}\left(A, G_{1}(B)\right) \tag{33}
\end{equation*}
$$

where $F_{1}(A)(w)=\bigvee_{z \in X}\left(e_{Y}(z, g(w)) \odot A(z)\right)$ and $G_{1}(B)(z)=\bigwedge_{w \in Y}\left(e_{Y}(z, g(w)) \rightarrow B(w)\right)$.

Proof. (1) (\Rightarrow) Let $A \in \tau_{e_{X}}$ and $B \in \tau_{e_{Y}}$. Since $B(f(g(y))) \odot e_{Y}(f(g(y)), y) \leq B(y), e_{Y}(f(g(y)), y)=$ $\top, A(x) \odot e_{X}(x, g(f(x))) \leq A(g(f(x)))$ and $e_{X}(x, g(f(x)))=\top$,

$$
\begin{align*}
R(A, B) & =\bigwedge_{x \in X}(A(x) \rightarrow B(f(x))) \leq \bigwedge_{y \in Y}\left(A(g(y)) \rightarrow B(f(g(y))) \odot e_{Y}(f(g(y)), y)\right) \\
& \leq \bigwedge_{y \in Y}(A(g(y)) \rightarrow B(y))=S(B, A) \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
S(B, A) & =\bigwedge_{x \in X}(A(g(y)) \rightarrow B(y)) \leq \bigwedge_{x \in X}(A(g(f(x))) \rightarrow B(f(x))) \\
& \leq \bigwedge_{y \in X}\left(A(x) \odot e_{X}(x, g(f(x))) \rightarrow B(f(x))\right)=R(A, B) \tag{35}
\end{align*}
$$

Thus we have $R(A, B)=S(B, A)$. For all $A, A_{1} \in \tau_{e_{X}}, B, B_{1} \in \tau_{e_{Y}}$, we have

$$
\begin{align*}
& e_{\tau_{e_{X}}}\left(A, A_{1}\right) \odot R\left(A_{1}, B_{1}\right) \odot e_{\tau_{e_{Y}}}\left(B_{1}, B\right) \\
& \quad=e_{\tau_{e_{X}}}\left(A, A_{1}\right) \odot \bigwedge_{x \in X}\left(A_{1}(x) \rightarrow B_{1}(f(x))\right) \odot \bigwedge_{x \in X}\left(B_{1}(f(x)) \rightarrow B(f(x))\right) \tag{36}\\
& \quad \leq \bigwedge_{x \in X}(A(x) \rightarrow B(f(x)))=R(A, B)
\end{align*}
$$

Thus $e_{\tau_{e_{X}}} \circ R \circ e_{\tau_{e_{Y}}} \leq R$.
(\Leftarrow) Since $e_{Y}(z, w) \odot e_{Y}(w, y) \leq e_{Y}(z, y)$ if and only if $\left(e_{Y}\right)_{y}^{-1 *}(z) \odot e_{Y}(z, w) \leq\left(e_{Y}\right)_{y}^{-1 *}(w)$, we have $\left(e_{Y}\right)_{y}^{-1 *} \in \tau_{e_{Y}}$. For all $\left(e_{X}\right)_{x} \in \tau_{e_{X}}$ and $\left(e_{Y}\right)_{y}^{-1 *} \in \tau_{e_{Y}}$,

$$
\begin{align*}
R\left(\left(e_{X}\right)_{x},\left(e_{Y}\right)_{y}^{-1 *}\right) & =\bigwedge_{z \in X}\left(\left(e_{X}\right)_{x}(z) \rightarrow\left(e_{Y}\right)_{y}^{-1 *}(f(z))\right) \tag{37}\\
& \leq\left(e_{X}\right)_{x}(x) \rightarrow\left(e_{Y}\right)_{y}^{-1 *}(f(x))=e_{Y}(f(x), y)^{*}
\end{align*}
$$

Since $e_{X}(x, z) \odot e_{Y}(f(z), y) \leq e_{Y}(f(x), f(z)) \odot e_{Y}(f(z), y) \leq e_{Y}(f(x), y)$, we have $e_{X}(x, z) \rightarrow$ $e_{Y}^{*}(f(z), y) \geq e_{Y}^{*}(f(x), y)$. Hence $R\left(\left(e_{X}\right)_{x},\left(e_{Y}\right)_{y}^{-1 *}\right)=e_{Y}^{*}(f(x), y)$. Moreover,

$$
\begin{align*}
S\left(\left(e_{Y}\right)_{y}^{-1 *},\left(e_{X}\right)_{x}\right) & =\bigwedge_{z \in X}\left(\left(e_{X}\right)_{x}(g(z)) \rightarrow\left(e_{Y}\right)_{y}^{-1 *}(z)\right) \tag{38}\\
& \leq\left(e_{X}\right)_{x}(g(y)) \rightarrow\left(e_{Y}\right)_{y}^{-1 *}(y)=e_{X}(x, g(y))^{*}
\end{align*}
$$

Since $e_{X}(x, g(z)) \odot e_{Y}(z, y) \leq e_{X}(x, g(z)) \odot e_{X}(g(z), g(y)) \leq e_{X}(x, g(y))$, we have $e_{X}(x, g(z)) \rightarrow$ $e_{Y}^{*}(z, y) \geq e_{X}^{*}(x, g(y))$. Hence $S\left(\left(e_{Y}\right)_{y}^{-1 *},\left(e_{X}\right)_{x}\right)=e_{X}^{*}(x, g(y))$. Now, from

$$
\begin{equation*}
R\left(\left(e_{X}\right)_{x},\left(e_{Y}\right)_{y}^{-1 *}\right)=e_{Y}^{*}(f(x), y)=S\left(\left(e_{Y}\right)_{y}^{-1 *},\left(e_{X}\right)_{x}\right)=e_{X}^{*}(x, g(y)) \tag{39}
\end{equation*}
$$

we have $e_{Y}(f(x), y)=e_{X}(x, g(y))$ for all $x, y \in X$.
(2) Let $A \in \tau_{e_{X}}$ and $B \in \tau_{e_{Y}}$. Since $A=\bigvee_{z \in X}\left(A(z) \odot e_{X}(z,-)\right)$ and $B=\bigwedge_{y \in Y}\left(B^{*}(y) \rightarrow e_{Y}^{*}(-, y)\right)$, we have

$$
\begin{align*}
R(A, B) & =\bigwedge_{x \in X}(A(x) \rightarrow B(f(x)))=\bigwedge_{x \in X}\left(\bigvee_{z \in X}\left(A(z) \odot e_{X}(z, x)\right) \rightarrow \bigwedge_{y \in Y}\left(B^{*}(y) \rightarrow e_{Y}^{*}(f(x), y)\right)\right) \\
& =\bigwedge_{x, z \in X} \bigvee_{y \in Y}\left(A(z) \odot B^{*}(y) \rightarrow\left(e_{X}(z, x) \rightarrow e_{Y}^{*}(f(x), y)\right)\right) \\
& =\bigwedge_{z \in X} \bigvee_{y \in Y}\left(A(z) \odot B^{*}(y) \rightarrow \bigwedge_{x \in X}\left(e_{X}(z, x) \rightarrow e_{Y}^{*}(f(x), y)\right)\right) \\
& =\bigwedge_{z \in X} \bigvee_{y \in Y}\left(A(z) \odot B^{*}(y) \rightarrow e_{Y}^{*}(f(z), y)\right) \tag{40}\\
& =\bigwedge_{y \in Y}\left(\bigvee_{z \in X}\left(e_{Y}(f(z), y) \odot A(z)\right) \rightarrow B(y)\right)=e_{\tau_{e_{Y}}}(F(A), B) \\
& =\bigwedge_{z \in X}\left(A(z) \rightarrow \bigwedge_{y \in Y}\left(e_{Y}(f(z), y) \rightarrow B(y)\right)\right)=e_{\tau_{e_{X}}}(A, G(B))
\end{align*}
$$

and

$$
\begin{align*}
S(B, A) & =\bigwedge_{y \in Y}(A(g(y)) \rightarrow B(y))=\bigwedge_{y \in Y}\left(\bigvee_{z \in X}\left(A(z) \odot e_{X}(z, g(y))\right) \rightarrow \bigwedge_{w \in Y}\left(B^{*}(w) \rightarrow e_{Y}^{*}(y, w)\right)\right) \\
& =\bigwedge_{y, w \in Y} \bigvee_{z \in X}\left(A(z) \odot B^{*}(w) \rightarrow\left(e_{X}(z, g(y)) \rightarrow e_{Y}^{*}(y, w)\right)\right) \\
& =\bigwedge_{w \in Y} \bigvee_{z \in X}\left(A(z) \odot B^{*}(w) \rightarrow \bigwedge_{y \in Y}\left(e_{X}(z, g(y)) \rightarrow e_{Y}^{*}(y, w)\right)\right) \tag{41}\\
& =\bigwedge_{w \in Y} \bigvee_{z \in X}\left(A(z) \odot B^{*}(w) \rightarrow e_{Y}^{*}(z, g(w))\right) \\
& =\bigwedge_{w \in Y}\left(\bigvee_{z \in X}\left(e_{Y}(z, g(w)) \odot A(z)\right) \rightarrow B(w)\right)=e_{\tau_{e_{Y}}}\left(F_{1}(A), B\right) \\
& =\bigwedge_{z \in X}\left(A(z) \rightarrow \bigwedge_{w \in Y}\left(e_{Y}(z, g(w)) \rightarrow B(w)\right)\right)=e_{\tau_{e_{X}}}\left(A, G_{1}(B)\right)
\end{align*}
$$

Example 2. Let $\left(L^{X}, F, G, L^{Y}\right)$ be a residuated connection where for $R \in L^{X \times Y \text {, }}$

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(R(x, y) \odot A(x)), \quad G(B)(x)=\bigwedge_{y \in Y}(R(x, y) \rightarrow B(y)) \tag{42}
\end{equation*}
$$

