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Abstract: We introduce the notion of (dual) residuated frames as a viewpoint of relational semantics
for a fuzzy logic. We investigate the relations between (dual) residuated frames and (dual) residuated
connections as a topological viewpoint of fuzzy rough sets in a complete residuated lattice. As a
result, we show that the Alexandrov topology induced by fuzzy posets is a fuzzy complete lattice with
residuated connections. From this result, we obtain fuzzy rough sets on the Alexandrov topology.
Moreover, as a generalization of the Dedekind—MacNeille completion, we introduce R-R (resp.
DR-DR) embedding maps and R-R (resp. DR-DR) frame embedding maps.

Keywords: complete residuated lattice; (dual) residuated frames; (dual) residuated connections; R-R
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1. Introduction

Blyth and Janovitz [1] introduced the residuated connection as a pair (f,g) of maps from a
partially ordered set (X, <x) to a partially ordered set (Y, <y) such thatforallx € X,y € Y, f(x) <y y
if and only if x <x g(y). Examples of maps which form residuated connections play an important
role [2—4]. Orlowska and Rewitzky [5-7] introduced the residuated frame of logical relational systems
for residuated connections.

Pawlak [8,9] introduced the rough set theory as a formal tool to deal with imprecision and
uncertainty in the data analysis. Rough sets form residuated connections in the following sense: let R
be an equivalence relation on X. For A C X and [x]g = {y € X | (x,y) € R},

R(A)={xeX|[x]rNA# 2}, R(A) = {x € X| [x]r C A}. )

Let P(X) be the class of all subsets of X and (P(X), C) be a partially ordered set. A rough set
(R, R) forms a residuated connection because for all A,B C X, R(A) C Bif and only if A C R(B).

Ward et al. [10] introduced a complete residuated lattice L as an important algebraic structure
for many valued logics [11-16]. For an extension of Pawlak’s rough sets, many researchers have
developed L-lower and L-upper approximation operators in algebraic structures L [17-25]. She and
Wang [26] developed an L-fuzzy rough set (G, H) with L-lower approximation operator G and L-upper
approximation operator F in complete residuated lattices as follows. Let (X, ex) be an L-fuzzy partially
ordered set. For A, B € L%,

F(A)(y) =V (ex(x,y) © A(x)), G(B)(x) = \ (ex(x,y) = B(y)). @)

xeX yeX
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Moreover, fuzzy rough sets form residuated connections in the following sense: for all A, B C X,

ey (F(A),B) = A\ (F(A)(y) = B(y)) = A (A(x) = G(B)(x)) = e,x (A, G(B)). 3)
yeX xeX

Perfilieva [27-30] introduced the theory of fuzzy transform and inverse fuzzy transform in
complete residuated lattices, which is similar to other well-known transform theories such as the
Fourier, Laplace, Hilbert and wavelet transforms, as well as fuzzy various concept analysis and
fuzzy relation equations [31-33]. Oh and Kim [34] interpreted Perfilieva’s fuzzy transform as a
residuated connection (e; x, F, G, e;y) with fuzzy transform and inverse fuzzy transform G. By using
the residuated connection, F is a fuzzy join preserving map and G is a fuzzy meet preserving map in a
Kim's fuzzy complete lattice sense [20], as a generalization of a complete lattice [35-38]. If X and Y
are solutions of fuzzy relation equations F(X) = B and G(Y) = A, then G(B) and F(A) are solutions,
respectively.

Discrete and stone dualities are dualities between algebras and logical relational systems such as
Boolean algebras and classical propositional logics; MV-algebra and Lukasiewicz logic; and BL-algebra
and basic fuzzy logics [3-6,39-41]. The duality leads in a natural way to relational semantics for a
logic [39-41].

In this paper, as a duality between algebras and logical relational systems, we introduce the notion
of residuated connections and residuated frames in fuzzy logics. In Theorems 3 and 4, we show that
(dual) residuated frames induce (dual) residuated connections.

Let (X, ex) be an L-fuzzy partially ordered set. As a generalization of the classic Tarski's fixed point
theorem [42,43] for isotone maps, we show that T, = {A € LX | A = F(A) = V,ex(ex(x,y) ® A(x))}
is an Alexandrov L-topology and (T, V, A, eTEX) is a fuzzy complete lattice [20].

If (ex, R, S, ey) is a residuated frame, then we show that F : 7oy, — 7., and G : T, — T, are
well-defined and (ex,, , F, G, e, ) is a residuated connection; er, (F(A), B) = er,, (A, G(B)) is defined
by

F(A)(y) = \ (A(x) ©R(x,y)), GB)x) = A (S(,x) = B(y)) @
xeX yeY
where 7, and 7., are Alexandrov L-topologies induced by fuzzy posets (X,ex) and (Y,ey) in
Theorem 1. Using this result, one can show that the pair (F(A), G(A)) is an fuzzy rough set for
Aon T, because (ex,R =ex,S = egl, ex ) is a residuated frame. Moreover, we show the existence of
fuzzy rough sets from residuated connections.

Similarly, by Theorem 4, dual residuated frames induce dual residuated connections. In Theorem 5
(resp. 9), (resp. dual) residuated connections induce (resp. dual) residuated frames. Under various
relations, we investigate the (dual) residuated connections and frames on Alexandrov L-topologies.

As a generalization of the Dedekind-MacNeille completion [37], we prove the existence of R-R
(resp. DR-DR) embedding maps and R-R (resp. DR-DR) frame embedding maps.

2. Preliminaries

Definition 1 ([10]). An algebra (L,A,V,®,—, L, T) is called a complete residuated lattice if it satisfies the
following conditions:

(L1) (L, <,V, A, L, T) is a complete lattice with the greatest element T and the least element L;

(L2) (L, ®, T) is a commutative monoid;

(L) xoy <zifandonlyifx <y — zforx,y,z € L.

In this paper, we always assume that (L, <, ®, —, *) is a complete residuated lattice with x* =
x = L and (x*)* = x.

Fora € L,A € L%, we denote (« — A), (a ® A),ax € LXby (¢ — A)(x) = a — A(x), (¢ ®
A)(x) =a 0 A(x), ax(x) =a.
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Lemma 1 ([2]). Let x,y,z,x;,y;,w € L. Then the following hold:

DT —=x=x, Lox=1;
Qfy<zthenxoy<x©Ozx—=s>y<x—zandz—>x<y—x

Q@) x<yifandonlyifx - y=T;

@) x = (Aiyi) = Ni(x = i)

©G) (Vixi) =y = N(xi = y);

) x© (Vivi) = Vi(x O yi);

N (xoy) —wz=x—(y—2)=y— (x = z);

B x—=y)oizow<(x0z) > (yow)adx -y < (x0z) = (yOz);
Nx—=y)oly—z)<x—z

(10) Vier xi = Vier¥i = Nier(xi = i) and Nicr Xi = Njer Yi = Nier (xi = vi);
Mx—-y<y—z)=>(x—z)andx -y <(z—x) = (z—>y),

(12) (xQy*" ) =x = yandx -y =y* — x*.

Definition 2 ([21]). Let X be a set. A function ex : X X X — L is called:

(E1) Reflexive if ex(x,x) = T forall x € X;

(E2) Transitive if ex(x,y) ©ex(y,z) < ex(x,z), forall x,y,z € X;

(E3) If ex(x,y) = ex(y,x) = T, then x = y. If ex satisfies (E1) and (E2), then (X, ex) is called a fuzzy
preorder set. If e satisfies (E1), (E2) and (E3), then (X, ex) is called a fuzzy partially order set (simply,
fuzzy poset).

