
mathematics

Article

Solving Robust Variants of the Maximum Weighted
Independent Set Problem on Trees

Ana Klobučar 1,* and Robert Manger 2

1 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10000 Zagreb, Croatia
2 Department of Mathematics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;

manger@math.hr
* Correspondence: aklobucar@fsb.hr

Received: 2 February 2020; Accepted: 18 February 2020; Published: 20 February 2020
����������
�������

Abstract: This paper deals with the maximum weighted independent set (MWIS) problem.
We consider several robust variants of the MWIS problem on trees and prove that most of them
are NP-hard. We propose a heuristic for solving the considered robust MWIS variants, which is
customized for trees. We demonstrate by experiments that our algorithm produces high-quality
solutions and runs much faster than a general-purpose optimization software.

Keywords: weighted graph; independent set; robust optimization; tree; complexity; heuristic

1. Introduction

The maximum weighted independent set (MWIS) problem is posed in a graph in which vertices
have nonnegative weights. In its conventional variant, the problem consists of finding a subset of
graph vertices that are not adjacent to each other and in which the sum of weights is as large as possible.
There are many practical applications of such task, e.g., in resource allocation or in scheduling.

Although the conventional MWIS problem is NP-hard in general [1], it still can be solved in
polynomial time on some special classes of graphs, such as trees or interval graphs or apple-free
graphs. Indeed, the paper [2] specifies an algorithm for trees with linear complexity in terms of
number of vertices. Next, in Reference [3–7] we can find polynomial-time algorithms for interval or
apple-free graphs.

In addition to the conventional variant, several robust variants of the MWIS problem can also be
studied, where graph structure is fixed but vertex weights are uncertain. Since the conventional MWIS
problem is NP-hard in general, it is clear that all its robust variants must also be NP-hard in general.
But, as already noted, the conventional MWIS problem on some special classes of graphs can be solved
in polynomial time. This gives rise to a hope that robust variants of the same problem on the same
classes can also be solved more efficiently than in the general case.

To see if such hope is justified, it is necessary to analyze computational complexity of robust
MWIS problem variants on particular types of graphs. Such analysis has already been done in
Reference [8,9] for interval graphs—it turned out that almost all robust MWIS variants on interval
graphs are NP-hard. To the best of our knowledge, there are no similar works in the literature dealing
with trees or apple-free graphs.

In this paper, we are concerned with solving robust variants of the MWIS problem on trees.
So, we are dealing simultaneously with robust optimization and with one of the special classes of
graphs that are regarded as interesting from the computational point of view. Our goal is to study
computational complexity of the considered robust variants on trees and also to design efficient
algorithms for their solution.

Mathematics 2020, 8, 285; doi:10.3390/math8020285 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-0953-6517
http://www.mdpi.com/2227-7390/8/2/285?type=check_update&version=1
http://dx.doi.org/10.3390/math8020285
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 285 2 of 16

In the paper, we will first explore relationships between trees and interval graphs. More precisely,
we will demonstrate that none of those two classes of graphs is a subset of the other. This is important
because it means that the available complexity results from Reference [8,9] regarding interval graphs
cannot be applied to trees. Thus, a separate study of complexity is needed. In the second part of the
paper, we will present our original complexity analysis dealing with robust MWIS problem variants
on trees. Our results are analogous to those for interval graphs from Reference [8,9]. Consequently,
they show that the considered problem variants on trees are again NP-hard. Thus again, we cannot
expect exact polynomial-time solutions. In the last part of the paper, we will therefore concentrate on
a custom-designed heuristic, which solves robust MWIS problem variants on trees much faster than
algorithms designed for general graphs.

It is well known that, for many combinatorial optimization problems, the simple structure of
trees can assure algorithmic advantages for solving them efficiently [1] . However, according to the
results from this paper, this is not the case for the investigated robust problem variants. In this aspect,
our problem variants are similar to some other hard problems posed on trees, such as the generalized
minimum spanning tree problem [10].

Apart from this introduction, the rest of the paper is organized as follows. Section 2 lists precise
definitions of the above used concepts, and establishes the difference between interval graphs and
trees. Section 3 contains our complexity results. Section 4 describes our heuristic. Section 5 reports on
experimental evaluation of the algorithm. The final Section 6 gives conclusions.

2. Definitions and Preliminaries

As already announced, in this paper we study the maximum weighted independent set problem.
Its conventional variant is very well known and treated in many textbooks, e.g., Reference [11,12].
We give here some basic definitions for convenience.

• Let G = (V, E) be an undirected graph, where V is the set of vertices, and E the set of edges.
An independent set of G is a subset X of V such that no two vertices in X are adjacent (connected
by an edge from E).

• Let G = (V, E) be an undirected graph where its vertices have weights. Suppose that all weights
are nonnegative integers. A maximum weighted independent set of G is an independent set of G in
which the sum of vertex weights is as large as possible.