Let $\tau_{e_{L^{X}}}=\left\{\alpha \in L^{L^{X}} \mid \alpha(A) \odot e_{L^{X}}(A, B) \leq \alpha(B)\right\}$ and $\tau_{e_{L^{Y}}}=\left\{\beta \in L^{L^{Y}} \mid \beta(A) \odot e_{L^{Y}}(A, B) \leq \beta(B)\right\}$. Define two maps $T_{1}, S_{1}^{-1}: \tau_{e_{L^{X}}} \times \tau_{e_{L^{Y}}} \rightarrow L$ by

$$
\begin{equation*}
T_{1}(\alpha, \beta)=\bigwedge_{A \in L^{X}}(\alpha(A) \rightarrow \beta(F(A))), \quad S_{1}(\beta, \alpha)=\bigwedge_{B \in L^{X}}(\alpha(G(B)) \rightarrow \beta(B)) \tag{43}
\end{equation*}
$$

Then $\left(e_{\tau_{e_{L}}}, T_{1}, S_{1}, e_{\tau_{e} Y}\right)$ is a residuated frame.
Theorem 6. Let $\left(X, e_{X}\right)$ be a fuzzy poset. Let $\tau_{e_{X}}$ be an Alexandrov L-topology. Let $\tau_{e_{\tau_{e_{X}}}}=\left\{\alpha \in L^{\tau_{e_{X}}} \mid\right.$ $\left.\alpha(A) \odot e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $h: X \rightarrow \tau_{\tau_{\tau_{X}}}$ by $h(x)(A)=\hat{x}(A)=A(x)$. Then $h:\left(X, e_{X}\right) \rightarrow$ $\left(\tau_{\tau_{\tau_{e_{X}}}}, e_{\tau_{\tau_{\tau_{e_{X}}}}}\right)$ is an embedding map.

Proof. Assume that $h(x)(A)=h(y)(A)$ for all $A \in \tau_{e_{X}}$. Then $h(x)\left(\left(e_{X}\right)_{x}\right)=h(y)\left(\left(e_{X}\right)_{x}\right)=e_{X}(x, y)=$ \top for $\left(e_{X}\right)_{x} \in \tau_{e_{X}}$, and $h(x)\left(\left(e_{X}\right)_{y}\right)=h(y)\left(\left(e_{X}\right)_{y}\right)=e_{X}(y, x)=\top$ for $\left(e_{X}\right)_{y} \in \tau_{e_{X}}$. Thus $x=y$. Hence h is injective.
Since

$$
\begin{equation*}
\hat{x}(A) \odot e_{\tau_{e_{X}}}(A, B)=\hat{x}(A) \odot \bigwedge_{y \in X}(A(y) \rightarrow B(y)) \leq A(x) \odot(A(x) \rightarrow B(x)) \leq B(x)=\hat{x}(B) \tag{44}
\end{equation*}
$$

we have $h(x)=\hat{x} \in \tau_{e_{\tau_{e_{X}}}}$. Let $A \in \tau_{e_{X}}$. Since $A(x)=\bigwedge_{y \in Y}\left(e_{X}(x, y) \rightarrow A(y)\right)$, we have

$$
\begin{equation*}
e_{X}(x, y) \leq \bigwedge_{A \in \tau_{e_{X}}}(A(x) \rightarrow A(y))=\bigwedge_{A \in \tau_{e_{X}}}(\hat{x}(A) \rightarrow \hat{y}(A))=e_{\tau_{e_{e_{e_{X}}}}}(\hat{x}, \hat{y}) \tag{45}
\end{equation*}
$$

Let $\left(e_{X}\right)_{z}(x)=e_{X}(z, x)$. Since $\left(e_{X}\right)_{z}(x) \odot e_{X}(x, y) \leq\left(e_{X}\right)_{z}(y)$, we have $\left(e_{X}\right)_{z} \in \tau_{e_{X}}$ for all $z \in X$. Note that

$$
\begin{align*}
e_{\tau_{e_{\tau_{e}}}}(\hat{x}, \hat{y}) & =\bigwedge_{A \in \tau_{e_{X}}}(A(x) \rightarrow A(y)) \leq \bigwedge_{\left(e_{X}\right)_{z} \in \tau_{e_{X}}}\left(\left(e_{X}\right)_{z}(x) \rightarrow\left(e_{X}\right)_{z}(y)\right) \tag{46}\\
& =\bigwedge_{z \in X}\left(e_{X}(z, x) \rightarrow e_{X}(z, y)\right)=e_{X}(x, y)
\end{align*}
$$

Hence $e_{\tau_{e_{\tau_{X}}}}(\hat{x}, \hat{y})=e_{X}(x, y)$.
Definition 6. Let $\left(e_{X}, f, g, e_{X}\right)$ and $\left(e_{Z}, \tilde{f}, \tilde{g}, e_{Z}\right)$ be residuated connections. An injective function k : $\left(e_{X}, f, g, e_{X}\right) \rightarrow\left(e_{Z}, \tilde{f}, \tilde{g}, e_{Z}\right)$ is an R-R embedding if

$$
\begin{equation*}
e_{X}(x, y)=e_{Z}(k(x), k(y)), e_{X}(f(x), y)=e_{Z}(\tilde{f}(k(x)), k(y)), e_{X}(x, g(y))=e_{Z}(k(x), \tilde{g}(k(y))) \tag{47}
\end{equation*}
$$

If k is a bijective $R-R$ embedding map, then k is called an $R-R$ isomorphism.
Theorem 7. Let $\left(e_{X}, f, g, e_{X}\right)$ be a residuated connection, $\tau_{e_{X}}$ be an Alexandrov L-topology and $\tau_{e_{\tau_{e_{X}}}}=\{\alpha \in$ $\left.L^{\tau_{e_{X}}} \mid \alpha(A) \odot e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $h: X \rightarrow \tau_{e_{\tau_{e_{X}}}}$ by $h(x)(A)=\hat{x}(A)=A(x)$. Then the map $h:\left(e_{X}, f, g, e_{X}\right) \rightarrow\left(e_{\tau_{\tau_{\tau_{X}}}}, F, G, e_{\tau_{\tau_{\tau_{X}}}}\right)$ is an $R-R$ embedding map with

$$
\begin{equation*}
e_{X}(x, y)=e_{\tau_{e_{\tau_{X}}}}(\hat{x}, \hat{y}), F(h(x))(B)=F(\hat{x})(B)=\widehat{f(x)}(B) \tag{48}
\end{equation*}
$$

for all $B \in \tau_{e_{X}}$ and $G(h(y))(A)=G(\hat{y})(A)=\hat{g}(\hat{y})(A)$ for all $A \in \tau_{e_{X}}$ where

$$
\begin{align*}
R(A, B) & =\bigwedge_{x \in X}(A(x) \rightarrow B(f(x))), \quad S(B, A)=\bigwedge_{y \in X}(A(g(y)) \rightarrow B(y)), \tag{49}\\
F(\hat{x})(B) & =\bigvee_{A \in \tau_{e_{X}}}(R(A, B) \odot \hat{x}(A)), \quad G(\hat{y})(A)=\bigwedge_{B \in \tau_{e_{X}}}(S(B, A) \rightarrow \hat{y}(B)) \tag{50}
\end{align*}
$$

Moreover, $e_{\tau_{e_{\tau_{X}}}}(F(\hat{x}), \hat{y})=e_{\tau_{e_{\tau_{e_{X}}}}}(\hat{x}, G(\hat{y}))$.
Proof. By Theorem 6, $h:\left(X, e_{X}\right) \rightarrow\left(\tau_{e_{e_{e_{X}}}}, e_{\tau_{\tau_{e_{X}}}}\right)$ is an embedding map. By Theorem $5(1)$, $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a residuated frame where

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(f(x))), \quad S(B, A)=\bigwedge_{y \in X}(A(g(y)) \rightarrow B(y)) \tag{51}
\end{equation*}
$$

By Theorem 3(1), $\left(e_{\tau_{\tau_{e_{e}}}}, F, G, e_{\tau_{e_{\tau_{X}}}}\right)$ is a residuated connection where

$$
\begin{align*}
& F(\alpha)(B)=\bigvee_{A \in \tau_{e_{X}}}(R(A, B) \odot \alpha(A))=\bigvee_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(z) \rightarrow B(f(z))) \odot \alpha(A)\right), \tag{52}\\
& G(\alpha)(A)=\bigwedge_{B \in \tau_{e_{X}}}(S(B, A) \rightarrow \alpha(B))=\bigwedge_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(g(z)) \rightarrow B(z)) \rightarrow \alpha(B)\right) \tag{53}
\end{align*}
$$

Moreover,

$$
\begin{align*}
F(\hat{x})(B)=\bigvee_{A \in \tau_{e_{X}}}(R(A, B) \odot \hat{x}(A)) & =\bigvee_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(z) \rightarrow B(f(z))) \odot A(x)\right) \tag{54}\\
& \leq B(f(x))=\widehat{f(x)}(B) .
\end{align*}
$$

Since f is isotone and $B \in \tau_{e_{X}}$, we have $B(f(x)) \odot e_{X}(x, y) \leq B(f(x)) \odot e_{X}(f(x), f(y)) \leq B(f(y))$. Hence $f \leftarrow(B) \in \tau_{e_{X}}$.