Definition 3 ([18]). (1) A subset Tx C LX is called an Alexandrov L-topology on X if it satisfies the
following conditions:

(01) ax € Tx;

(O2)If A;j € tx foralli € I, then \/;c1 Ai, Nie] Ai € TX;

(03)If A € txand a € L, then a ® A,a0 — A € tx. The pair (X, tx) is called an Alexandrov
L-topological space.

Lemma 2. Let Tx C LX. Define er, : tx X Tx — L by er, (A, B) = Ayex(A(x) — B(x)). Then (tx,ery)
is a fuzzy poset.

Proof. (E1) Forall A € tx, we have e (A, A) = Ayex(A(x) = A(x)) =T,
(E2) Let A, B, C € tx. Then by Lemma 1(9), we have

ery (A, B) ©exg(B,C) = A (A(x) = B(x)) © \ (B(x) = C(x))

xeX xeX

< A\ ((A(x) = B(x)) © (B(x) = C(x))) ®)
xeX

< e (A,C).

(E3) Leter, (A, B) = e, (B, A) = T. Then by Lemma 1(3), A = B.
Hence (7x, ey ) is a fuzzy poset. [

Theorem 1. ([18]) Let (X, ex) be a fuzzy poset. Define
Ty = {A € LX | A(x) @ex(x,z) < A(2)}. (6)
Then T,y is an Alexandrov L-topology on X.

Remark 1. (1) Let (X, T a, ) be a fuzzy poset where T, (x,x) = T and Tp,(x,y) = L forx #y € X.
Then tr, = LX and err, =erx: LX x LX — Lase;x(A, B) = Ayex(A(x) — B(x)).
X
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(2) Let (X, Txxx) be a fuzzy poset where Txxx(x,y) = T for each x,y € X. Then tr, , = {ax € LX |
w€Llpander, — :Try X Try = Lbyer (ax,px)=a—p.

3. Fuzzy Residuated Frames and Fuzzy Residuated Connections on Alexandrov L-topologies

Definition 4. Let (X, ex) and (Y, ey) be fuzzy posets. Let f : X — Y and g : Y — X be maps.
(1) (ex, f, g ey) is a residuated connection if ey (f(x),y) = ex(x,g(y)) forallx € X,y € Y;

(2) (ex, f, g ey) is a dual residuated connection if ey (y, f(x)) = ex(g(y), x) forallx € X,y € Y;
(3 f is an isotone map if ey (f(x1), f(x2)) > ex(x1,x2) forall x1,x; € X;

4) f is an antitone map if ey (f(x1), f(x2)) > ex(x2, x1) forall x1,x; € X;

5) f is an embedding map if ey (f(x1), f(x2)) = ex(x1, x2) for all x1,x; € X.

vvvv

Theorem 2. Let (X, ex) and (Y, ey) be fuzzy posets. Let f : X — Y and g : Y — X be maps.
(1) (ex, f,g ey) is a residuated connection if and only if f,g are isotone maps and ey(f(g(y)),y) =

ex(x,g(f(x))) =T forall x,y € X;
(2) (ex, f, g ey) is a dual residuated connection if and only if f,g are isotone maps and ey (y, f(g(y))) =

ex(g(f(x)),x) =T forall x,y € X.

Proof. (1) Let (f,g) be a residuated connection. Since ey (f(x)

ey(f(x), f(x)) = ex(x,8(f(x))) and ey (f(g(¥)),¥) = ex(8(y),& y)’

ey(f(x1), f(x2)) = ex(x1,8(f(x2))) > ex(x1,%2) ®ex(x2,8(f(x2))) = ex(x1, x2).

y) = ex(x,g(y)), we have T =
) = T. Furthermore,

Conversely,

ey(f(x),y) = ex(f(8(¥)) y) ©ex(f(x), f(8())) = ey (f(x), f(8(¥))) = ex(x,8(y))-

Similarly, ey (f(x),y) < ex(x,g(y)).

(2) Since ey (f(x),y) = ( (y), x), wehave T = ey(f(x), f(x)) = ex(g(f(x)),x) and ey (f(g(v)),y) =
ex(¢(y),gly) =T. urthermore

ey(f(x1), f(x2)) = ex(g(f(x2)), x1) > ex(x2,x1) ®ex(g(f(x2)), x2) = ex(x2, x1).
O

For Ry € LX*Y and R, € LY*Z, define

Ry o Ry(x,2) = \/(Ri(x,y) © Ra(y,2)), Ry (y,x) = Ra(x,y). @)
y

Lemma 3. Let (X, ex) and (X, ey) be fuzzy posets Let R € LX*Y. Then the following hold:
(1) (exoR) ' =R 1oey! and (Roex) ' =ex'oR7Y;
(2)exoR < szandonlyzfe o R* < R%;
(3) Roey! < Rifand only if R* o ex < R¥;

)e XOROEY < szandonlylfeXoR <RandRoey <R;
)eX oRoeY < leandonlyzfex oR < RandRoeY <R;
)eX oRoeY < Rifand only ifex o R* oey < R*.
Proof. (1) (ex ©F) ! (33) = exR(xy) = Vaex(ex(x.2) O R(z,Y)) = Vaex(e5' (2 1) 0 R 1(3,2)) =
R~ 'oey!(y,x). Similarly, (Roex) ! = ey o R7L
(2) ex(x,z) ®R(z,y) < R(x,y) if and only if R(z,y) < ex(x,z) — R(x,y) if and only if ex(x,z) ®
R*(x,y) < R*(z,y) if and only if e ! (z,x) ® R*(x,y) < R*(z,y).
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(3) R(w,y) ® ex' (y,x) < R(w, x) if and only if R(w,y) ® ex(x,y) < R(w, x) if and only if ex(x,y) —
R*(w,y) > R*(w, x) if and only if ex(x,y) ® R*(w,x) < R*(w,y).

@) ex o Roey(x,y) = Vyey(ex o R)(xy1) @ ex(yi,y) = (ex o R)(xy) @ ex(n,y) = (ex o R)(x,v).
Similarly, R o ey < R. The converse part can be proved easily.

(5) and (6) can be proved easily by using (2)—(4). O

Definition 5. Let (X,ex) and (Y,ey) be fuzzy posets. Let R € L**Y and S € LY*X. A structure
(ex, R, S, ey) is called:

(1) A residuated frameif S = R™'andex o Roey < R;

(2) A dual residuated frame if S = R™! and e;(l oRo e;l <R

Lemma 4. Let (X, ex) and (Y, ey) be fuzzy posets. Then the following hold:
(1) Let (ex, f, g, ey) be a residuated connection. Define maps R : X x Y — Land S: Y x X — L by

R(x,y) = ex(x,8(y)) = ey(f(x),y), S(y,x) =R(x,y). ®)

Then (ex, R, S, ey) is a residuated frame;
(2) Let (ex, f, g, ey) be a dual residuated connection. Define maps R : X x Y — Land S:Y x X — Lby

Rx,y) = ex(g(y), x) = ex(y, f(x)), S(y,x) = R(x,y). ©

Then (ex, R, S, ey) is a dual residuated frame;

(3) If g is isotone and Ry(x,y) = ex(x,g(y)) (resp. Ra(x,y) = ex(g(y), x)), then ex o Ry o ey < Ry (resp.
e;(l oRyo0 6;1 < Ry);

(4) If f is isotone and Ry(x,y) = ey (y, f(x)) (resp. Ra(x,y) = ey (f(x),y)), then ex' o Ry o e;l < Ry (resp.
ex o R2 O ey < Rz)

Proof. (1) Forall x,x; € Xandy,y; €Y,

ex(x,x1) © R(x1,y1) ©ey(y1,y) = ex(x,x1) ©®ex(x1,8(y1)) ©ey(y1,y)

<ex(x,g(y1)) ®ex(y1,y) (10)
=ey(f(x),y1) ®ey(y1,y)
<ey(f(x),y) = R(x,y).