• The problem of finding a maximum weighted independent set in a given weighted graph is called
the (conventional) maximum weighted independent set problem (the MWIS problem).

Let us now say a few words about robust optimization [13–17]. It is a state-of-the-art paradigm for
dealing with uncertainty in problem parameters (e.g., vertex weights in our case). Such uncertainty
occurs frequently in real-world applications where parameter values may depend on unpredictable
future circumstances or perhaps cannot be measured accurately. In this paper, we adopt a particular
approach to robust optimization, which has been described, e.g., in Reference [13,17].

In accordance with the adopted approach to robustness, uncertain values are expressed through a
finite collection of scenarios, which can be listed explicitly or described implicitly through some kind of
uncertainty set (e.g., a Cartesian product of integer intervals). Only the solutions that are feasible for
all scenarios are taken into account. The “behavior” of any solution under any scenario is measured in
some way. As the “robustly optimal” solution, the one is chosen in which overall behavior, measured
over all scenarios, is the best possible.

Depending on the chosen behavior measure, the above procedure can lead to the application
of different criteria of robustness. There are three popular criteria, and according to Reference [17],
they are called absolute robustness, robust deviation, and relative robust deviation. In some other
literature, e.g., Reference [13], the same criteria are referred to as max-min (min-max), min-max-regret,
and relative min-max regret, respectively. Here are the definitions.

Mathematics 2020, 8, 285 3 of 16

• An absolute robust solution is the one in which the worst (conventional) objective-function value,
measured over all scenarios, is the best among all feasible solutions.

• A robust deviation solution is the one in which the maximum deviation from the conventional
optimum, measured over all scenarios, is the smallest among all feasible solutions.

• A relative robust deviation solution is the one in which the maximum relative deviation from the
conventional optimum, measured over all scenarios, is the smallest among all feasible solutions.

Each of the three robustness criteria shown above can further on be extended by using the
corresponding ordered-weighted-averaging aggregation (OWA) criterion. The idea is that the
assessment of a given solution should not be based only on the worst measured value of objective
function or deviation. Instead, a convex combination of several “bad” values should be taken
into account. As an OWA solution, the one is chosen in which convex combination is the best.
More information about OWA criteria can be found in Reference [16].

In this paper, we apply our adopted robustness approach to the MWIS problem. Thereby,
the graph structure is assumed to be stable, only vertex weights are considered as uncertain.
Consequently, each scenario is simply an n-tuple of nonnegative integers, where n is the number of
vertices in the graph. In any scenario, the first integer defines the weight of the first vertex, the second
integer is the weight of the second vertex, etc. By applying the three previously mentioned robustness
criteria, we obtain three different robust variants of the MWIS problem. The next paragraph gives
precise definitions of those variants.

For a graph G = (V, E), let S be the collection of all scenarios for its vertex weights. Denote with
F(X, s) the weight of an independent set X ⊂ V (i.e., the sum of weights of its vertices) under scenario
s ∈ S. Let F∗s be the maximum weight of an independent set under scenario s. Assume that F∗s is > 0
(this is, in fact, always true except for trivial problem instances). Then:

• An absolute robust solution for the MWIS problem is an independent set XA that maximizes the
function mins∈S F(X, s) over the whole collection of possible independent sets X.

• A robust deviation solution for the MWIS problem is an independent set XD that minimizes the
function maxs∈S(F∗s − F(X, s)) over the whole collection of possible independent sets X.

• A relative robust deviation solution for the MWIS problem is an independent set XR that minimizes
the function maxs∈S((F∗s − F(X, s))/F∗s) over the whole collection of possible independent sets X.

In the remaining part of this section, we define precisely two previously mentioned special classes
of graphs. Indeed, here are the definitions.

• An undirected graph G is a tree if it is connected and acyclic. Or, equivalently, an undirected
graph G with n vertices is a tree if it is connected and its number of edges is n− 1.

A tree is usually organized in a hierarchy, so that one vertex is chosen to be the root,
its neighbors become its children, remaining neighbors of children become children’s children, etc.
Then, any vertex can have 0, 1 or more children. The root has no parent, and any other vertex has
exactly one parent. Vertices with no children are called leaves.

• Let Ii = [ai, bi], denote a closed interval, where ai, bi ∈ R and ai < bi. An undirected graph
G = (V, E) with |V| = n vertices is called interval graph for a finite family I = {I1, I2, ..., In} of
intervals on the real line if there is a one-to-one correspondence between I and V such that two
intervals of I have non-empty intersection if and only if their corresponding vertices in V are
adjacent to each other.

It is important to point out that none of the two considered classes of graphs is a subset of the
other. This fact is demonstrated by Figure 1, where we can see an interval graph that is not a tree and
also a tree that is not an interval graph.