Let $A=f \leftarrow(B)$. Note that

$$
\begin{align*}
F(\hat{x})(B)=\bigvee_{A \in \tau_{e_{X}}}(R(A, B) \odot \hat{x}(A)) & \geq\left(\bigwedge_{z \in X}\left(f^{\leftarrow}(B)(z) \rightarrow B(f(z))\right) \odot f^{\leftarrow}(B)(x)\right) \tag{55}\\
& =B(f(x))=\widehat{f(x)}(B) .
\end{align*}
$$

Hence $F(\hat{x})=\widehat{f(x)}$. Note that

$$
\begin{align*}
G(\hat{y})(A) & =\bigwedge_{B \in \tau_{e_{X}}}(S(B, A) \rightarrow \hat{y}(B))=\bigwedge_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(g(z)) \rightarrow B(z)) \rightarrow B(y)\right) \\
& \left.\geq \bigwedge_{B \in \tau_{e_{X}}}(A(g(y)) \rightarrow B(y)) \rightarrow B(y)\right) \geq A(g(y))=\widehat{g(y)}(A) \tag{56}
\end{align*}
$$

Since g is isotone, we have $g^{\leftarrow}(A) \in \tau_{e_{X}}$. Thus $G(\hat{y}) \leq \widehat{g(y)}$. Moreover,

$$
\begin{equation*}
e_{\tau_{e_{e_{X}}}}(F(\hat{x}), \hat{y})=e_{\tau_{\tau_{e_{X}}}}(\widehat{f(x)}, \hat{y})=e_{X}(f(x), y)=e_{X}(x, g(y))=e_{\tau_{e_{e_{e_{X}}}}}(\hat{x}, \widehat{g(y)})=e_{\tau_{\tau_{\tau_{e}}}}(\hat{x}, G(\hat{y})) . \tag{57}
\end{equation*}
$$

Definition 7. Let $\left(e_{X}, R, S, e_{X}\right)$ and $\left(e_{Z}, \tilde{R}, \tilde{S}, e_{Z}\right)$ be residuated frames. An injective map $k:\left(e_{X}, R, S, e_{X}\right) \rightarrow$ $\left(e_{Z}, \tilde{R}, \tilde{S}, e_{Y}\right)$ is an $R-R$ frame embedding if

$$
\begin{equation*}
e_{X}(x, y)=e_{Z}(k(x), k(y)), R(x, y)=\tilde{R}(k(x), k(y)), S(x, y)=\tilde{S}(k(x), k(y)) \tag{58}
\end{equation*}
$$

If k is a bijective $R-R$ embedding map, then k is called an $R-R$ frame isomorphism.
Theorem 8. Let $\left(e_{X}, R, S, e_{X}\right)$ be a residual frame, $\tau_{e_{X}}$ be an Alexandrov L-topology and $\tau_{e_{\tau_{e}}}=\left\{\alpha \in L^{\tau_{e_{X}}} \mid\right.$ $\left.\alpha(A) \odot e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $k: X \rightarrow \tau_{e_{\tau_{e_{X}}}}$ by $k(x)(A)=\hat{x}(A)=A(x)$. Then the map $k:\left(e_{X}, R, S, e_{X}\right) \rightarrow\left(e_{\tau_{e_{\tau_{e}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{\tau_{e_{X}}}}}\right)$ is an $R-R$ frame embedding map with $e(x, y)=e_{\tau_{e_{\tau_{e_{X}}}}}(k(x), k(y))$, $R(x, y)=\hat{R}(k(x), k(y))=\hat{R}(\hat{x}, \hat{y})$ and $S(x, y)=\hat{S}(k(x), k(y))=\hat{S}(\hat{x}, \hat{y})$ where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(R(x, y) \odot A(x)), \quad G(B)(x)=\bigwedge_{y \in X}(R(x, y) \rightarrow B(y)) \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\alpha(A) \rightarrow \beta(F(A))), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\alpha(G(B)) \rightarrow \beta(B)) . \tag{60}
\end{equation*}
$$

Proof. By Theorem 6, $k:\left(X, e_{X}\right) \rightarrow\left(\tau_{e_{\tau_{e}}}, e_{\tau_{e_{\tau_{e_{X}}}}}\right)$ is an embedding map. Hence $e_{X}(x, y)=e_{\tau_{\tau_{\tau_{X}}}}(\hat{x}, \hat{y})$. By Theorem 3(1), $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{X}}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(R(x, y) \odot A(x)), \quad G(B)(x)=\bigwedge_{y \in X}(R(x, y) \rightarrow B(y)) \tag{61}
\end{equation*}
$$

By Theorem $5(1),\left(e_{\tau_{\tau_{\tau_{X}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{\tau_{X}}}}\right)$ is a residuated frame where

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\alpha(A) \rightarrow \beta(F(A))), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\alpha(G(B)) \rightarrow \beta(B)) \tag{62}
\end{equation*}
$$

Note that for all $\hat{x}, \hat{y} \in \tau_{e_{\tau_{e} X}}$,

$$
\begin{align*}
\hat{R}(\hat{x}, \hat{y}) & =\bigwedge_{A \in \tau_{e_{X}}}(\hat{x}(A) \rightarrow \hat{y}(F(A)))=\bigwedge_{A \in \tau_{e_{X}}}(A(x) \rightarrow F(A)(y)) \\
& =\bigwedge_{A \in \tau_{e_{X}}}\left(A(x) \rightarrow \bigvee_{z \in X}(R(z, y) \odot A(z))\right) \geq \bigwedge_{A \in \tau_{e_{X}}}(A(x) \rightarrow(R(x, y) \odot A(x))) \tag{63}\\
& \geq R(x, y) .
\end{align*}
$$

Let $\left(e_{X}\right)_{x}(z)=e_{X}(x, z)$. Then $\left(e_{X}\right)_{x} \in \tau_{e_{X}}$. Since $e_{X} \circ R \circ e_{X} \leq R$, we have $e_{X} \circ R \leq R$. Thus

$$
\begin{align*}
\hat{R}(\hat{x}, \hat{y}) & =\bigwedge_{A \in \tau_{e_{X}}}\left(A(x) \rightarrow \bigvee_{z \in X}(R(z, y) \odot A(z))\right) \leq\left(\left(e_{X}\right)_{x}(x) \rightarrow \bigvee_{z \in X}\left(R(z, y) \odot\left(e_{X}\right)_{x}(z)\right)\right) \tag{64}\\
& =R(x, y)
\end{align*}
$$

and

$$
\begin{align*}
\hat{S}(\hat{y}, \hat{x}) & =\bigwedge_{B \in \tau_{e_{X}}}(\hat{x}(G(B)) \rightarrow \hat{y}(B))=\bigwedge_{B \in \tau_{e_{X}}}(G(B)(x) \rightarrow B(y)) \\
& =\bigwedge_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(R(x, z) \rightarrow B(z)) \rightarrow B(y)\right) \geq \bigwedge_{B \in \tau_{e_{X}}}((R(x, y) \rightarrow B(y)) \rightarrow B(y)) \tag{65}\\
& \geq R(x, y)=S(y, x) .
\end{align*}
$$

Since $R \circ e_{X} \leq e_{X} \circ R \circ e_{X} \leq R$, we have $R(x, y) \odot e_{X}(y, w) \leq R(x, w)$. Thus $R_{x}=R(x,-) \in \tau_{e_{X}}$. Hence

$$
\begin{align*}
\hat{S}(\hat{y}, \hat{x}) & =\bigwedge_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(R(x, z) \rightarrow B(z)) \rightarrow B(y)\right) \leq\left(\bigwedge_{z \in X}\left(R(x, z) \rightarrow R_{x}(z)\right) \rightarrow R_{x}(y)\right) \tag{66}\\
& =R(x, y)=S(y, x)
\end{align*}
$$

Corollary 1. Let $\left(e_{X}, R=e_{X}, S=e_{X}^{-1}, e_{X}\right)$ be a residual frame and $\tau_{e_{e_{e_{X}}}}=\left\{\alpha \in L^{\tau_{e_{X}}} \mid \alpha(A) \odot\right.$ $\left.e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $k: X \rightarrow \tau_{e_{\tau_{e_{X}}}}$ by $k(x)(A)=\hat{x}(A)=A(x)$. Then the map

$$
\begin{equation*}
k:\left(e_{X}, R=e_{X}, S=e_{X}^{-1}, e_{X}\right) \rightarrow\left(e_{\tau_{\tau_{\tau_{X}}}}, \hat{R}=\widehat{e_{X}}, \hat{S}=\widehat{e_{X}^{-1}}, e_{\tau_{e_{\tau_{e_{X}}}}}\right) \tag{67}
\end{equation*}
$$

is an embedding map with $e_{X}(x, y)=e_{\tau_{e_{\tau_{e_{X}}}}}(k(x), k(y)), e_{X}(x, y)=\widehat{e_{X}}(\hat{x}, \hat{y})$ and $e_{X}^{-1}(x, y)=$ $\widehat{e_{X}^{-1}}(\hat{x}, \hat{y})$ where

$$
\begin{align*}
& \widehat{e_{X}}(\hat{x}, \hat{y})=\bigwedge_{A \in \tau_{e_{X}}}(\hat{x}(A) \rightarrow \hat{y}(F(A)))=\bigwedge_{A \in \tau_{e_{X}}}\left(A(x) \rightarrow \bigvee_{z \in X}\left(e_{X}(z, y) \odot A(z)\right)\right)=e_{X}(x, y), \\
& \widehat{e_{X}^{-1}}(\hat{y}, \hat{x})=\bigwedge_{A \in \tau_{e_{X}}}(\hat{x}(G(B)) \rightarrow \hat{y}(B))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}\left(e_{X}(x, z) \rightarrow B(z)\right) \rightarrow B(y)\right)=e_{X}^{-1}(y, x) . \tag{68}
\end{align*}
$$

Example 3. Let $X=\{a, b, c\}$ be a set. Let $f: X \rightarrow X$ be a map by $f(a)=b, f(b)=a, f(c)=c$ and $f=f^{-1}$. Define a binary operation \odot on $L=[0,1]$ by

$$
\begin{equation*}
x \odot y=\max \{0, x+y-1\}, x \rightarrow y=\min \{1-x+y, 1\} \tag{69}
\end{equation*}
$$