Henceex o Roey < R.

(3)Forallx,x; € Xand y,y; €Y,

ex(x,x1) © Ry(x1,y1) ©ey(y1,y ) = ex(x,x1) ©ex(x1,8(y1)) (y1,y)
(11)

Hence ex o Ry oey < Ry.
(2) and (4) can be proved similarly. O

Theorem 3. Let (ex, R, S, ey) be a residuated frame. Let To, and ., be Alexandrov L-topologies. Then the
following hold:
(1) (eTeX, F,G, eTey) is a residuated connection where

F(A)(y) =\ (A(x) ©R(x,y)), G(B)(x) = A (S(y,x) = B(y)); (12)

xeX yeY



Mathematics 2020, 8, 295 6 of 24

(2) (eTeX, F,G, eTey) is an dual residuated connection where

F(A)(y) = N\ (R*(x,y) = A(x)), G(B)(x) = \/ (R"(x,y) © B(y))- (13)

xeX yeY

Proof. (1) Since Roey < Rand ex o R < R by Lemma 3(4), we have F(A) € 7., and G(B) € 7., from:

F(A)(y) @ex(y,w) =\ (A(x) OR(x,y) ©ex(y,w)) < \/ (A(x) © R(x,w)) = F(A)(w), (14

xeX xeX

and

G(B)(x) ®ex(x,2) ®R(z,y) < A\ ((R(x,y) = B(y)) ©R(x,y)) < B(y)
yeY (15)

< G(B)(x) ®ex(x,z) < G(B)(z).

Moreover, forall A € T, and B € 7,

en, (F(4),B) = N\ (F(A)(y) = BW) = A\ (V (R(xy) © A(x)) > B(y))
yeYy yeY xey
= A A (A®) = Ry = Bw)) = A (A& = A R(xy) = BO)) e
xeXyeY xeX xeX
= A\ (A®x) = G(B)(x)) = ec, (4,G(B)).
xeX

(2) Since R* o ey, I < R*and e_1 o R* < R* by Lemma 3 (5)-(6), we have

F(A)(y) ©ey(y,w) © R*(x,w) = ( )\ (R*(x,y) = A(x))) © ey (y, w) © R*(x, w)

xeX
< A\ (R*(x,y) = A(x) ©R*(x,y)) < A(x),
xeX
G(B)(x) ©ex(1,2) < V/ ((R*(1,y) © B(y)) @ ex(x,2)) )
yey
<V (R*(z,y) © B(y)) = G(B)(2).
yey
Thus F(A) € T, and G(B) € Tey.
Moreover, for all A € T, and B € 7,
ey (G(B),A) = A\ (G(B)(x) = A (V(® @y oBy) - Ax)
xeX xeX yey
= A\ A (B = (R (xup) > A@)) = A (B =+ A R (op) = A@) g
xeXyeYy yeY xeX
= A (By) = FA)y)) = ex, (B,F(A)),
yeY

O

Remark 2. Since (T p,, ex,ex’, T, ) is a residuated frame where e is a fuzzy poset and Tt Ay = LX by
Remark 1(1), (e;x, F, G, e;x) is a residuated connection where

F(A)(y) = \ (A(x) @ex(x,y)), G(B)(x)= A (ex(x,y) = B(y)). (19)

xeX yeX
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The pair (G, F) is a fuzzy rough set ([26]).

Theorem 4. Let (ex, R, S, ey) be a dual residuated frame. Let To,, and ., be Alexandrov L-topologies. Then the
following hold:
(1) (eTeX, F,G, eTey) is a dual residuated connection where

F(A)(y) = A\ (R(x,y) = A(x)), G(B)(x)=\/ (R(x,y) ® B(y)); (20)

xeX yeY

(2) (eTeX, F,G, ergy) is a residuated connection where

F(A)(y) = V (A(x) ©R*(x,y)), G(B)(x) = /\ (R*(x,y) = B(y))- (21)

xeX yeYy

Proof. (1) Since R o e;l < Rand 6;(1 o R < Rby Lemma 3(5), we have

F(A)(y) @ ey(y,w) © R(x,w) = ( A\ (R(x,y) = A(x))) @ ey ' (w,y) © R(x, w)

xeX
< A (R(xy) = Ax) OR(x,y)) < A(x), )
xeX
G(B)(x) @ex(x,2) < \/ (R(x,y) © B(y) © Gex(x,2)) < G(B)(2).
yeY
Moreover, forall A € T, and B € 7,
ey (G(B), A) = N\ (G(B)(¥) = A\ (VRxy) ©B@) ~ A®)
xeX xeX yeY
= A A (B®) = Rxy) > A&)) = A (B) = A Rxy) = AX)) (23
xeXyeY yeYy xeX
= A (B - F<A><y>) = ex, (B, F(A)).

yeY

Thus F(A) € T, and G(B) € Tey.
(2) Since R* oey < R* and ex o R* < R* by Lemma 3(2-3), we have

F(A)(y) @ey(y,w) = \/ (A(x) OR*(x,y) © ey (y, w))

xeX
<V (A(x) ©R*(x,w)) = F(A)(w), (24)
xeX
G(B)(x) @ ex(x,2) OR*(z,y) < A ((R*(x,y) = B(y)) ©R*(x,y)) < B(y).
yey

Thus F(A) € T, and G(B) € Toy.
Moreover, forall A € 7., and B € T,

ex, (F(A),B) = A\ (FA)y) = B) = A\ (V (R"(x,y) © A(x)) = B(y))

yeYy yeY x€Y
A A (A — (R*(x,y) —>B(y))) A (A(x) = A\ (R*(x,y) —>B(y))) (25)
xeXyeY xeX xeX

= A (A() = G(B)(x)) = en, (4,G(B)).

xeX
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O

Remark 3. Since (T a,, ex, 6;(1, T ay) is a dual residuated frame where ex is a fuzzy poset and Tra, = LX
by Remark 1(1), (e;x, F, G, e; x) is a dual residuated connection where

F(A)(y) = N (ex(x,y) = A(x)), G(B)(x) =V (ex(x,y) © B(y)). (26)

xeX yeX

Example 1. Let (X, ex) and (Y, ey) be fuzzy posets. Let f : X — Y and g : Y — X be maps. Let T, and T,
be Alexandrov L-topologies.

(1) Let g be isotone and R(x,y) = ex(x,g(y)). By Lemma 4(3), (ex,R,S = R™1, ey) is a residuated frame.
By Theorem 3(1), (eTeX, F,G, erey) is a residuated connection with

F(A)(y) = V (A(x) ©ex(x,8(y))), G(B)(x) = A (ex(x,g(y)) = B(y)). (27)

xeX yeY

(2) Let g be isotone and R(x,y) = ex(g(y),x). By Lemma 4(3), (ex,R,S = R~1,ey) is a dual residuated
frame. By Theorem 4(1), (eTeX, F,G, eTey) is a dual residuated connection where

F(A)(y) = A (ex(g(y),x) = A(x)), G(B)(x) = \/ (B(y) ®ex(8(y),x))- (28)

yey yey

(3) Let f be isotone and R(x,y) = ey(y, f(x)). By Lemma 4(4), (ex,R,S = R}, ey) is a dual residuated
frame. By Theorem 4(1), (eTL,X ,F,G, eTex) is a dual residuated connection where

F(A)(y) = N (ex(y, f(x)) = A(x)), G(B)(y) = \/ (B(y) ©ex(y, f(x))). (29)

xeX yeY

(4) Let f be isotone and R(x,y) = ey(f(x),y). By Lemma 4(4), (ex,R,S = R™1, ey) is a residuated frame.
By Theorem 3(1), (eTL,X ,F,G, eTey) is a residuated connection where

F(A)(y) = V (ex(f(x),y) ©A(x)), G(B)(y) = A (ex(f(x),y) = B(y)). (30)

xeX yeY

Theorem 5. Let (X, ex) and (Y, ey) be fuzzy posets. Let T, and T, be Alexandrov L-topologies. Then the
following hold:

(1) (ex, f, g ey) is a residuated connection. That is, ey (f(x),y) = ex(x,g(y)) for all x,y € X if and only if
there exist relations R : Ty X T, — Land S : T, X Teyy — L by

R(A,B) = \ (A(x) = B(f(x))), S(B,A)= A (A(g(y)) = B(y)) (31)

xeX yeYy

with isotone maps f : X —Y, g : Y — X such that (ex,, R, S, ex,, ) is a residuated frame.