Mathematics 2020, 8, 285 4 of 16

42

1

3

5 6 7

Figure 1. An interval graph that is not a tree; a tree that is not an interval graph.

Let us explain Figure 1 in more detail. The graph on the left is obviously not a tree because
it has a cycle, but on the other hand, it is an interval graph since it corresponds, e.g., to a family
I = {[1, 4] , [2, 3] , [2, 4]}. The graph on the right is obviously a tree, but it is not an interval graph since
there exists no corresponding family of intervals. Namely, any attempt to construct such a family
leads to a contradiction. Indeed, let us try to construct such intervals. Denote with Ii the interval
corresponding to vertex i. Our attempt is illustrated by Figure 2.

• Consider first I2, I3, and I4; since their vertices are not adjacent, they should be disjunct and placed
on the real line in some sequence. Without any loss of generality, we can assume that I2 is on
the left, I3 in the middle, and I4 on the right, as shown in the middle part of Figure 2 (otherwise,
we could renumber the vertices).

• Next, consider I1. Since vertex 1 is adjacent to vertices 2, 3, and 4, I1 should overlap with all
three intervals I2, I3, and I4. More precisely, the left endpoint of I1 cannot be larger than the right
endpoint of I2 since, otherwise, the two intervals would not overlap. Similarly, the right endpoint
of I1 cannot be smaller than the left endpoint of I3. So, the situation looks as shown in the upper
part of Figure 2. Consequently, I3 must be a subset of I1.

• Finally, we consider I6. Since vertices 3 and 6 are adjacent, I6 should overlap with I3, as shown in
the lower part of Figure 2. But since I3 is a subset of I1, it means that I6 must also overlap with I1.
This is a contradiction with the fact that vertices 1 and 6 are not adjacent.

I1

I2 I3 I4

I6

Figure 2. Demonstrating by contradiction that the tree from Figure 1 cannot be an interval graph.

3. Complexity Issues

A natural question one would like to answer is whether there exists an exact algorithm, similar to
the one from Reference [2], which would solve robust variants of the MWIS problem on trees in
polynomial time. Unfortunately, the answer is in most cases negative due to the following theorems.
They are proved by polynomial reduction of the standard 2-partition problem to our robust variants.
We start with the definition of 2-partition:

Instance: a list of positive integers a1, a2, . . . , an.
Question: is there a subset of indices I ⊂ {1, 2, . . . , n} such that ∑i∈I ai = ∑i/∈I ai ?

It is well known [1] that the 2-partition problem is NP-complete.

Theorem 1. Finding an absolute robust solution for the MWIS problem on trees is NP-hard, even with only
two discrete scenarios.

Mathematics 2020, 8, 285 5 of 16

Proof. Let us consider an instance of the 2-partition problem specified by positive integers a1, a2, . . . , an.
Denote with T the sum ∑n

i=1 ai. We construct the corresponding MWIS problem instance with two
scenarios on the tree shown in Figure 3. The first scenario is specified as follows:

• The root has weight 0.
• In the i-th vertical segment, the upper vertex has weight ai, and the lower vertex has weight 0.

The second scenario is specified as follows:

• The root has weight 0.
• In the i-th vertical segment, the lower vertex has weight ai, and the upper vertex has weight 0.

...

...

root

1st vertical

segment
2nd vertical

segment

n-th vertical

segment

Figure 3. A tree that reduces a 2-partition problem instance to a maximum weighted independent set
(MWIS) problem instance.

A nontrivial independent set (i.e., one that cannot be extended by adding more vertices) is formed
so that exactly one (upper or lower) vertex is chosen in each vertical segment from Figure 3. The root
may or may not be chosen, but it is irrelevant since its weight is 0. Here follow some observations.

• If the selected independent set contains many upper vertices, it will have a large weight under
the first scenario but a small weight under the second scenario. Thus, its minimum weight over
scenarios will be small, so that it will not be an absolute robust solution.

• If the selected independent set contains many lower vertices, it will have a large weight under
the second scenario but a small weight under the first scenario. Again, its minimum weight over
scenarios will be small, so that it again will not produce an absolute robust solution.

• An absolute robust solution (max-min) is achieved when the sum of weights of the chosen upper
vertices is approximately equal to the sum of weights of the chosen lower vertices, since then the
minimum over scenarios is as large as possible.

From the above observations, we can deduce the following. If the robust objective function value
(max-min) happens to be exactly T/2, then a 2-partition of a1, a2, . . . , an exists. If it is < T/2, then a
2-partition does not exist.

It means that, by solving the robust MWIS problem instance, we obtain the solution of the
2-partition instance.

Theorem 2. Finding a robust deviation solution for the MWIS problem on trees is NP-hard, even with only
two discrete scenarios.