(1) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset where

$$
e_{X}=\left(\begin{array}{ccc}
1 & 0.6 & 0.5 \tag{70}\\
0.6 & 1 & 0.5 \\
0.7 & 0.7 & 1
\end{array}\right)
$$

Since $e_{X}(x, y)=e_{X}(f(x), f(y)), e_{X}(x, f(f(x)))=e_{X}(f(f(x)), x)=1$, we have that $\left(e_{X}, f, f, e_{X}\right)$ are both residuated and dual residuated connections. Since $\left(e_{X}, f, f, e_{X}\right)$ is a residuated connection, we have that $e_{X}(f(x), y)=e_{X}(x, f(y))$ for all $x, y \in X$ if and only if there the exist relations $R: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L$ and $S: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L$ by

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(f(x))), \quad S(B, A)=\bigwedge_{y \in Y}(A(f(y)) \rightarrow B(y)) \tag{71}
\end{equation*}
$$

with an isotone map $f: X \rightarrow Y$ such that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a residuated frame.
Let $\left(e_{X}\right)_{z}(x)=e(z, x)$ for all $z \in X$. Then $\left(e_{X}\right)_{z} \in \tau_{e_{X}}$. Now, we have

$$
\begin{align*}
& R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{b}\right)=\bigwedge_{x \in X}\left(e_{X}(a, x) \rightarrow e_{X}(b, f(x))\right)=1 \\
& R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{a}\right)=1, R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{a}\right)=R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{b}\right)=0.6, R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{c}\right)=1 \tag{72}\\
& R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{c}\right)=0.7, R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{a}\right)=0.5, R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{c}\right)=0.7, R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{b}\right)=0.5 \\
& S\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{y}\right)=R\left(\left(e_{X}\right)_{y},\left(e_{X}\right)_{x}\right) \quad \text { for all } x, y \in X .
\end{align*}
$$

Moreover,

$$
\begin{equation*}
R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{b}^{-1 *}\right)=\bigwedge_{x \in X}\left(e_{X}(a, x) \rightarrow e_{X}^{*}(f(x), b)\right)=e_{X}^{*}(f(a), b) \tag{73}
\end{equation*}
$$

Since f is isotone and $R(x, y)=e_{X}(x, f(y))=e_{X}(f(x), y)$, we have by Example 1(4) that $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a residuated connection with

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, f(y)), \quad G(B)(x)=\bigwedge_{y \in X}\left(e_{X}(x, f(y)) \rightarrow B(y)\right)\right. \tag{74}
\end{equation*}
$$

Since f is isotone and $R(x, y)=e_{X}(f(y), x)=e_{X}(y, f(x))$, we have by Example 1(3) that ($\left.e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is a dual residuated connection with

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}\left(e_{X}(f(y), x) \rightarrow A(x)\right), \quad G(B)(x)=\bigvee_{y \in X}\left(B(y) \odot e_{X}(f(y), x)\right) \tag{75}
\end{equation*}
$$

Since $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a residuated frame, we have by Theorem 7 that $\left(e_{\tau_{e_{e_{e}}}}, F, G, e_{\tau_{e_{e_{e_{X}}}}}\right)$ is a residuated connection where

$$
\begin{align*}
F(\alpha)(B)=\bigvee_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(z) \rightarrow B(f(z))) \odot \alpha(A)\right), & G(\alpha)(B) \\
& =\bigwedge_{C \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(f(z)) \rightarrow C(z)) \rightarrow \alpha(C)\right) \tag{76}
\end{align*}
$$

Since

$$
\begin{equation*}
(A(z) \rightarrow B(f(z))) \odot(B(f(z)) \rightarrow A(z)) \odot \alpha(A) \leq \alpha(A) \tag{77}
\end{equation*}
$$

we have

$$
\begin{equation*}
(A(z) \rightarrow B(f(z))) \odot \alpha(A) \leq(B(f(z)) \rightarrow A(z)) \rightarrow \alpha(A) \tag{78}
\end{equation*}
$$

Hence $F(\alpha)(B) \leq G(\alpha)(B)$. Since f is isotone, we have that $f \leftarrow(B) \in \tau_{e_{X}}$ for all $B \in \tau_{e_{X}}$, and so

$$
\begin{align*}
& G(\alpha)(B) \leq(B(f(z)) \rightarrow B(f(z))) \rightarrow \alpha\left(f^{\leftarrow}(B)\right) \\
& \quad=(B(f(z)) \rightarrow B(f(z))) \odot \alpha\left(f^{\leftarrow}(B)\right) \leq F(\alpha)(B) . \tag{79}
\end{align*}
$$

Hence the map $h:\left(e_{X}, f, f, e_{X}\right) \rightarrow\left(e_{\tau_{\tau_{e_{X}}}}, F, F, e_{\tau_{e_{e_{X}}}}\right)$ is an $R-R$ embedding map.
(2) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset where

$$
e_{X}=\left(\begin{array}{ccc}
1 & 0.6 & 0.5 \tag{80}\\
0.6 & 1 & 0.7 \\
0.7 & 0.5 & 1
\end{array}\right)
$$

Since

$$
0.7=e_{X}(c, a) \not \leq e_{X}(f(c), f(a))=e_{X}(c, b)=0.5
$$

f is not an isotone map. Hence $\left(e_{X}, f, f, e_{X}\right)$ are neither residuated nor dual residuated connections. Let $R(x, y)=e_{X}(x, f(y))$. Then $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is not a residuated connection with

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}\left(A(x) \odot e_{X}(x, f(y)), \quad G(B)(x)=\bigwedge_{y \in X}\left(e_{X}(x, f(y)) \rightarrow B(y)\right)\right. \tag{81}
\end{equation*}
$$

because $F\left(\left(e_{X}\right)_{c}\right) \notin \tau_{e_{X}}$ for $\left(e_{X}\right)_{c} \in \tau_{e_{X}}$ from $F\left(\left(e_{X}\right)_{c}\right)(c) \odot e_{X}(c, a)=0.7 \not \leq F\left(\left(e_{X}\right)_{c}\right)(a)=0.5$ where

$$
\begin{align*}
& F\left(\left(e_{X}\right)_{c}\right)(c)=\bigvee_{x \in X}\left(\left(e_{X}\right)_{c}(x) \odot e_{X}(x, f(c))=e_{X}(c, c)=1\right. \\
& F\left(\left(e_{X}\right)_{c}\right)(a)=\bigvee_{x \in X}\left(\left(e_{X}\right)_{c}(x) \odot e_{X}(x, f(a))=e_{X}(c, b)=0.5\right. \tag{82}
\end{align*}
$$

Let $R(x, y)=e_{X}(f(y), x)$. Then $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{Y}}}\right)$ is not a dual residuated connection with

$$
\begin{equation*}
F(A)(y)=\bigwedge_{y \in X}\left(e_{X}(f(y), x) \rightarrow A(x)\right), \quad G(B)(x)=\bigvee_{y \in X}\left(B(y) \odot e_{X}(f(y), x)\right) \tag{83}
\end{equation*}
$$

because $F\left(\left(e_{X}^{-1 *}\right)_{c}\right) \notin \tau_{e_{X}}$ for $\left(e_{X}^{-1 *}\right)_{c} \in \tau_{e_{X}}$ from $F\left(\left(e_{X}^{-1 *}\right)_{c}\right)(b) \odot e_{X}(b, c)=0.2 \not \leq F\left(\left(e_{X}^{-1 *}\right)_{c}\right)(c)=$ 0 where

$$
\begin{align*}
& F\left(\left(e_{X}^{-1 *}\right)_{c}\right)(b)=\bigwedge_{y \in X}\left(e_{X}(f(b), x) \rightarrow\left(e_{X}^{-1 *}\right)_{c}(x)\right)=e_{X}^{*}(f(b), c)=0.5 \\
& F\left(\left(e_{X}^{-1 *}\right)_{c}\right)(c)=\bigwedge_{y \in X}\left(e_{X}(f(c), x) \rightarrow\left(e_{X}^{-1 *}\right)_{c}(x)\right)=e_{X}^{*}(f(c), c)=0 \tag{84}
\end{align*}
$$

(3) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset where

$$
e_{X}=\left(\begin{array}{ccc}
1 & 1 & 0.7 \tag{85}\\
0.6 & 1 & 0.7 \\
0.7 & 0.7 & 1
\end{array}\right)
$$

Let $g, h: X \rightarrow X$ be maps by

$$
\begin{equation*}
g(a)=g(b)=a, g(c)=c \quad \text { and } \quad h(a)=h(b)=b, h(c)=c . \tag{86}
\end{equation*}
$$

Since

$$
\begin{align*}
& e_{X}(x, y) \leq e_{X}(g(x), g(y)), \quad e_{X}(x, y) \leq e_{X}(h(x), h(y)), \quad g(h(a))=g(h(b))=a, \tag{87}\\
& g(h(c))=c, \quad h(g(a))=h(g(b))=b, \quad g(h(c))=c
\end{align*}
$$

we have

$$
\begin{equation*}
e_{X}(g(h(x)), x)=e_{X}(x, h(g(x)))=1, \quad e_{X}(h(g(a)), a)=e_{X}(b, g(h(b)))=0.6 \tag{88}
\end{equation*}
$$

Hence $\left(e_{X}, g, h, e_{X}\right)$ is a residuated connection, but not a dual residuated connection. Since $\left(e_{X}, g, h, e_{X}\right)$ is a residuated connection, we have by Theorem 5 that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a residuated frame where

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(A(x) \rightarrow B(g(x))), \quad S(B, A)=\bigwedge_{y \in Y}(A(h(y)) \rightarrow B(y)) \tag{89}
\end{equation*}
$$