(2)In (1),

R(A,B) = eg, (A, f7(B)) = ex, (F(A), B) = er, (A, G(B)) (32)
where F(A)(y) = Vzex(ey(f(2),y) © A(z)) and G(B) = Ayey(ey(f(2),y) = B(y))).
S(B,A) = eq, (8 (A),B) = e, (Fi(A), B) = er, (A, G1(B)) (33)

where Fi(A)(w) = Vzex(ey(z g(w)) © A(z)) and G1(B)(z) = Awey(ey(z g(w)) = B(w)).
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Proof. (1) (=) Let A € Ty and B € T, . Since B(f(g(y))) ®ey(f(g(y)),y) < B(y), ex(f(gW)),y) =
T, A(x) ©ex(x,g(f(x))) < A(g(f(x))) and ex(x,g(f(x))) =T,

R(A,B) = A\ (A(x) = B(f(x))) < A\ (Ag(y)) = B(f(gW)) @ey(f(g(¥))v))

xeX yeY
(34)
< A (A(g(y)) — B(y)) = S(B, A)
yeY
and
S(B,A) = N\ (Ag(y) — B(y)) < A (A(g(f(x))) = B(f(x)))
xeX xeX (35)
< A (A(x) ©ex(x,8(f(x))) = B(f(x))) = R(A, B).
yeX
Thus we have R(A, B) = S(B, A). Forall A, A; € 7, B, B; € T, we have
er., (A, A1) © R(A1, By) ©eq, (B, B)
= e (44D © N\ (Ai(x) > BN © A Bi(f(x) > BU)) o6
xeX xeX
< A (A(x) = B(f(x))) = R(A, B).
xeX

Thus e, ocRoeg, < R.
(<) Since ey (z,w) ® ey(w,y) < ey(z,y) if and only if (ey)y’l*(z) Oey(z,w) < (ey)y’l*(w), we
have (ey)f* € Te,. Forall (ex)y € T,y and (6}/)];1* € Ty,

R((ex)x (ev)y ™) = N ((ex)x(2) = (ev), " (f(2)))
zeX (37)

< (ex)x(x) = (ev)y 7 (f(x)) = ex (f(x),y)".

x), f(2)) ®€y(f( ) y) < ex(f(x),y), we have ex(x,z) —

Since ex(x,z) ©® ey(f(z),y) < ey(f(
),y)- Hence R((ex)x, (ey); 1) = € (f(x),y). Moreover,

ey (f(2),y) = ey (f(x

S((ex)y ™ (ex)x) = A ((ex)x(g(2)) = (ev), *(2))
zeX (38)

< (ex)x(8()) = (ex)y " (v) = ex(x,8(y))".

g(Z) 8(y)) < ex(x,g(y)), we have ex(x,¢(z)) —

Since ex(x,g(z)) ®ey(z,y) < ex(x, 8( )) ©ex
ex)x) = ex(x,8(y)). Now, from

ey(z,y) > ek (x,8(y)). Hence S((ey), ™, (

R((ex)x, (ev)y ) = ey (f(x),y) = S((ex)y ", (ex)x) = ex(x,8(y)), (39)

we have ey (f(x),y) = ex(x,g(y)) forall x,y € X.
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(2) Let A € Ty and B € 7. Since A = V,cx(A(z) ©ex(z,—)) and B = Ayey(B*(y) — ey(—,y)),
we have

R(A,B) = A\ (A(x) = B(f(x))) = /\ (V (A(2) @ex(z,x)) = A\ (B*(y) = 7 (f(x),¥)))

xeX xeX zeX yey
= A\ V(A() 0B (y) — (ex(z,x) = ey (f(x),y)))
xzeXyeY
= A\ V(A@R) 0B (y) = A (ex(z x) = ey (f(x),¥)))
zeXyeY xeX (40)
= N\ V(Az) ©B*(y) = ey (f(2),y))
zeXyeYy
= A (V (ex(f(2),y) © A(2)) = B(y)) = ez, (F(A),B)
yeY zeX
= N (A(z) = A (ex(f(z),y) = B(y))) = ex,, (A, G(B))
zeX yeYy
and
5(B,A) = N\ (A(g() = B(y) = A (V (A(z) ©ex(z,8(y))) — /\ (B*(w) = ey (y,w)))
yeY yeY zeX weY
= N\ V(AR 0B (w) = (ex(28(y) = e (y,w)))
yweY zeX
= A\ V(AQz)©B*(w) = A (ex(z.8y)) = ex(y,w)))
weY zeX yey (41)
= A\ V (Az) @ B*(w) — ey(z,g(w)))
weY zeX
= A (V (ev(z.8()) © A(z)) — B(w)) = er, (Fi(A), B)
weY zeX
= A (AG) = A (ex(z,8(w)) = Bw))) = ex,, (4, G1(B)).
zeX weY
O
Example 2. Let (LX, F,G, LY) be a residuated connection where for R € LXXY,
F(A)(y) = \ (R(x,y) © A(x)), G(B)(x) = A (R(x,y) = B(y)). (42)

xeX yeY

Let 7oy = {a € LY | a(A) @ ex(A,B) < a(B)} and 7o, = {B € L' | B(A) © eyx(A,B) < B(B)}.
Define two maps T1, Sy 1. Te,x X Te,y = Lby

Ti(a,B) = N (a(A) = B(F(A))), Si(Ba)= /\ («(G(B)) = B(B)). (43)

AcLX BelX

Then (eTfo ,T1,51, er, ) is a residuated frame.

Theorem 6. Let (X, ex) be a fuzzy poset. Let T, be an Alexandrov L-topology. Let Teryy, = {a € L% |
a(A) ©eq, (A, B) < a(B)}. Defineamaph: X — Ter,, by h(x)(A) = 2(A) = A(x). Then h : (X,ex) —
(TgTeX ,ex, ) is an embedding map.

ex
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Proof. Assume thati(x)(A) = h(y)(A) forall A € 7. Then h(x)((ex)x) = h(y)((ex)x) = ex(x,y) =
T for (ex)x € Tey, and h(x)((ex)y) = h(y)((ex)y) = ex(y,x) = T for (ex)y € Tey. Thus x = y. Hence
h is injective.