Proof. Let us consider an instance of the 2-partition problem specified by positive integers a1, a2, . . . , an.
Denote again with T the sum ∑n

i=1 ai. We construct the corresponding MWIS problem instance in the

Mathematics 2020, 8, 285 6 of 16

same way as in the proof of Theorem 1, i.e., the tree looks as shown in Figure 3 and the two scenarios
are the same. Nontrivial independent sets are also formed in the same way as before. Now, we can
observe the following.

• The optimal conventional solution under the first scenario is obtained by choosing the upper
vertex within each vertical segment from Figure 3. The weight of that solution is T.

• The optimal conventional solution under the second scenario is obtained by choosing the lower
vertex within each vertical segment from Figure 3, and its weight is again T.

• Let us consider any independent set X. Let I be the set of indices of vertical segments from
Figure 3 where X has chosen the upper vertex. Then, the “regret” for X under the first scenario is
equal to T −∑i∈I ai, and the regret for X under the second scenario is T −∑i/∈I ai.

• If X contains many upper vertices, it will have a small regret under the first scenario but a large
regret under the second scenario, so that its maximal regret over both scenarios will be large.

• If X contains many lower vertices, it will have a large regret under the first scenario and a small
regret under the second scenario. Again, its maximal regret over both scenarios will be large.

• A robust deviation solution (min-max regret) is achieved when ∑i∈S ai is approximately equal to
∑i/∈S ai, since then the maximal regret over both scenarios is as small as possible and ≈ T/2.

From the above observations, we can deduce the following. If the robust objective function value
(min-max regret) happens to be exactly T/2, then a 2-partition of a1, a2, . . . an exists. If it is > T/2,
then a 2-partition does not exist.

Thus, by solving the constructed robust MWIS problem instance, we solve the given
2-partition instance.

Theorem 3. Finding a relative robust deviation solution for the MWIS problem on trees is NP-hard, even with
only two discrete scenarios.

Proof. It is almost the same as for Theorem 2. For a given 2-partition problem instance specified by
positive integers a1, a2, . . . , an, we construct again the same MWIS problem instance (the same tree
and scenarios). Nontrivial independent sets are formed in the same way as before, and the optimal
conventional solutions under particular scenarios are the same. T again stands for ∑n

i=1 ai. But now
we can observe the following.

• Let us consider any independent set X, and let I be the set of indices of vertical segments from
Figure 3 where X has chosen the upper vertex. Then, the relative regret for X under the first
scenario is (T−∑i∈I ai)/T, while the relative regret under the second scenario is (T−∑i/∈I ai)/T.
Division with T is legal since T is a sum of positive integers; thus, > 0.

• A relative robust deviation solution (min-max relative regret) is achieved again when ∑i∈S ai is
approximately equal to ∑i/∈S ai, since then the maximal relative regret over both scenarios is as
small as possible and ≈ (T − T/2)/T = 1/2.

From the above observations, we can deduce the following. If the robust objective function value
(min-max relative regret) happens to be exactly 1/2, then a 2-partition of a1, a2, . . . an exists. If it is
> 1/2, then a 2-partition does not exist.

Thus, by solving the constructed robust MWIS problem instance, we solve the given
2-partition instance.

With the above three theorems, we have proved that the absolute robust variant and the (relative)
robust deviation variants of the MWIS problem on trees are NP-hard. Since the involved three
robustness criteria are special cases of the corresponding OWA criteria, we immediately obtain the
following consequence.

Mathematics 2020, 8, 285 7 of 16

Corollary 1. For any of the three robustness criteria, finding the respective OWA solution for the MWIS
problem on trees is NP-hard, even with only two discrete scenarios.

Next, we can combine the complexity results from this section with the equivalency results from
Reference [18]. In this way, we can immediately prove some assertions regarding robust variants of the
so-called minimum-weight vertex cover problem (MWVC) problem on trees. As it is well known [11],
MWIS and MWVC problems are closely related, in fact equivalent, if their conventional variants are
considered. However, as shown in Reference [18], robust variants of the same problems are not always
equivalent, so that one cannot be sure that MWVC variants should have the same complexity as their
MWIS counterparts. Still, combination of Proposition 2 from Reference [18] with our Theorem 1 brings
the following consequence.

Corollary 2. Finding an absolute robust solution for the MWVC problem on trees is NP-hard, even with only
two discrete scenarios.

The above corollary follows because the MWIS problem instance used in the proof of
our Theorem 1 can (polynomially) be reduced to the corresponding MWVC problem instance.
Such reduction is correct since the involved instances satisfy the restriction from Reference [18]
regarding scenarios. Similarly, Proposition 8 from Reference [18] can be combined with our Theorem 2,
thus giving an additional consequence.