Since $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a residuated frame, we have by Theorem 7 that $\left(e_{\tau_{e_{\tau_{e_{X}}}}}, F, G, e_{\tau_{e_{\tau_{e_{X}}}}}\right)$ is a residuated connection where

$$
\begin{align*}
& F(\alpha)(B)=\bigvee_{A \in \tau_{e_{X}}}(R(A, B) \odot \alpha(A))=\bigvee_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(z) \rightarrow B(g(z))) \odot \alpha(A)\right), \tag{90}\\
& G(\alpha)(A)=\bigwedge_{B \in \tau_{e_{X}}}(S(B, A) \rightarrow \alpha(B))=\bigwedge_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(A(h(z)) \rightarrow B(z)) \rightarrow \alpha(B)\right) \tag{91}
\end{align*}
$$

4. Fuzzy Dual Residuated Connections on Alexandrov L-Topologies

Theorem 9. Let $\left(X, e_{X}\right)$ and $\left(Y, e_{Y}\right)$ be fuzzy posets. Let $\tau_{e_{X}}$ and $\tau_{e_{Y}}$ be Alexandrov L-topologies. Then the following hold:
(1) $\left(e_{X}, f, g, e_{Y}\right)$ is a dual residuated connection. That is, $e_{Y}(y, f(x))=e_{X}(g(y), x)$ for all $x, y \in X$ if and only if there exist maps $R: \tau_{e_{X}} \times \tau_{e_{Y}} \rightarrow L$ and $S: \tau_{e_{Y}} \times \tau_{e_{X}} \rightarrow L$ by

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(B(f(x)) \rightarrow A(x)), \quad S(B, A)=\bigwedge_{y \in Y}(B(y) \rightarrow A(g(y))) \tag{92}
\end{equation*}
$$

with isotone maps $f: X \rightarrow Y, g: Y \rightarrow X$ such that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a dual residuated frame. (2) In (1),

$$
\begin{equation*}
R(A, B)=e_{\tau_{e_{X}}}\left(f^{\leftarrow}(B), A\right)=e_{\tau_{e_{Y}}}(B, F(A))=e_{\tau_{e_{X}}}(G(B), A) \tag{93}
\end{equation*}
$$

where $F(A)(y)=\wedge_{z \in X}\left(e_{Y}(y, f(z)) \rightarrow A(z)\right)$ and $G(B)=\bigvee_{y \in Y}\left(e_{Y}(y, f(z)) \odot B(y)\right)$.

$$
\begin{equation*}
S(B, A)=e_{\tau_{e_{Y}}}\left(B, g^{\leftarrow}(A)\right)=e_{\tau_{e_{Y}}}\left(B, F_{1}(A)\right)=e_{\tau_{e_{X}}}\left(G_{1}(B), A\right) \tag{94}
\end{equation*}
$$

where $F_{1}(A)(w)=\wedge_{z \in X}\left(e_{Y}(g(w), z) \rightarrow A(z)\right)$ and $G_{1}(B)(z)=\bigvee_{w \in Y}\left(e_{Y}(g(w), z) \odot B(w)\right)$.

Proof. (1) (\Rightarrow) Let $A \in \tau_{e_{X}}$. Since $A(g(f(x))) \odot e_{X}(g(f(x)), x) \leq A(x)$ and $B(y) \odot e_{Y}(y, f(g(y))) \leq$ $B(f(g(y)))$ and $\left.e_{X}(g(f(x)), x)\right)=e_{Y}(y, f(g(y)))=$ T by Theorem 2 , we have

$$
\begin{align*}
S(B, A) & =\bigwedge_{y \in X}(B(y) \rightarrow A(g(y))) \leq \bigwedge_{x \in X}\left(B(f(x)) \rightarrow A(g(f(x))) \odot e_{X}(g(f(x)), x)\right) \\
& \leq \bigwedge_{x \in X}(B(f(x)) \rightarrow A(x))=R(A, B) \tag{95}
\end{align*}
$$

and

$$
\begin{align*}
R(A, B) & =\bigwedge_{x \in X}(B(f(x)) \rightarrow A(x)) \leq \bigwedge_{y \in X}(B(f(g(y))) \rightarrow A(g(y))) \\
& \leq \bigwedge_{y \in X}\left(B(y) \odot e_{Y}(y, f(g(y))) \rightarrow A(g(y))\right) \tag{96}\\
& =S(B, A)
\end{align*}
$$

Thus $S=R^{-1}$. For all $A, A_{1} \in \tau_{e_{X}}$ and $B, B_{1} \in \tau_{e_{Y}}$, we have

$$
\begin{align*}
& e_{\tau_{e_{X}}}^{-1}\left(A, A_{1}\right) \odot R\left(A_{1}, B_{1}\right) \odot e_{\tau_{e_{Y}}}^{-1}\left(B_{1}, B\right) \\
& \leq e_{\tau_{e_{X}}}\left(A_{1}, A\right) \odot \bigwedge_{x \in X}\left(B_{1}(f(x)) \rightarrow A_{1}(x)\right) \odot \bigwedge_{x \in X}\left(B(f(x)) \rightarrow B_{1}(f(x))\right) \tag{97}\\
& \leq \bigwedge_{x \in X}(B(f(x)) \rightarrow A(x))=R(A, B)
\end{align*}
$$

(\Leftarrow) For all $\left(e_{X}\right)_{x}^{-1 *} \in \tau_{e_{X}}$ and $\left(e_{Y}\right)_{y} \in \tau_{e_{Y}}$, we have

$$
\begin{align*}
R\left(\left(e_{X}\right)_{x}^{-1 *},\left(e_{Y}\right)_{y}\right) & =\bigwedge_{z \in X}\left(\left(e_{Y}\right)_{y}(f(z)) \rightarrow\left(e_{X}\right)_{x}^{-1 *}(z)\right) \leq\left(e_{Y}\right)_{y}(f(x)) \rightarrow\left(e_{X}\right)_{x}^{-1 *}(x) \tag{98}\\
& =e_{Y}(y, f(x))^{*}
\end{align*}
$$

Since

$$
\begin{equation*}
e_{Y}(y, f(z)) \odot e_{X}(z, x) \leq e_{Y}(y, f(z)) \odot e_{Y}(f(z), f(x)) \leq e_{Y}(y, f(x)) \tag{99}
\end{equation*}
$$

we have $e_{X}(x, z) \rightarrow e_{Y}^{*}(y, f(z)) \geq e_{Y}^{*}(y, f(x))$. Hence $R\left(\left(e_{X}\right)_{x}^{-1 *},\left(e_{Y}\right)_{y}\right)=e_{Y}^{*}(y, f(x))$. Additionally,

$$
\begin{align*}
S\left(\left(e_{Y}\right)_{y},\left(e_{X}\right)_{x}^{-1 *}\right) & =\bigwedge_{z \in X}\left(\left(e_{Y}\right)_{y}(z) \rightarrow\left(e_{X}\right)_{x}^{-1 *}(g(z))\right. \tag{100}\\
& \leq\left(e_{Y}\right)_{y}(y) \rightarrow\left(e_{Y}\right)_{x}^{-1 *}(g(y))=e_{X}(g(y), x)^{*}
\end{align*}
$$

Since

$$
\begin{equation*}
e_{X}(g(z), x) \odot e_{Y}(y, z) \leq e_{X}(g(z), x) \odot e_{X}(g(y), g(z)) \leq e_{X}(g(y), x) \tag{101}
\end{equation*}
$$

we have $e_{Y}(y, z) \rightarrow e_{X}^{*}(g(z), x) \geq e_{X}^{*}(g(y), x)$. Hence $S\left(\left(e_{Y}\right)_{y},\left(e_{X}\right)_{x}^{-1 *}\right)=e_{X}^{*}(g(y), x)$. Since

$$
\begin{equation*}
e_{Y}^{*}(y, f(x))=R\left(\left(e_{X}\right)_{x}^{-1 *},\left(e_{Y}\right)_{y}\right)=S\left(\left(e_{Y}\right)_{y},\left(e_{X}\right)_{x}^{-1 *}\right)=e_{X}^{*}(g(y), x) \tag{102}
\end{equation*}
$$

we have that $\left(e_{X}, f, g, e_{Y}\right)$ is a dual residuated connection.
Example 4. Let $\left(e_{L^{X}}, F, G, e_{L^{Y}}\right)$ be a dual residuated connection for $R \in L^{X \times Y}$ defined by

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{y \in Y}(R(x, y) \odot B(y)) \tag{103}
\end{equation*}
$$

and $\tau_{e_{L^{X}}}=\left\{\alpha \in L^{L^{X}} \mid \alpha(A) \odot e_{L^{X}}(A, B) \leq \alpha(B)\right\}$ and $\tau_{e_{L^{Y}}}=\left\{\beta \in L^{L^{Y}} \mid \beta(A) \odot e_{L^{Y}}(A, B) \leq \beta(B)\right\}$. Two maps $T_{1}, S_{1}: \tau_{e_{L^{X}}} \times \tau_{e_{L^{Y}}} \rightarrow L$ are defined by

$$
\begin{equation*}
T_{1}(\alpha, \beta)=\bigwedge_{A \in L^{X}}(\beta(F(A)) \rightarrow \alpha(A)), \quad S_{1}(\beta, \alpha)=\bigwedge_{B \in L^{X}}(\beta(B) \rightarrow \alpha(G(B))) \tag{104}
\end{equation*}
$$

Then $\left(e_{\tau_{e_{L} X}}, T_{1}, S_{1}, e_{\tau_{e_{L}} Y}\right)$ is a dual residuated frame.
Definition 8. Let $\left(e_{X}, f, g, e_{X}\right)$ and $\left(e_{Z}, \tilde{f}, \tilde{g}, e_{Z}\right)$ be dual residuated connections. An injective function $k:\left(e_{X}, f, g, e_{X}\right) \rightarrow\left(e_{Z}, \tilde{f}, \tilde{g}, e_{Z}\right)$ is a DR-DR embedding if

$$
\begin{equation*}
e_{X}(x, y)=e_{Z}(k(x), k(y)), e_{X}(y, f(x))=e_{Z}(k(y), \tilde{f}(k(x))), e_{X}(g(y), x)=e_{Z}(\tilde{g}(k(y)), k(x)) \tag{105}
\end{equation*}
$$