Since

2(A) Oeq, (A,B) =2(A)0 A (A () < Alx) © (A(x) = B(x)) < B(x) = 2(B), (4,
yeX

wehave h(x) =% € Ter,, - Let A € Toy. Since A(x) = Ayey(ex(x,y) — A(y)), we have

ex(ty) < N\ (AG) = AW) = A (R(4) = 9(4) = en,, (2,9) )

AETEX AETEX

Let (ex)z(x) = ex(z, x). Since (ex):(x) ® ex(x,y) < (ex):(y), we have (ex), € T, forall z € X.
Note that

e, B9 = N (AX) = AW) < A ((ex)z(2) = (ex)=(v))

AETey (EX)ZETEX (46)
= N (ex(z,x) = ex(z,y)) = ex(x,y).
zeX

Hence Clery (2,9) =ex(x,y). O

Definition 6. Let (ex, f,g,ex) and (ez, f,§,ez) be residuated connections. An injective function k :
(ex, f, 8, ex) — (ez, f,§ ez) is an R-R embedding if

ex(x,y) = ez (k(x), k(y)), ex(f(x),y) = ez(f(k(x)), k(y)), ex(x,8(y)) = ez(k(x),&(k(y))). ~ (47)
If k is a bijective R-R embedding map, then k is called an R-R isomorphism.
Theorem 7. Let (ex, f,g,ex) be a residuated connection, T, be an Alexandrov L-topology and Ter,, = {a €

L' | a(A) ®ex,, (A, B) < a(B)}. Defineamaph: X — Ter,, by h(x)(A) = 2(A) = A(x). Then the map
h:(ex, f,gex) — (eT"TeX ,F, G, €t ) is an R-R embedding map with

ex(x,y) = ex,, (£1),F(h(x))(B) = F(2)(B) = f(x)(B) (48)

forall B € T, and G(h(y))(A) = G(9)(A) = g(y)(A) forall A € Tey, Where

R(A,B) = N\ (A(x) = B(f(x))), S(B,A)= /\ (A(g(y)) = B(y)), (49)
xeX yeX

F(#)(B) = \/ (R(A,B)©2(4)), GH)A) = A (S(B,A)— (B)). (50)
AETEX BeTgX

Moreover, €t (F(%),9) = Clury, (£, G(9)).

Proof. By Theorem 6, h : (X,ex) — (TQTEX,eTeTeX) is an embedding map. By Theorem 5(1),

(ez, /R, S, ez, ) is a residuated frame where

R(A,B) = A (A(x) = B(f(x))), S(B,A)= A (A(g(y)) — B(y)) (51)

xeX yeX
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By Theorem 3(1), (eTeT ,F,G, ez, ) is a residuated connection where
ex ex

F@)(B)= \/ (R(A,B)oa(A)) = \/ (/\(A(Z)%B(f(Z)))GfX(A)), (52)

AGTEX AGTeX zeX

G)(4)= A (5B,4)»aB)= A (A\(AGR)—=BE)~aB). 63

BETEX BETBX zeX

Moreover,
zeX (54)

Since f is isotone and B € T, we have B(f(x)) ®ex(x,y) < B(f(x)) ®ex(f(x), f(y)) < B(f(y)).
Hence f<(B) € 7.
Let A = f< (B). Note that

F®)(B) =\ (R(A,B)0x(4) = ( A\ (f7(B)(=) = B(f(2)) @ f(B)(x))

AETEX zeX (55)

= B(f(x)) = f(x)(B).

—

Hence F(&) = f(x). Note that

(56)
> A (AGW) = BW) — By)) = AR®Y) = g)(A).

BETBX

—

Since g is isotone, we have g (A) € 7. Thus G(77) < g(v). Moreover,

— —

er,, (F(2),9) = en, (f(x),9) = ex(f(x),y) = ex(x,8(y)) = ex,, (£,8(y)) = ex,, (£,G(@)) (57)
O

Definition 7. Let (ex, R, S,ex) and (ez, R, S, ez) be residuated frames. An injective map k : (ex, R, S, ex) —
(ez,R,S,ey) is an R-R frame embedding if

ex(x,y) = ez (k(x),k(y)), R(x,y) = R(k(x),k(y)), S(x,y) = S(k(x), k(y)). (58)
If k is a bijective R-R embedding map, then k is called an R-R frame isomorphism.

Theorem 8. Let (ex, R, S, ex) be a residual frame, T, be an Alexandrov L-topology and Ter, = {a e L% |
a(A) ©er, (A B) < a(B)}. Defineamapk : X — Teryy by k(x)(A) = 2(A) = A(x). Then the map
k:(ex,R,S,ex) — (eTeTEX ,R,S, €t ) is an R-R frame embedding map with e(x,y) = €T, (k(x),k(y)),
R(x,y) = R(k(x), k(y)) = R(%,§) and S(x,y) = S(k(x),k(y)) = 5(2, ) where

F(A)(y) = V (R(x,y) © A(x)), G(B)(x) = A (R(x,y) = B(y)), (59)
xeX yeX
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R(a,p)= N\ (x(A) = B(F(A))), S(Ba)= A (x(G(B)) — B(B)). (60)

AETEX BGTSX

Proof. By Theorem 6, k : (X, ex) — (T‘fmx 0T, ) is an embedding map. Hence ex (x,y) = €t (%,79).

By Theorem 3(1), ((3%X ,E, G, Crey ) is a residuated connection where

F(A)(y) = V (R(x,y) © A(x)), G(B)(x) = /\ (R(x,y) = B(y)). (61)

xeX yeX

~

By Theorem 5(1), (e, , RS, et ) is a residuated frame where

L"[eX

= N\ (@(A) = B(F(4))), S(Ba)= /\ («(G(B)) — B(B)). (62)
AGTEX

BGTeX

Note that forall £, € Teqy s

RE9) = A (2(4) = 9(FA) = N\ (Alx) = F(A)(y))

Aerex AETeX

= A (A(x)—> \/ (R(z,y) © A(z) ) A (A (x,y)@A(x))) (63)
AETEX zeX AereX

> R(x,y).

Let (ex)x(z) = ex(x,z). Then (ex)x € Tey. Since ex o Roex < R, we have ex o R < R. Thus

RED = A (A > V REY©AR)) < ((ex):(x) = V (Rz,y) © (ex)x(2)) )

AETy zeX zeX (64)
=R(x,y)
and
5(9,%) = /\ —9(B)) =\ (G(B)(x) = B(y))
BGTEX
/\ (/\ B(z)) > BW) = A ((R(xy) = B)—By) 6
Tex zeX BGTEX

R(x,y) = S(y, x).

Since Roex < exoRoex < R, we have R(x,y) ® ex(y,w) < R(x,w). Thus Ry = R(x, =) € Tey.
Hence

9= A ( ARz —B)=By) < ( ARz = Ri(2) = Raly))

Bety z€X zeX (66)
= R(x,y) = S(y, x).
O
Corollary 1. Let (ex,R = ex,S = ex',ex) be a residual frame and Ton, = {a € L™ | a(A)©®
er,, (A, B) < a(B)}. Defineamapk : X — Teq, bY k(x)(A) = 2(A) = A(x). Then the map

—
VoS —~

k:(ex,R=ex,S=ex! ex) = (eTgTeX ,R=¢ex,8 = e§1,eTBTEX ) (67)
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is an embedding map with ex(x,y) = e, (k(x),k(y)), ex(x,y) = ex(%,7) and ex'(x,y) =
¢

ex' (%,7) where

ex(x9) = N\ ®(A4)=9(FA) = A\ (Alx) = V (ex(zy) ©A2)) = ex(x,y),

AETgX AGTBX zeX
_ (68)
ex' (0,2) = N\ (#(G(B) = 9(B) = A (A (ex(x,2) = B(2)) = B(y)) = ex' (v, %).