Corollary 3. Finding a robust deviation solution for the MWVC problem on trees is NP-hard, even with only
two discrete scenarios.

It is easy to see that an analogue claim regarding relative robust deviation solution of the MWVC
problem on trees is also true. Such a claim can be proved directly by a similar (but slightly modified)
construction, as in our Theorem 3.

So far, we have assumed that uncertainty in our robust MWIS problem variants is captured
through discrete scenarios. Let us now say a few words about situations where uncertainty is expressed
by intervals. More precisely, we now assume that the weight of a vertex can take any value from a
given integer interval. Vertex weights are chosen independently from each other. Thus, the set of
scenarios S is implicitly given as the full Cartesian product of all intervals. Such scenario set can be
combined with any of the three previously considered robustness criteria. In this way, robust variants
of the MWIS problem are obtained, which are special cases of the previously considered variants,
having rather large but regular sets of scenarios. Such special and regular variants deserve separate
consideration since their complexity could be different (smaller) than in more general situations.
Indeed, it is clear that combination of absolute robustness with interval uncertainty on trees gives a
variant of the MWIS problem that can be solved in polynomial time—this fact is a consequence of
Proposition 4 from Reference [18] or Proposition 7.4 from Reference [9]. More precisely, the sought
robust solution coincides with the conventional solution according to the so-called minimum scenario
(where each vertex has the smallest weight from its interval).

4. Algorithms

At the beginning of this section, we will first briefly describe the exact algorithm for solving the
conventional MWIS problem on trees from Reference [2]. Namely, the construction from Reference [2]
will serve as an inspiration for our own algorithm described in the second part of the section.

As previously mentioned, the algorithm from Reference [2] has a linear complexity. In more
detail, the algorithm visits each vertex vi in a given tree just once, and it constructs two corresponding
independent sets:

Mathematics 2020, 8, 285 8 of 16

• An independent set for the subtree rooted at vi that has the greatest weight and that contains vi.
Such set will be called the inclusive independent set.

• An independent set for the subtree rooted at vi that has the greatest weight, and that does not
contain vi. Such set will be called the exclusive independent set.

In its i-th step, the algorithm constructs the above described two independent sets for vertex vi by
using the previously constructed independent sets for children of vi. The construction is done in the
following way.

• The inclusive independent set for vi is obtained as the union of exclusive independent sets for
children of vi, plus vi itself.

• The exclusive independent set for vi is obtained as a union of either inclusive or exclusive
independent sets for children of vi. For each child, the one with greater weight is chosen.

As its final solution for the whole tree, the algorithm chooses the better among the two
independent sets obtained for the root. Comparison is again done according to weights. It is easy to
prove that the described algorithm is correct, i.e., it really constructs a solution that must be optimal in
the conventional sense.

In the remaining part of this section, we propose a new heuristic for solving robust MWIS problem
variants on trees. It will be called population algorithm. Similarly as the exact algorithm from the first
part of the section, it takes into account the special structure of the involved graph (i.e., a tree). Again,
it visits vertices of a tree and constructs independent sets for the corresponding subtrees. However,
unlike the previous algorithm, it does not produce only one exclusive or inclusive set per vertex but
collections of such sets.

More precisely, for a given tree, the population algorithm visits each vertex vi of that tree exactly
once and constructs two corresponding collections of independent sets.

• A collection of independent sets for the subtree rooted at vi that are considered “good” according
to the chosen robustness criterion. Thereby, each of those independent sets contains vi.
Such collection is called the inclusive population.

• A collection of independent sets for the subtree rooted at vi that are considered “good” according
to the chosen robustness criterion. Thereby, none of those independent sets contains vi.
Such collection is called the exclusive population.

In its i-th step, the algorithm constructs the above described two populations for vertex vi by using
previously constructed populations for children of vi. The construction is done in the following way.

• A member of the inclusive population for vi is assembled as a union, where for each child of vi
one member of its exclusive population is added. Vertex vi is also put into the union. The selection
of particular members from children populations is done randomly but not with equal probability.
Independent sets that are better according to the used robustness criterion have more chance to be
chosen. In more detail, all independent sets are represented by sub-segments in which the lengths
correspond to the respective objective-function values. Next, a uniformly distributed random
number is generated in which the range covers the whole segment. The random number will
more likely fall into a sub-segment with greater length.

• A member of the exclusive population for vi is created as a union, where for each child of vi one
member of its inclusive or exclusive population is added. Again, independent sets from children’s
populations are chosen randomly, but those sets that are better according to the used robustness
criterion are more likely to be selected. Random choice is implemented in the same way as for the
members of inclusive population.

Note that the above described construction does not ensure uniqueness of solutions in the inclusive
or exclusive population. Indeed, some population members could appear more than once if they are

Mathematics 2020, 8, 285 9 of 16

more fit. Comparing a newly created member with a list of already existing members would be an
expensive operation. Hence, allowing to have copies of some solutions both requires less computing
time and gives advantage to better solutions, i.e., it does not force filling a population with different
solutions when they are bad just for the sake of the uniqueness.