If k is a bijective $D R-D R$ embedding map, then k is called a DR-DR isomorphism.
Theorem 10. Let $\left(e_{X}, f, g, e_{X}\right)$ be a dual residuated connection, $\tau_{e_{X}}$ be an Alexandrov L-topology and $\tau_{e_{\tau_{e_{X}}}}=$ $\left\{\alpha \in L^{\tau_{e_{X}}} \mid \alpha(A) \odot e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $h: X \rightarrow \tau_{e_{\tau_{e_{X}}}}$ by $h(x)(A)=\hat{x}(A)=A(x)$. Then $h:\left(e_{X}, f, g, e_{X}\right) \rightarrow\left(e_{\tau_{\tau_{e_{X}}}}, F, G, e_{\tau_{\tau_{\tau_{X}}}}\right)$ is a DR-DR embedding map with $e_{X}(x, y)=e_{\tau_{\tau_{e_{X}}}}(\hat{x}, \hat{y})$, $F(h(x))(B)=F(\hat{x})(B)=\widehat{f(x)}(B)$ and $G(h(y))(A)=G(\hat{y})(A)=\widehat{g(y)}(A)$ for all $A \in \tau_{e_{X}}$ where

$$
\begin{align*}
& R(A, B)=\bigwedge_{x \in X}(B(f(x)) \rightarrow A(x)), \quad S(B, A)=\bigwedge_{y \in X}(B(y) \rightarrow A(g(y))), \\
& F(\alpha)(B)=\bigwedge_{A \in \tau_{e_{X}}}(R(A, B) \rightarrow \alpha(A)), \quad G(\alpha)(A)=\bigvee_{B \in \tau_{e_{X}}}(S(B, A) \odot \alpha(B)) \tag{106}
\end{align*}
$$

Moreover, $e_{\tau_{e_{\tau_{e_{X}}}}}(\hat{y}, F(\hat{x}))=e_{\tau_{e_{\tau_{e_{X}}}}}(G(\hat{y}), \hat{x})$.
Proof. By Theorem $9,\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a dual residuated frame where

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(B(f(x)) \rightarrow A(x)), \quad S(B, A)=\bigwedge_{y \in X}(B(y) \rightarrow A(g(y))) \tag{107}
\end{equation*}
$$

By Theorem 4(1), $\left(e_{\tau_{e_{\tau_{X}}}}, F, G, e_{\tau_{\tau_{\tau_{X}}}}\right)$ is a dual residuated connection where

$$
\begin{align*}
& F(\alpha)(B)=\bigwedge_{A \in \tau_{e_{X}}}(R(A, B) \rightarrow \alpha(A))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(f(z)) \rightarrow A(z)) \rightarrow \alpha(A)\right), \\
& G(\alpha)(A)=\bigvee_{B \in \tau_{e_{X}}}(S(B, A) \odot \alpha(B))=\bigvee_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(z) \rightarrow A(g(z))) \odot \alpha(B)\right) . \tag{108}
\end{align*}
$$

By Theorem 6, a map $h: X \rightarrow \tau_{\tau_{e_{X}}}$ by $h(x)(A)=\hat{x}(A)=A(x)$ is embedding. That is, $e_{X}(x, y)=$ $e_{\tau_{e_{\tau_{X}}}}(\hat{x}, \hat{y})$. For all $B \in \tau_{e_{X}}$, we have

$$
\begin{align*}
F(\hat{x})(B) & =\bigwedge_{A \in \tau_{e_{X}}}(R(A, B) \rightarrow \hat{x}(A))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(f(z)) \rightarrow A(z)) \rightarrow A(x)\right) \tag{109}\\
& \geq \bigwedge_{A \in \tau_{e_{X}}}((B(f(x)) \rightarrow A(x)) \rightarrow A(x)) \geq B(f(x))=\widehat{f(x)}(B) .
\end{align*}
$$

Since f is isotone and $B \in \tau_{e_{X}}$, we have

$$
\begin{equation*}
B(f(x)) \odot e_{X}(x, y) \leq B(f(x)) \odot e_{X}(f(x), f(y)) \leq B(f(y)) \tag{110}
\end{equation*}
$$

Hence $f \leftarrow(B) \in \tau_{e_{X}}$.
Let $A=f \leftarrow(B)$. For all $A, B \in \tau_{e_{X}}$,

$$
\begin{align*}
F(\hat{x})(B) & =\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(f(z)) \rightarrow A(z)) \rightarrow A(x)\right) \leq \bigwedge_{z \in X}(B(f(z)) \rightarrow B(f(z)) \rightarrow B(f(x))) \tag{111}\\
& =\top \rightarrow B(f(x))=B(f(x))=\widehat{f(x)}(B)
\end{align*}
$$

and

$$
\begin{align*}
G(\hat{y})(A) & =\bigvee_{B \in \tau_{e_{X}}}(S(B, A) \odot \hat{y}(B))=\bigvee_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(z) \rightarrow A(g(z))) \odot B(y)\right) \tag{112}\\
& \left.\leq \bigwedge_{B \in \tau_{e_{X}}}(B(y) \rightarrow A(g(y))) \odot B(y)\right) \leq A(g(y))=\widehat{g(y)}(A)
\end{align*}
$$

Let $B(y)=g^{\leftarrow}(A)(y)=A(g(y))$ for all $y \in X$. Since

$$
\begin{equation*}
g^{\leftarrow}(A)(y) \odot e_{Y}(y, w) \leq A(g(y)) \odot e_{X}(g(y), g(w)) \leq A(g(w)) \tag{113}
\end{equation*}
$$

we have $g^{\leftarrow}(A) \in \tau_{e_{X}}$. Moreover,

$$
\begin{align*}
G(\hat{y})(B)=\bigvee_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(z) \rightarrow A(g(z))) \odot B(y)\right) & \left.\geq \bigwedge_{z \in X}(A(g(z)) \rightarrow A(g(z))) \odot A(g(y))\right) \tag{114}\\
& =\top \odot A(g(y))=A(g(y))=\widehat{g(y)}(A)
\end{align*}
$$

Moreover,

$$
\begin{equation*}
e_{\tau_{e_{e_{e}}}}(\hat{y}, F(\hat{x}))=e_{\tau_{e_{e_{e}}}}(\hat{y}, \widehat{f(x)})=e_{X}(y, f(x))=e_{X}(g(y), x)=e_{\tau_{e_{\tau_{e}}}}(\widehat{g(y)}, \hat{x})=e_{\tau_{e_{\tau_{e_{X}}}}}(G(\hat{y}), \hat{x}) \tag{115}
\end{equation*}
$$

Definition 9. Let $\left(e_{X}, R, S, e_{X}\right)$ and $\left(e_{Z}, \tilde{R}, \tilde{S}, e_{Z}\right)$ be dual residuated frames. An injective map k : $\left(e_{X}, R, S, e_{X}\right) \rightarrow\left(e_{Z}, \tilde{R}, \tilde{S}, e_{Z}\right)$ is a DR-DR frame embedding if

$$
\begin{equation*}
e_{X}(x, y)=e_{Z}(k(x), k(y)), R(x, y)=\tilde{R}(k(x), k(y)), S(x, y)=\tilde{S}(k(x), k(y)) \tag{116}
\end{equation*}
$$

If k is a bijective $D R-D R$ frame embedding map, then k is called a DR-DR frame isomorphism.
Theorem 11. Let $\left(e_{X}, R, S, e_{X}\right)$ be a dual residual frame, $\tau_{e_{X}}$ be an Alexandrov L-topology and $\tau_{e_{\tau_{e_{X}}}}=\{\alpha \in$ $\left.L^{\tau_{e_{X}}} \mid \alpha(A) \odot e_{\tau_{e_{X}}}(A, B) \leq \alpha(B)\right\}$. Define a map $k: X \rightarrow \tau_{e_{\tau_{e_{X}}}}$ by $k(x)(A)=\hat{x}(A)=A(x)$. Then the map $k:\left(e_{X}, R, S, e_{X}\right) \rightarrow\left(e_{\tau_{e_{\tau_{e_{X}}}}}, \hat{R}, \hat{S}, e_{\tau_{\tau_{\tau_{X}}}}\right)$ is a DR-DR frame embedding map with $e_{X}(x, y)=e_{\tau_{e_{\tau_{e_{X}}}}}(k(x), k(y))$, $R(x, y)=\hat{R}(\hat{x}, \hat{y})$ and $S(x, y)=\hat{S}(\hat{x}, \hat{y})$ where

$$
\begin{align*}
F(A)(y) & =\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{x \in X}(S(y, x) \odot B(y)), \\
\hat{R}(\alpha, \beta) & =\bigwedge_{A \in \tau_{e_{X}}}(\beta(F(A)) \rightarrow \alpha(A)), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\beta(B) \rightarrow \alpha(G(B))) . \tag{117}
\end{align*}
$$

Proof. By Theorem $4(1),\left(\tau_{e_{X}}, F, G, \tau_{e_{X}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{y \in Y}(R(x, y) \odot B(y)) \tag{118}
\end{equation*}
$$

By Theorem 9, $\left(e_{\tau_{e_{e_{e_{X}}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{e_{X}}}}\right)$ is a dual residuated frame where

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\beta(F(A)) \rightarrow \alpha(A)), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\beta(B) \rightarrow \alpha(G(B))) \tag{119}
\end{equation*}
$$

By Theorem 6, $e_{X}(x, y)=e_{\tau_{e_{e_{e_{X}}}}}(\hat{x}, \hat{y})$. Moreover,

$$
\begin{align*}
\hat{R}(\hat{x}, \hat{y}) & =\bigwedge_{A \in \tau_{e_{X}}}(\hat{y}(F(A)) \rightarrow \hat{x}(A))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(R(z, y) \rightarrow A(z)) \rightarrow A(x)\right) \tag{120}\\
& \geq \bigwedge_{A \in \tau_{e_{X}}}((R(x, y) \rightarrow A(x)) \rightarrow A(x)) \geq R(x, y)
\end{align*}
$$