AET,,,X AeTgX zeX

Example 3. Let X = {a,b,c} beaset. Let f : X — X beamap by f(a) = b, f(b) = a,f(c) = cand
f = f~L. Define a binary operation ® on L = [0,1] by

x®y=max{0,x+y—1}, x >y =min{l —x+y,1}. (69)
(1) Let (X = {a, b, c}, ex) be a fuzzy poset where

1 06 05
ex=|06 1 05 |. (70)
07 07 1

Since ex(x,y) = ex(f(x), f(y)), ex(x, f(f(x))) = ex(f(f(x)),x) = 1, we have that (ex, f, f, ex) are both

residuated and dual residuated connections. Since (ex, f, f,ex) is a residuated connection, we have that
ex(f(x),y) =ex(x, f(y)) for all x,y € X if and only if there the exist relations R : T, X Te, — L and
S:Tey X Texy — Lby

R(A,B) = A\ (A(x) = B(f(x))), S(B,A)= A (A(f(y)) = B(y)) (71)

xeX yeY

with an isotone map f : X — Y such that (e, , R, S, eTL,X) is a residuated frame.
Let (ex)(x) = e(z,x) forall z € X. Then (ex); € Tey. Now, we have

R((ex)a, (ex)s) = N (ex(a,x) = ex(b, f(x))) =1,

xeX
R((ex)p, (ex)a) =1, R((ex)a, (ex)a) = R((ex)s, (ex)s) = 0.6, R((ex)e, (ex)e) =1, (72)
R((EX)a, ((:‘X)C) = 0.7,R((Ex)c, (EX)a) = 0.5,R((€X)b, (Ex)c) = O.7,R((€X)C, (€X b) = 0.5.
S((ex)x, (ex)y) = R((ex)y, (ex)x) forallx,y € X.
Moreover,
R((ex)a, (ex), ) = N\ (ex(a,x) = ex(f(x),b)) = ex(f(a),b). (73)

xeX

Since f is isotone and R(x,y) = ex(x, f(y)) = ex(f(x),y), we have by Example 1(4) that (ezy, F, G,efgy) is
a residuated connection with

F(A)(y) = \V (A(x) @ ex(x, f(y)),  G(B)(x) = A (ex(x, f(y)) = B(y))- (74)

xeX yeX

Since f is isotone and R(x,y) = ex(f(y), x) = ex(y, f(x)), we have by Example 1(3) that (ex,, , F, G, ez, ) is
a dual residuated connection with

F(A)(y) = N (ex(f(y),x) = A(x)), G(B)(x) = \/ (B(y) ©ex(f(y),x)). (75)

xeX yeX
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Since (eTeX, R, S,eTEX) is a residuated frame, we have by Theorem 7 that (ETETEX ,F,G, eTeTEX ) is a residuated
connection where

F@(B) =\ (A (A=) = B(f(2))) ©a(4)), G(a)(B)

AETL»X zeX
= N (ABU) = @) =a(C). 76
CETeX zeX
Since
(A(z) = B(f(2))) © (B(f(z)) = A(z)) @ a(A) < a(A), (77)
we have
(A(z) = B(f(2))) ©a(A) < (B(f(2)) = A(z)) — a(A). (78)

Hence F(a)(B) < G(a)(B). Since f is isotone, we have that f* (B) € T, for all B € T, and so

G(a)(B) < (B(f(2)) = B(f(2))) = a(f™(B))
= (B(f(2)) = B(f(2))) ©a(f* (B)) < F(a)(B). (79)

Hence the map h : (ex, f, f,ex) — (eTeTBX ,F,F, €y ) is an R-R embedding map.
(2) Let (X = {a, b, c}, ex) be a fuzzy poset where

1 06 05
ex=|06 1 07 |. (80)
07 05 1

Since

0.7 =ex(c,a) £ ex(f(c), f(a)) = ex(c,b) =0.5,

f is not an isotone map. Hence (ex, f, f,ex) are neither residuated nor dual residuated connections. Let
R(x,y) = ex(x, f(y)). Then (ex,, F, G, ex, ) is not a residuated connection with

F(A)(y) = V (A(x) @ ex(x, f(y)), G(B)(x) = A (ex(x, f(y)) — B(y)), (81)

xeX yeX
because F((ex)c) & Tex for (ex)c € Tey from F((ex)c)(c) ®ex(c,a) = 0.7 £ F((ex)c)(a) = 0.5 where

F((ex)e)(c) =V ((ex)e(x) @ ex(x, f(c)) = ex(c,c) =1,

xeX

F((ex)e)(@) =/ ((ex)e(x) @ ex(x, f(a)) = ex(c,b) = 05.

xeX

(82)

Let R(x,y) = ex(f(y), x). Then (e, F, G, e, ) is not a dual residuated connection with

F(A)(y) = N (ex(f(y).x) = A(x)), G(B)(x) = \/ (B(y) ®ex(f(y),x)), (83)

yeX yeX

because F((e;(l*)c) & Ty for (e)}l*)c € T, from F((e;(l*)c)(b) ®ex(bc) =02 £ F((e;(l*)c)(c) =
0 where

F((ex ™)) (0) = N (ex(f(b),x) = (ex™)e(x)) = ex(f(b),c) =05,

yeX

F((ex™)e)(e) = A (ex(f(c),x) = (ex")e(x)) = ex(f(c),¢) = 0.

yeX

(84)
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(3) Let (X = {a,b,c},ex) be a fuzzy poset where

1 1 07
ex=| 06 1 07 |. (85)
07 07 1
Let g,h : X — X be maps by
g(a) =g(b) =a,g(c) =c and h(a) =h(b) =b,h(c)=rc. (86)
Since
ex(x,y) < ex(8(x),8(y)), ex(xy) < ex(h(x),hly)), g(h(a)) = g(h(b)) = a, 87)
g(h(c)) =¢, h(g(a)) = h(g(b)) =b, g(h(c)) =¢
we have
ex(g(h(x)),x) = ex(x,h(g(x))) =1, ex(h(g(a)),a) = ex(b,g(h(D))) = 0.6. (88)

Hence (ex, g, h, ex) is a residuated connection, but not a dual residuated connection. Since (ex, g, h,ex) is a
residuated connection, we have by Theorem 5 that (eTeX, R,S, eTeX) is a residuated frame where

R(A,B) = A (A(x) = B(g(x))), S(B,A)= A (A(h(y)) = B(y))- (©9)
xeX yeYy

Since (eTeX, R, S,eT(,X) is a residuated frame, we have by Theorem 7 that (eTBTeX ,F,G, Clery, ) is a residuated
connection where

F@)(B) =\ (R(4B)oaa) = \/ (A(AGR) = Bg()) oa(4)), (90)

AETeX AETgX zeX

G4 = A (58,4 =)= A (AAKE) > BE@)=aB). O

BETgX BETgX zeX

4. Fuzzy Dual Residuated Connections on Alexandrov L-Topologies

Theorem 9. Let (X, ex) and (Y, ey) be fuzzy posets. Let ., and T, be Alexandrov L-topologies. Then the
following hold:

(1) (ex, f, 8, ey) is a dual residuated connection. That is, ey (y, f(x)) = ex(g(y), x) for all x,y € X if and
only if there exist maps R : Ty X T, — Land S : To, X Teyy — L by

R(A,B) = A\ (B(f(x)) = A(x)), S(B,A)= A (B(y) > A(g(y))) (92)

xeX yeYy

with isotone maps f : X =Y, g : Y — X such that (e, , R, S, ex,, ) is a dual residuated frame.