As its final solution for the whole tree, our population algorithm selects the best independent set
found within both populations that have been constructed for the root. The comparison of sets is again
done according to the involved robustness criterion.

The described algorithm is called population algorithm since it creates populations of independent
sets for each subtree of a tree. Its complexity is O(n), where n is again the number of vertices in
the tree.

For calculating the objective function in case of (relative) robust regret, we need optimal solutions
for the corresponding conventional problems, i.e., we need optimal solution values for each scenario.
Those values are obtained by using the exact algorithm from Reference [2] described at the beginning
of this section. Although each step of the algorithm finds a solution in a subtree, its value is evaluated
as it was a solution for the whole tree. In more detail, for each scenario the regret of some solution in a
subtree is calculated as difference between the global optimal value for that scenario and the solution
value. Similarly, relative regret is calculated as difference between the global optimal value and the
solution value divided by the global optimal value. There are two reasons why we prefer global rather
than local optima:

• It requires less memory. Moreover, it would be almost impossible to store simultaneously optimal
solutions for all subtrees in case of a large tree.

• Our aim is to find the global robustly optimal solution, hence comparing “partial” solutions to
global conventional solutions would hopefully lead more directly to the desired goal.

In order to assure good performance of the described algorithm, it is very important to choose the
right size for populations. If populations are too small, there will be not enough diversity of solutions
to be carried from one level of the tree to the next level. On the other hand, if populations are too big,
the algorithm will spend too much memory and time.

For vertices at lower levels of a tree, such as leaves, it does not make sense to have large
populations. Indeed, the exclusive population for a leaf can contain only the empty set, and the
inclusive population can have just one set containing only that leaf. In our current implementation of
the algorithm, the population size first grows with each level until it reaches 12, then it is fixed until
the end of computation. More precisely, the exclusive population for a vertex vi will have the size
equal to the sum of sizes of exclusive populations for children of vi. When such size exceeds 12, it is
reduced to 12. The same rule also applies for inclusive populations.

Next, in order to assure an even better accuracy, our current implementation of the algorithm
forces two greedy choices of independent sets within any inclusive population. More precisely:

• An inclusive population must have a member that is obtained as a union of best members from
the respective children’s exclusive populations. The comparison of members within any child
population is done according to the involved robustness criterion.

• An inclusive population must have the so-called average-best member. It is the optimal solution
of a conventional (non-robust) problem instance where the weight of any vertex is set to the
average of its weights over all scenarios. According to the exact algorithm from Reference [2],
the average-best member is easily obtained as a union of average-best members from the respective
children’s exclusive populations.

Similarly, two greedy choices are also done during the construction of an exclusive population.
To summarize, in our present implementation, any population with size 12 must contain the described
two “greedy” independent sets, and only the remaining 10 members are created by random choice.

Finally, let us note that our population algorithm is interesting because it combines characteristics
of three different algorithm paradigms [19,20]:

Mathematics 2020, 8, 285 10 of 16

1. Dynamic programming. We calculate a table of partial solutions. We use results of previous
calculations within subsequent calculations.

2. Greedy approach. We implicitly assume that an independent set will be a “good” solution for the
whole tree if it is assembled from parts that are “good” solutions for subtrees of that tree.

3. Evolutionary computing. We use populations of solutions instead of single solutions.
Our populations evolve during algorithm execution. Better solutions have more chance to
survive and evolve.

Now follows a concrete example illustrating how our population algorithm works. Our example is
large enough to be nontrivial but still small enough to be verifiable by hand. We consider the weighted
tree with 14 vertices from Figure 4. Each vertex is labeled with two weights that correspond to two
scenarios. For the sake of simplicity, the population size is reduced to 5. Thereby, the first member of a
population is a union of best members from the respective children’s populations, the second member
is a union of average-best members from the respective children’s populations, and the remaining
three members are created by random choice. We will use the absolute robustness criterion (max-min).
One possible outcome of the algorithm is represented in Table 1.

31

0

2

4 5 6 7

8 9 10 11 12 13

1,9 4,9 5,10 2,1 6,3 10,5

11,3 6,5 2,3 9,9

4,1

3,4

8,6

2,1

Figure 4. A tree with 14 vertices and two scenarios for vertex weights.

Let us now analyze Table 1 in more detail. As stated before, the inclusive and exclusive population
for a leaf are the sets consisting of that leaf and an empty set, respectively. It is also easy to create both
populations for vertices 4 to 7. Namely, vertices 4 to 7 have only leaves for their children, which means
that they have only one option how to construct a member of their inclusive population: they must
put themselves into a single-element set. The tree from Figure 4 is rather simple, but if we had a tree
with branches of different lengths, we would obtain more versatile populations.