Let $R_{y}^{-1}(z)=R(z, y)$. Since $e_{X}^{-1} \circ R \leq e_{X}^{-1} \circ R \circ e_{X}^{-1} \leq R$, we have

$$
\begin{equation*}
R_{y}^{-1}(x) \odot e_{X}(x, z)=e_{X}^{-1}(z, x) \odot R(x, y) \leq R_{y}^{-1}(z) \tag{121}
\end{equation*}
$$

Thus $R_{y}^{-1} \in \tau_{e_{X}}$, and so

$$
\begin{align*}
& \hat{R}(\hat{x}, \hat{y})=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(R(z, y) \rightarrow A(z)) \rightarrow A(x)\right) \\
& \quad \leq \bigwedge_{z \in X}\left(\left(R(z, y) \rightarrow R_{y}^{-1}(z)\right) \rightarrow R_{y}^{-1}(x)\right)=R(x, y), \tag{122}\\
& \hat{S}(\hat{y}, \hat{x})= \\
& \geq \bigwedge_{B \in \tau_{e_{X}}}(\hat{y}(B) \rightarrow \hat{x}(G(B)))=\bigwedge_{B \in \tau_{e_{X}}}\left(B(y) \rightarrow \bigvee_{z \in X}(S(z, x) \odot B(z))\right. \tag{123}\\
& \geq \bigwedge_{\tau_{e_{X}}}(B(y) \rightarrow(S(y, x) \odot B(y)) \geq S(y, x)
\end{align*}
$$

For all $R_{y}^{-1} \in \tau_{e_{X}}$,

$$
\begin{align*}
\hat{S}(\hat{y}, \hat{x})=\bigwedge_{B \in \tau_{e_{X}}}(\hat{y}(B) \rightarrow \hat{x}(G(B))) & \leq\left(R_{y}^{-1}(y) \rightarrow \bigvee_{z \in X}\left(R(x, z) \odot R_{y}^{-1}(z)\right)\right. \tag{124}\\
& \leq \top \rightarrow R(x, y)=R(x, y)=S(y, x)
\end{align*}
$$

Hence $k:\left(e_{X}, R, S, e_{X}\right) \rightarrow\left(e_{\tau_{\tau_{\tau_{e}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{\tau_{e_{X}}}}}\right)$ is a $D R-D R$ frame embedding map.
Example 5. Let $X=\{a, b, c\}$ be a set. Let $f: X \rightarrow X$ a map and $([0,1], \odot)$ defined as in Example 3.
(1) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset defined as in Example 3(1). Since $\left(e_{X}, f, f, e_{X}\right)$ is a dual residuated connection, that is, $e_{X}(f(x), y)=e_{X}(x, f(y))$ for all $x, y \in X$, there exist maps $R: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L$ and $S: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L b y$

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(B(f(x)) \rightarrow A(x)), \quad S(B, A)=\bigwedge_{y \in Y}(B(y) \rightarrow A(g(y))) \tag{125}
\end{equation*}
$$

with an isotone map $f: X \rightarrow Y$ such that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a dual residuated frame. For all $\left(e_{X}\right)_{a},\left(e_{X}\right)_{b} \in \tau_{e_{X}}$,

$$
\begin{align*}
& R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{b}\right)=\bigwedge_{x \in X}\left(e_{X}(b, f(x)) \rightarrow e_{X}(a, x)\right)=1, R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{a}\right)=1 \\
& R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{a}\right)=R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{b}\right)=0.6, R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{c}\right)=1, R\left(\left(e_{X}\right)_{a},\left(e_{X}\right)_{c}\right)=0.5 \tag{126}\\
& R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{a}\right)=0.7, R\left(\left(e_{X}\right)_{b},\left(e_{X}\right)_{c}\right)=0.5, R\left(\left(e_{X}\right)_{c},\left(e_{X}\right)_{b}\right)=0.7 \\
& S\left(\left(e_{X}\right)_{x},\left(e_{X}\right)_{y}\right)=R\left(\left(e_{X}\right)_{y},\left(e_{X}\right)_{x}\right) \quad \text { for all } \quad x, y \in X
\end{align*}
$$

Moreover,

$$
\begin{equation*}
\left.R\left(\left(e_{X}\right)_{a}^{-1 *},\left(e_{X}\right)_{b}\right)=\bigwedge_{x \in X}\left(\left(e_{X}\right)_{b}(f(x)) \rightarrow e_{X}\right)_{a}^{-1 *}(x)\right)=e_{X}^{*}(b, f(a)) \tag{127}
\end{equation*}
$$

By Theorem 4(1), $\left(e_{\tau_{e_{e_{e}}}}, F, G, e_{\tau_{e_{e_{X}}}}\right)$ is a dual residuated connection where

$$
\begin{align*}
& F(\alpha)(B)=\bigwedge_{A \in \tau_{e_{X}}}(R(A, B) \rightarrow \alpha(A))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(f(z)) \rightarrow A(z)) \rightarrow \alpha(A)\right), \\
& G(\alpha)(A)=\bigvee_{B \in \tau_{e_{X}}}(S(B, A) \odot \alpha(B))=\bigvee_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(z) \rightarrow A(g(z))) \odot \alpha(B)\right) . \tag{128}
\end{align*}
$$

By a similar method used in Example 3, one can see that $F=G$.
(2) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset and $g, h: X \rightarrow X$ defined as in Example 3(3). Since $\left(e_{X}, h, g, e_{X}\right)$ is a dual residuated connection, that is, $e_{X}(h(x), y)=e_{X}(x, g(y))$ for all $x, y \in X$, there exist relations $R: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L$ and $S: \tau_{e_{X}} \times \tau_{e_{X}} \rightarrow L$ by

$$
\begin{equation*}
R(A, B)=\bigwedge_{x \in X}(B(h(x)) \rightarrow A(x)), \quad S(B, A)=\bigwedge_{y \in Y}(B(y) \rightarrow A(g(y))) \tag{129}
\end{equation*}
$$

such that $\left(e_{\tau_{e_{X}}}, R, S, e_{\tau_{e_{X}}}\right)$ is a dual residuated frame. By Theorem 4(1), $\left(e_{\tau_{e_{\tau_{e_{X}}}}}, F, G, e_{\tau_{e_{e_{e_{X}}}}}\right)$ is a dual residuated connection where

$$
\begin{align*}
& F(\alpha)(B)=\bigwedge_{A \in \tau_{e_{X}}}(R(A, B) \rightarrow \alpha(A))=\bigwedge_{A \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(h(z)) \rightarrow A(z)) \rightarrow \alpha(A)\right), \tag{130}\\
& G(\alpha)(A)=\bigvee_{B \in \tau_{e_{X}}}(S(B, A) \odot \alpha(B))=\bigvee_{B \in \tau_{e_{X}}}\left(\bigwedge_{z \in X}(B(z) \rightarrow A(g(z))) \odot \alpha(B)\right) .
\end{align*}
$$

Example 6. (1) Let $\left(X=\{a, b, c\}, e_{X}\right)$ be a fuzzy poset where

$$
e_{X}=\left(\begin{array}{ccc}
1 & 0.6 & 0.5 \tag{131}\\
0.6 & 1 & 0.7 \\
0.5 & 0.7 & 1
\end{array}\right)
$$

Define a binary operation \odot on $[0,1]$ by

$$
\begin{equation*}
x \odot y=\max \{0, x+y-1\}, x \rightarrow y=\min \{1-x+y, 1\} . \tag{132}
\end{equation*}
$$

Then $(L=[0,1], \odot, \rightarrow, 0,1)$ is a complete residuated lattice. Let

$$
R=\left(\begin{array}{lll}
0.7 & 0.4 & 0.3 \tag{133}\\
0.6 & 0.8 & 0.5 \\
0.3 & 0.5 & 0.8
\end{array}\right)
$$

Since $\left(e_{X}, R, S, e_{X}\right)$ is a residuated frame, we have by Theorem $3(1)$ that $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{X}}}\right)$ is a residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigvee_{x \in X}(R(x, y) \odot A(x)), \quad G(B)(x)=\bigwedge_{y \in X}(R(x, y) \rightarrow B(y)) \tag{134}
\end{equation*}
$$

By Theorem 11, $\left(e_{\tau_{\tau_{\tau_{X}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{\tau_{X}}}}\right)$ is a residuated frame where

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\alpha(A) \rightarrow \beta(F(A))), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\alpha(G(B)) \rightarrow \beta(B)) \tag{135}
\end{equation*}
$$

Since $\left(e_{X}, R, S, e_{X}\right)$ is a dual residuated frame, we have by Theorem $4(1)$ that $\left(\tau_{e_{X}}, F, G, \tau_{e_{X}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{y \in Y}(R(x, y) \odot B(y)) \tag{136}
\end{equation*}
$$

By Theorem 11, $\left(e_{\tau_{\tau_{\tau_{X}}}}, \hat{R}, \hat{S}, e_{\tau_{e_{\tau_{X}}}}\right)$ is a dual residuated connection where

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\beta(F(A)) \rightarrow \alpha(A)), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\beta(B) \rightarrow \alpha(G(B))) \tag{137}
\end{equation*}
$$

(2) Let

$$
e_{X}=\left(\begin{array}{ccc}
1 & 0.7 & 0.5 \tag{138}\\
0.4 & 1 & 0.3 \\
0.3 & 0.5 & 1
\end{array}\right)
$$