(2)In (1),

R(A,B) = er, (f7(B), A) = er, (B, F(A)) = e, (G(B), A) (93)
where F(A)(y) = Azex(ey(y, f(2)) = A(z)) and G(B) = Vyey(ex(y, f(2)) © B(y)).
S(B,A) = er, (B,g" (A)) = er, (B, F1(A)) = er,, (G1(B), A) (94)

where F (A)(w) = Azex(ey(8(w),z) = A(2)) and G1(B)(z) = Vyey(ey(8(w), 2) © B(w)).
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Proof. (1) (=) Let A € 7. Since A(g(f(x))) © ex(8(f(x)),x) < A(x) and B(y) © ey (v, f(8(y))) <
B(f(g(y))) and ex(8(f(x)),x)) = ey(y, f(g(y))) = T by Theorem 2, we have

S(B,A) =\ (By) = A(g(y))) < A (B(f(x)) = A(8(f(x))) ©ex(8(f(x)),x))

yeX xeX (95)
< /\ )) = A(x)) = R(A,B)
xeX
and
R(A,B) = A (B(f(x)) = A(x)) < N\ (B(f(g()) — A(g(v)))
xeX yeX
< AN By) ©ex(y, f(s)) = Alg(y))) (96)
yeX
=S(B,A)
Thus S = R~!. Forall A, A; € Tey and B, By € T, we have
¢r (A, A1) O R(A1,By) O] (By, B)
< er, (A1, 4)© A\ (Bi(f(x) = A1) © A\ (B(f(x)) = Bi(f(x))) o7
xeX xeX
< /\ )) = A(x)) = R(A, B).
xeX
(<) Forall (ex); '* € 7oy and (ey)y € To,, we have
R((ex)x ™ (ev)y) = N ((ex)y(f(2)) = (ex)y*(2)) < (ey)y(f(x)) = (ex)y ™ (x)
zeX (98)
=ey(y, f(x))"
Since
ex(y, f(2)) ®ex(z,x) <ey(y, f(z)) ©ex(f(2), f(x)) < ey(y, f(x)), (99)
1

we have ex(x,2) = ¢} (y, f(2)) > €} (v, f(x)). Hence R((ex); ", (ey)y) = ¢} (y, £(x)). Additionally,

S((ex)y, (ex)x ™) = N ((ex)y(2) = (ex)x*(g(2))
zeX (100)

< (ev)y(y) = (ev)r " (8()) = ex(8(y), )"

Since
ex(8(2),x) ©ey(y,2) <ex(8(2),x) ©ex(8(y),8(2)) <ex(8(y), %), (101)
we have ey (y,z) — e%(g(z), x) > e%(g(y), x). Hence S((ey)y, (ex)y1*) = ek (g(y), x). Since
ey (v, f(x)) = R((ex)x ", (ex)y) = S((ex)y, (ex)y ) = ex(g(y), x), (102)

we have that (ex, f, g, ey) is a dual residuated connection. [

Example 4. Let (e;x,F,G,e;v) be a dual residuated connection for R € LX*Y defined by

F(A)(y) = N\ (R(x,y) = A(x)),  G(B)(x) = \/ (R(x,y) © B(y)), (103)

xeX yeY
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and t = {a € LL* | a(A) © e x(A,B) < a(B)}and T, = {B € LL | B(A) ®e;v(A,B) < B(B)}.
Two maps Ty, S1 = Te, x X Te,,, — L are defined by

Ti(a,p) = /\ (B(F(A)) = a(A)), Si(Ba)= /\ (B(B) = a(G(B))). (104)

AeLX BeLX

Then (ETELX , 11,51, ETHLY ) is a dual residuated frame.

Definition 8. Let (ex, f,g,ex) and (ez, f,§,ez) be dual residuated connections. An injective function
k:(ex, f,gex) — (ez, f,§ ez) isa DR-DR embedding if

ex(x,y) = ez (k(x), k(y)), ex(y, f(x)) = ez(k(y), f(k(x))), ex(8(y),x) = ez(§(k(y)),k(x)). (105)
If k is a bijective DR-DR embedding map, then k is called a DR-DR isomorphism.

Theorem 10. Let (ex, f, g, ex) be a dual residuated connection, T, be an Alexandrov L-topology and Tery =
{a € L™ | a(A) ©er,, (A B) < a(B)}. Defineamaph: X — Ter,, by h(x)(A) = £(A) = A(x).
Then h : (ex, f, g ex) — (eT"TeX ,F, G, et ) is @ DR-DR embedding map with ex(x,y) = €t (%,79),

F(h(x))(B) = F(2)(B) = f(x)(B) and G(h(y))(A) = G(9)(A) = g(y)(A) for all A € T, where

R(A,B) = A (B(f(x)) = A(x)), S(B,A)= /A (B(y) = A(g(¥))),

xeX yeX (106)
F(a)(B) = A (R(AB) —a(A)), G(a)(A)= \/ (5(B,A)@a(B)).
AETgX BETEX
Moreover, Clery, (9, F(%)) = Oy, (G(9), %).
Proof. By Theorem 9, (eTFX, R, S, eTeX) is a dual residuated frame where
R(A,B) = A (B(f(x)) = A(x)), S(B,A)= A (B(y) = A(g(¥))): (107)
xeX yeX
By Theorem 4(1), (eTeTeX ,F,G, eTgTeX ) is a dual residuated connection where
F@(B) = A (R(AB) —aa)= A (ABUFE)—AR)—a4)),
Aergx AETQX zeX (108)
G)(A) =\ (S(B,A)oaB) = \/ (A (Be) = A@:) ox(B)).
BET@X BETBX zeX

By Theorem 6, amap h : X — Ter,, bY h(x)(A) = 2(A) = A(x) is embedding. That is, ex(x,y) =
er,, (%,7). Forall B € 7, we have
ex

FEO(B) = A RAB) —»2A) = A\ (A BFE) = AE) = AW)

AGTBX AETEX zeX - (109)
> A ((B(F(x) = A() = A(x) = B(f(x)) = F2)(B).
AETEX

Since f is isotone and B € 7.,, we have

B(f(x)) ©ex(x,y) < B(f(x)) ©ex(f(x), f(y)) < B(f(y))- (110)
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Hence [ (B) € 7.
Let A= f<(B).Forall A,B € 1,

F(£)(B) = /\ (/\(B(f(Z)) — A(2)) —>A(X)) < A (B(f(2)) = B(f(z)) = B(f(x)))

RARRVA Jex (111)
=T = B(f(x)) = B(f(x)) = f(x)(B)

and

c@)(a) =\ $BA)01B) =\ (ABE - AiE)) BY))

BGQX zeX

. (112)
< A (By) = ARW)) ©BW)) < AGWY) = gy)(A).
BGQX
Let B(y) = ¢ (A)(y) = A(g(y)) for all y € X. Since
g7 ()W) Oev(y,w) < ARQWY)) ©ex(g(y),g(w)) < Alg(w)), (113)

we have ¢ (A) € 1. Moreover,

B =V (A BG = AG)OBY)) = A (A=) = A() © Algy)))

A€Ty z€X zeX (114)

Moreover,

ey, (9, F(%)) = e,

Tey

O

Definition 9. Let (ex,R,S,ex) and (ez,R,S,ez) be dual residuated frames. An injective map k :
(ex,R,S,ex) — (ez,R,S,ez) isa DR-DR frame embedding if

ex(x,y) = ez(k(x),k(y)), R(x,y) = R(k(x), k(y)), S(x,y) = S(k(x), k(y)). (116)
If k is a bijective DR-DR frame embedding map, then k is called a DR-DR frame isomorphism.