Although for vertices in higher levels, such as 0 and 2, we have more options for population
members, some members are appearing more than once. It is because they are more fit for global
solution and, again, because the tree from Figure 4 is small. In a bigger tree, we would again have
more versatile populations.

Let us explain in more detail how the inclusive and exclusive population are created for vertex 2.
First, we create the inclusive population. The first member is a union of the best members from the
exclusive populations of its children, plus vertex 2. For vertices 5 and 6, being children of vertex 2,
the best members from their exclusive populations are {9} and {10, 11}, respectively. Thus, the best
member of the inclusive population of vertex 2 is {2, 9, 10, 11}. The second member is the average-best
member. It is created similarly, but instead of taking the best members of its children, we take into
consideration the average-best members of its children. Other three members are created randomly,
as described on page 8 of this paper.

Mathematics 2020, 8, 285 11 of 16

Table 1. The inclusive and exclusive populations for vertices of the tree from Figure 4 obtained by our
population algorithm according to the absolute robustness criterion.

Vertex Inclusive Population Members Exclusive Population Members

13 {13} ∅
12 {12} ∅
11 {11} ∅
10 {10} ∅
9 {9} ∅
8 {8} ∅
7 {7}, {7}, {7}, {7}, {7} {12, 13}, {12, 13}, {12, 13}, {12, 13}, {13}
6 {6}, {6}, {6}, {6}, {6} {10, 11}, {10, 11}, {10, 11}, {10}, {10, 11}
5 {5}, {5}, {5}, {5}, {5} {9}, {9}, {9}, {9}, {9}
4 {4}, {4}, {4}, {4}, {4} {8}, {8}, {8}, {8}, {8}
3 {3, 12, 13}, {3, 12, 13}, {3, 12, 13}, {7}, {12, 13}, {7}, {7}, {12, 13}

{3, 12, 13}, {3, 12, 13}
2 {2, 9, 10, 11}, {2, 9, 10, 11}, {2, 9, 10, 11}, {5, 10, 11}, {9, 10, 11}, {9, 10, 11},

{2, 9, 10, 11}, {2, 9, 10, 11} {9, 10, 11}, {6, 9}
1 {1, 8}, {1, 8}, {1, 8}, {1, 8}, {1, 8} {4}, {4}, {8}, {8}, {4}
0 {0, 4, 5, 7, 10, 11}, {0, 4, 9, 10, 11, 12, 13}, {1, 2, 3, 8, 9, 10, 11, 12, 13},

{0, 4, 7, 9, 10, 11}, {0, 4, 7, 9, 10, 11}, {1, 2, 3, 8, 9, 10, 11, 12, 13},
{0, 4, 5, 7, 10, 11} {3, 4, 9, 10, 11, 12, 13},

{2, 3, 4, 9, 10, 11, 12, 13},
{1, 2, 3, 8, 9, 10, 11, 12, 13}

Now, we will explain how the exclusive population is created. The first member is a union,
where for each child the best member of its inclusive or exclusive population is added. For vertex
5, we have an option to choose between {5} or {9}. Namely, the independent sets {5} and {9}
are the best members of the inclusive and exclusive population belonging to vertex 5, respectively.
The independent set {5} is better (it has a greater value of the objective function); hence, we chose {5},
rather than {9}. Next, we make a similar choice for vertex 6. By combining both choices, we obtain
that the best member of the exclusive population for vertex 2 equals {5, 10, 11}. The second member is
again the average-best member. It is created similarly as the average-best member for the inclusive
population, but now we must take into consideration the average-best members of both the inclusive
and exclusive population. The remaining three members are again created randomly, as described on
page 8 of this paper.

The algorithm ends with choosing either the inclusive or exclusive member from the populations
obtained for the root. Among all those sets, {1, 2, 3, 8, 9, 10, 11, 12, 13} has the greatest robust (max-min)
objective function value. In the considered case, the algorithm has found a solution which is truly
optimal, i.e., the found solution coincides with the exact robust solution. This gives rise to a hope
the algorithm will also perform reasonably well on bigger and more complex problem instances.
The actual performance on larger instances will be measured experimentally in the next section.

5. Testing and Results

In this section, we will present the results of experimental evaluation of our population algorithm
from Section 4. It would be nice if we could test the algorithm on some well-known benchmark
problem instances for robust variants of the MWIS problem. However, to the best of our knowledge,
such benchmarks do not exist, specially not on trees. Therefore, we generated our own nine test groups,
each comprising 30 problem instances. Those instances are based on random trees consisting of 30,000,
60,000, and 90,000 vertices. As we wanted to test different tree configurations, for each number of
vertices, we produced 3 groups of trees. Thereby, vertices from the first, second, and third such group
can have a maximum of 5, 10, and 15 children, respectively. In all nine test groups, each problem
instance comprises 10 discrete scenarios for vertex weights. Thereby, each individual weight ranges

Mathematics 2020, 8, 285 12 of 16

between 1 and 1000. A full specification of all problem instances can be found in our repository at the
address http://hrzz-rodiopt.math.pmf.unizg.hr.