Then

$$
e_{X} \circ R \circ e_{X}=\left(\begin{array}{ccc}
0.7 & 0.5 & 0.3 \tag{139}\\
0.6 & 0.8 & 0.5 \\
0.3 & 0.5 & 0.8
\end{array}\right)
$$

and so $R<e_{X} \circ R \circ e_{X}$. Hence $\left(e_{X}, R, S, e_{X}\right)$ is not residuated frame. Since $G\left(\left(e_{X}\right)_{b}^{-1 *}\right)(a) \odot e_{X}(a, b)=$ $R^{*}(a, b) \odot e_{X}(a, b)=0.6 \odot 0.7=0.3 \not \leq 0.2=R^{*}(b, b)=G\left(\left(e_{X}\right)_{b}^{-1 *}\right)(b)$, we have $G\left(\left(e_{X}\right)_{b}^{-1 *}\right) \notin \tau_{e_{X}}$. However, since $R=e_{X}^{-1} \circ R \circ e_{X}^{-1}$, we have that $\left(e_{\tau_{e_{X}}}, F, G, e_{\tau_{e_{X}}}\right)$ is a dual residuated connection defined by

$$
\begin{equation*}
F(A)(y)=\bigwedge_{x \in X}(R(x, y) \rightarrow A(x)), \quad G(B)(x)=\bigvee_{y \in Y}(R(x, y) \odot B(y)) \tag{140}
\end{equation*}
$$

By Theorem 11, $\left(e_{\tau_{\tau_{e_{X}}}}, \hat{R}, \hat{S}, e_{\tau_{\tau_{\tau_{X}}}}\right)$ is a dual residuated frame where

$$
\begin{equation*}
\hat{R}(\alpha, \beta)=\bigwedge_{A \in \tau_{e_{X}}}(\beta(F(A)) \rightarrow \alpha(A)), \quad \hat{S}(\beta, \alpha)=\bigwedge_{B \in \tau_{e_{X}}}(\beta(B) \rightarrow \alpha(G(B))) . \tag{141}
\end{equation*}
$$

5. Conclusions

As an extension of residuated frames for classical relational semantics, we have introduced (dual) residuated frames for fuzzy logics. As a generalization of the classical Tarski's fixed point theorem, we have shown that an Alexandrov L-topology is a fuzzy complete lattice with residuated connections. By using residuated connections, we have constructed fuzzy rough sets and have solved fuzzy relation equations on the Alexandrov L-topology. Moreover, as a generalization of the Dedekind-MacNeille completion, we have introduced $R-R$ (resp. $D R-D R$) embedding maps and $R-R$ (resp. $D R-D R$) frame embedding maps.

In the future, by using the concepts of (dual) residuated connections and frames, we plan to investigate fuzzy contexts, information systems and decision rules on Alexandrov L-topologies.

Author Contributions: All authors have contributed equally to this work. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by Gangneung-Wonju National University.
Acknowledgments: The author would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which lead to a number of improvements of the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blyth, T.S.; Janovitz, M.F. Residuation Theory; Pergamon Press: New York, NY, USA, 1972.
2. Bělohlávek, R. Fuzzy Relational Systems; Kluwer Academic Publishers: New York, NY, USA, 2002.
3. Galatos, N.; Jipsen, P. Residuated frames with applications to decidability. Trans. Am. Math. Soc. 2013, 365, 1219-1249. [CrossRef]
4. Galatos, N. ; Jipsen, P. Distributive residuated frames and generalized bunched implication algebras. Algebra Universalis 2017, 78, 303-336. [CrossRef]
5. Orłowska, E.; Rewitzky, I. Context algebras, context frames and their discrete duality. In Transactions on Rough Sets IX; Springer: Berlin, Germany, 2008; pp. 212-229.
6. Orłowska, E.; Rewitzky I. Algebras for Galois-style connections and their discrete duality. Fuzzy Sets Syst. 2010, 161, 1325-1342. [CrossRef]
7. Chrysafis, P.H.; Orłowska, E. Representation of lattices with modal operators in two-sorted frames. Fund. Inform. 2019, 166, 29-56.
8. Pawlak, Z. Rough sets. Internat. J. Comput. Inform. Sci. 1982, 11, 341-356. [CrossRef]
9. Pawlak, Z. Rough sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991.
10. Ward, M.; Dilworth, R.P. Residuated lattices. Trans. Amer. Math. Soc. 1939, 45, 335-354, [CrossRef]
11. Hájek, P. Metamathematices of Fuzzy Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998.
12. Höhle, U.; Klement, E.P. Non-Classical Logic and Their Applications to Fuzzy Subsets; Kluwer Academic Publishers: Boston, MA, USA, 1995.
13. Höhle, U.; Rodabaugh, S.E. Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory; The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
14. Jipsen, P.; Tsinakis, C. A Survey of Residuated Lattices. In Ordered Algebraic Structures; Springer: Boston, MA, USA, 2002, pp. 15-56.
15. Rodabaugh, S.E.; Klement, E.P. Topological and Algebraic Structures in Fuzzy Sets. In The Handbook of Recent Developments in the Mathematics of Fuzzy Sets; Kluwer Academic Publishers: Boston, MA, USA; Dordrecht, The Netherlands; London, UK, 2003.
16. Turunen, E. Mathematics Behind Fuzzy Logic; Physica-Verlag: Heidelberg, Germany, 1999.
17. Kim, Y.C. Join-meet preserving maps and fuzzy preorders. J. Intell. Fuzzy Syst. 2015, 28, $1089-1097$. [CrossRef]
18. Kim, Y.C. Categories of fuzzy preorders, approximation operators and Alexandrov topologies. J. Intell. Fuzzy Syst. 2016, 31, 1787-1793. [CrossRef]
19. Ko, J.M.; Kim, Y.C. Bi-closure systems and bi-closure operators on generalized residuated lattices. J. Intell. Fuzzy Syst. 2019, 36, 2631-2643.
20. Ko, J.M.; Kim, Y.C. Fuzzy complete lattices, Alexandrov L-topologies and fuzzy rough sets. J. Intell. Fuzzy Syst. 2020. [CrossRef]
21. Lai, H.; Zhang, D. Fuzzy preorder and fuzzy topology. Fuzzy Sets Syst. 2006, 157, 1865-1885. [CrossRef]
22. Ma, Z.M.; Hu, B.Q. Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. Inf. Sci. 2013, 218, 194-204. [CrossRef]
23. Radzikowska, A.M.; Kerre, E.E. A comparative study of fuzy rough sets. Fuzzy Sets Syst. 2002, 126, 137-155. [CrossRef]
24. Radzikowska, A.M.; Kerre, E.E. Characterisation of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets Syst. 2005, 152, 223-247. [CrossRef]
25. Tiwari, S.P.; Srivastava, A.K. Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets Syst. 2013, 210, 63-68. [CrossRef]
26. She, Y.H.; Wang, G.J. An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput. Math. Appl. 2009, 58, 189-201. [CrossRef]
27. Perfilieva, I. Finitary solvability conditions for systems of fuzzy relation equations. Inf. Sci. 2013, 234, 29-43. [CrossRef]
28. Perfilieva, I.; Noskova, N. System of fuzzy relation equations with inf- composition: Commplete set of solutions. Fuzzy Sets Syst. 2008, 159, 2256-2271. [CrossRef]
29. Perfilieva, I.; Dubois, D.; Prade, H.; Esteva, F.; Godo, L.; Hodáková, P. Interpolation of fuzzy data, analytical approach and overview. Fuzzy Sets Syst. 2012, 192, 134-158. [CrossRef]
30. Tiwari, S.P.; Perfilieva, I.; Singh, A.P. Generalized residuated lattices based F-transformation. Iran. J. Fuzzy Syst. 2018, 15, 165-182.
31. Sussner, P. Lattice fuzzy transforms from the perspective of mathematical morphology. Fuzzy Sets Syst. 2016, 288, 115-128. [CrossRef]
32. Zhang, H.P.; Perez-Fernandez, R.; Baets, B.D. Fuzzy betweenness relations and their connection with fuzzy order relations. Fuzzy Sets Syst. 2020, 384, 1-12. [CrossRef]
33. Sun, F.; Qu, X.; Wang, X.; Zhu, L. On pre-solution matrices of fuzzy relation equations over complete Brouwerian lattices. Fuzzy Sets Syst. 2020, 384, 34-53. [CrossRef]
34. Oh, J.M.; Kim, Y.C. Fuzzy transformations and fuzzy residuated connections. J. Intell. Fuzzy Syst. 2019, 36, 3555-3566. [CrossRef]
35. Xie, W. X.; Zhang, Q.Y.; Fan, L. Fuzzy complete lattices. Fuzzy Sets Syst. 2009, 160, 2275-2291.
36. Zhang, Q.Y.; Fan, L. Continuity in quantitive domains. Fuzzy Sets Syst. 2005, 154, 118-131. [CrossRef]
37. Zhang, Q.Y.; Xie, W.X.; Fan, L. The Dedekind-MacNeille completion for fuzzy posets. Fuzzy Sets Syst. 2009, 160, 2292-2316.
38. Xia, C.; Zhao, B. A categorical characterization of the least Q-quantale completion of Q-ordered semigroups. Fuzzy Sets Syst. 2020,382, 129-141. [CrossRef]
39. Ciro, R. An extension of Stone duality to fuzzy topologies and MV-algebras. Fuzzy Sets Syst. 2016, 303, 80-96.
40. Zhou, H.; Shi, H. Stone duality for R_{0}-algebras with internal states. Iran. J. Fuzzy Syst. 2017, 14, $139-161$.
41. Wei, Y.; Han, S.E. A Stone-type duality for $s T_{0}$-stratified Alexandrov L-topological spaces. Fuzzy Sets Syst. 2016, 282, 1-20.
42. Včelař, F.; Pátíková, Z. A comparative study of Tarski's fixed point theorems with the stress on commutative sets of L-fuzzy isotone maps with respect to transitivities. Fuzzy Sets Syst. 2020, 382, 29-56. [CrossRef]
43. Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 1955, 382, 285-309. [CrossRef]