Theorem 11. Let (ex, R, S, ex) be a dual residual frame, Tey be an Alexandrov L-topology and Ter,, = {a €
L*x | a(A) ®exr,, (A, B) < a(B)}. Defineamapk: X — Teryy by k(x)(A) = £(A) = A(x). Then the map
k:(ex,R,S,ex) — (eTeTeX ,R,S, €y ) is a DR-DR frame embedding map with ex (x,y) = €T, (k(x),k(y)),
R(x,y) = R(%,9) and S(x,y) = S(%,9) where

F(A)(y) = N\ (R(x,y) = A(x)), G(B)(x) = \/ (S(y,x) © B(y)),

xeX xeX
R = A (BFA) - a(d), S§Ba)= A (BB —aGE).
AEnX Bergx
Proof. By Theorem 4(1), (Tey, F, G, T ) is a dual residuated connection where
F(A)(y) = N\ (R(x,y) = A(x)), G(B)(x) =\ (R(x,y) © B(y)). (118)

xeX yeY
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By Theorem 9, (e, , R,S, er, ) isa dual residuated frame where
ex Tex

R(a,p)= A (B(F(A)) = a(A)), S(Ba)= N\ (B(B) = a(G(B))). (119)

AGTgX BETL’X

By Theorem 6, ex(x,y) = Ot (%,7). Moreover,

A

Rz = A @F@A) =24)= A (A RGEy) = A@z) = Alx))

AETQX AETFX zeX (120)
> A ((R(x,y) = A(x)) = A(x)) > R(x,y).
AET[»X
Let Ry_l(z) = R(z,y). Since e;(l oR < egl oRo e;(l < R, we have
R, (x) @ ex(x,2) = ex'(z,x) © R(x,y) < R, (2). (121)

Thus Ry’1 € Ty, and so

Rz9) = N\ (A R@zy) = Alz)) = Ax))

AETEX zeX
< A ((R(z,y) = R, (2)) = R, 1 (x)) = R(x,y), (122)
zeX
S@,%) = A @(B)—2(G(B))= A (Bly) = \ (S(zx) ©B(z))
BeTeX Be'rgX zeX (123)
> A (B(y) = (S(y,x) ©B(y)) > S(y,x).

For all Ry’1 € Tey,

S8 = A (@(B) = 2(G(B) < (R, (y) = V (R(x,2) © Ry (2))
BETBX zeX (]_24)

< T = R(xy) =R(xy) =Sy, x).
Hencek: (ex,R,S,ex) — (eTeTE R, S, 1O, ) is a DR-DR frame embedding map. [

Example 5. Let X = {a,b,c} beaset. Let f : X — X amap and ([0,1], ®) defined as in Example 3.

(1) Let (X = {a,b,c}, ex) be a fuzzy poset defined as in Example 3(1). Since (ex, f, f,ex) is a dual residuated
connection, that is, ex(f(x),y) = ex(x, f(y)) for all x,y € X, there exist maps R : To,, X Toy — L and
S:Tey X Tey — Lby

R(A,B) = A (B(f(x)) = A(x)), S(B,A)= A (B(y) = A(g(v))) (125)

xeX yeY

with an isotone map f : X — Y such that (ex,, , R, S, ex,,, ) is a dual residuated frame. For all (ex )a, (ex)b € Tey,

R((ex)a, (ex)s) = N (ex(b, f(x)) = ex(a,%)) =1, R((ex)e, (ex)a) = 1,

xeX

R((ex)a, (ex)a) = R((ex)p, (ex)p) = 0.6, R((ex)c, (ex)c) =1, R((ex)a, (ex)c) = 0.5, (126)
R((ex)e, (ex)a) = 0.7, R((ex)p, (ex)c) = 0.5, R((ex)e, (ex)p) = 0.7
S((ex)x, (ex)y) = R((ex)y, (ex)x) forall x,y € X.
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Moreover,

R((ex)a '/ (ex)s) = A\ ((ex)o(f(x)) = ex) (%)) = ek (b, f(a)). (127)

xeX

By Theorem 4(1), (eTeTeX ,F, G, eTL,TEX ) is a dual residuated connection where

F(a)(B)= A (R(A,B) —a(A)= A (/\ ) = A(z) = #(4)),

AETEX AGTgX zeX (128)
Ga)(a) =\ (B oaB)= \/ (A BE) - Ai(() oaB)).

BGTeX BGTEX zeX

By a similar method used in Example 3, one can see that F = G.

(2) Let (X = {a,b,c},ex) be a fuzzy poset and g, h : X — X defined as in Example 3(3). Since (ex, h, g, ex)
is a dual residuated connection, that is, ex(h(x),y) = ex(x,¢(y)) for all x,y € X, there exist relations
R:Tey X Ty =+ Land S : Ty X Ty — L by

R(A,B) = N\ (B(h(x)) = A(x)), S(B,A)= )\ (B(y) = A(g(¥))) (129)

xeX yeY

such that (eTEX, R,S, eT[,X) is a dual residuated frame. By Theorem 4(1), (eTETeX ,E,G, Ot ) is a dual residuated
connection where

F(a)(B)= A (R(AB)—a(A)= A (/\ ) = A(2)) = a(4)),
AETEX AGTEX zeX (130)
G(a)(4) = \/ (S(B,A) =V (A BGE) - Ag(z) ©a(B)).
BGTBX BGTeX zeX
Example 6. (1) Let (X = {a,b,c},ex) be a fuzzy poset where
1 06 05
ex=| 06 1 07 |. (131)
05 07 1
Define a binary operation ® on [0, 1] by
x®y=max{0,x+y—1}, x >y =min{l —x+y,1}. (132)
Then (L = [0,1], ®, —,0,1) is a complete residuated lattice. Let
07 04 03
R=| 06 08 05 |. (133)
03 05 08

Since (ex, R, S, ex) is a residuated frame, we have by Theorem 3(1) that (e, ,F, G, ex, ) is a residuated
connection where

F(A)y) = V R(xy) © A(x)), G(B)(x) = A (R(x,y) = B(y)). (134)
xeX yeX

~

By Theorem 11, (ex,_ , RS, er, ) isaresiduated frame where
ex Tex

R(a, )= A (a(A) = B(F(A), S(Ba)= N\ («(G(B)) = B(B)). (135)

AGTeX BETL’X
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Since (ex, R, S, ex) is a dual residuated frame, we have by Theorem 4(1) that (T, F, G, T, ) is a dual residuated
connection where

F(A)y) = \ R(xy) = A(x)), G(B)(x) =V (R(x,y) © B(y))- (136)
xeX yeY

By Theorem 11, (eTET RS, e, ) is a dual residuated connection where
t’X t’X

Rw,8) = A (B(F(A) = a(4)), S(Ba)= A (B(B) = a(G(B))). (137)
AETEX BETgX
(2) Let
1 07 05
ex = 04 1 03 ]. (138)
03 05 1
Then
0.7 05 03
exoRoex = 06 08 05 |, (139)
0.3 05 0.8

and so R < ex o Roex. Hence (ex, R, S, ex) is not residuated frame. Since G((ex), *)(a) ® ex(a,b) =
R*(a,b) ®ex(a,b) = 0607 =03 £ 02 = R*(b,b) = G((eX)b_l*)(b), we have G((ex)h_l*) & Tey-
However, since R = 3;(1 oRo e;(l, we have that (eTeX, F,G, eTCX) is a dual residuated connection defined by

F(A)(y) = N\ (R(x,y) = A(x)), G(B)(x) =/ (R(x,y) © B(y))- (140)
xeX yeY

By Theorem 11, (e, ,R,S, e, ) is a dual residuated frame where
ex Tex

R(a,p)= N\ (B(F(A)) = a(A)), S(Ba)= A (B(B) = a(G(B))). (141)

AGT@X BETgX

5. Conclusions

As an extension of residuated frames for classical relational semantics, we have introduced (dual)
residuated frames for fuzzy logics. As a generalization of the classical Tarski’s fixed point theorem,
we have shown that an Alexandrov L-topology is a fuzzy complete lattice with residuated connections.
By using residuated connections, we have constructed fuzzy rough sets and have solved fuzzy relation
equations on the Alexandrov L-topology. Moreover, as a generalization of the Dedekind-MacNeille
completion, we have introduced R-R (resp. DR-DR) embedding maps and R-R (resp. DR-DR) frame
embedding maps.

In the future, by using the concepts of (dual) residuated connections and frames, we plan to
investigate fuzzy contexts, information systems and decision rules on Alexandrov L-topologies.
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