The population algorithm was implemented in the Java programming language [21]. The program
is available in the same repository as the problem instances. Among different state-of-the art
programming languages, we chose Java since we wanted to take advantage of its garbage collector.
Indeed, garbage collection is needed because our algorithm uses a lot of memory to store populations
of independent sets. When the algorithm moves to a higher level of a tree, the memory used for the
previous level must be deallocated; otherwise, we would run out of memory.

To measure performance of our population algorithm, we used the results obtained with the well
known software package CPLEX [22] for comparison. Note that the chosen problem instances are large
enough to be nontrivial but still small enough to be solved exactly by CPLEX. Both our implemented
algorithm and CPLEX were installed on the same computer with an Intel Core i5-6600K @ 3.50 GHz
processor and 16 GB of RAM, running a 64-bit operating system.

Some robust variants of the MWIS problem (i.e., the deviation and the relative deviation variant)
require solutions of the conventional MWIS problem instances that correspond to particular scenarios.
Namely, such conventional solutions determine parameters within the corresponding robust objective
functions. As explained in Section 4, the needed conventional solutions can be calculated very quickly
by using the exact polynomial-time algorithm from Reference [2].

Since our population algorithm is a heuristic, the most important indicator of its performance is
its accuracy. In our tests involving robust problem instances, we measured the accuracy by computing
the relative errors of approximate solutions versus exact (truly optimal) solutions. More precisely,
in each test, we computed relative difference between the robust objective-function value achieved
with our approximate solution and the corresponding optimal robust objective-function value assessed
by CPLEX.

In our tests, we solved each of the 30 problem instances from each of the nine test groups according
to each of the three robustness criteria: absolute robustness and (relative) robust deviation. Since the
population algorithm is nondeterministic, its repeated execution on the same input data usually does
not produce the same solutions. Therefore, all computations with the population algorithm were
repeated 10 times.

The results of our tests regarding accuracy are summarized in Tables 2–4. Each table corresponds
to one of the three robustness criteria. Any table is divided into two halves—they both contain average
errors for nine different test groups, i.e., nine different combinations of the number of vertices versus
the maximum number of children per vertex. The difference between the two parts within the same
table is as follows. In the upper part, the errors obtained through 10 repeated executions of the
same computational task were averaged. In the lower part, only the best (smallest) error obtained in
10 repeated executions was recorded. In both parts, the collected values (average or best errors) were
further averaged over test groups.

Table 2. Accuracy of the population algorithm—absolute robustness.

Average Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 0.25% 0.16% 0.12%
60,000 vertices 0.21% 0.13% 0.08%
90,000 vertices 0.17% 0.11% 0.08%

Best Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 0.24% 0.16% 0.12%
60,000 vertices 0.21% 0.13% 0.08%
90,000 vertices 0.17% 0.11% 0.08%

http://hrzz-rodiopt.math.pmf.unizg.hr

Mathematics 2020, 8, 285 13 of 16

Table 3. Accuracy of the population algorithm—robust deviation.

Average Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 5.71% 6.37% 8.05%
60,000 vertices 4.18% 5.78% 6.72%
90,000 vertices 4.05% 5.55% 5.37%

Best Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 5.70% 6.37% 8.05%
60,000 vertices 4.16% 5.78% 6.70%
90,000 vertices 4.04% 5.53% 5.37%

Table 4. Accuracy of the population algorithm—relative robust deviation.

Average Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 5.73% 6.35% 7.85%
60,000 vertices 4.19% 5.78% 6.53%
90,000 vertices 4.07% 5.54% 5.32%

Best Relative Errors:

5 Children 10 Children 15 Children

30,000 vertices 5.59% 6.20% 7.59%
60,000 vertices 4.17% 5.67% 6.34%
90,000 vertices 4.00% 5.46% 5.20%

Let us first analyze Table 2, which refers to absolute robustness. We can see that, with that
criterion, the algorithm performs very well. Indeed, average relative errors are less than 0.3%. We can
observe that errors become lower when the number of vertices increases. It means that our algorithm
is able to solve very large problem instances accurately. In addition, it is interesting to note that errors
drop when the maximum number of children increases. More children means fewer levels in trees.
Although errors are smaller for outspread trees, we pay for this with longer execution times, as it will
be seen in Table 5.

Table 5. Average central processing unit (CPU) time in seconds—absolute robustness.

Population Algorithm:

5 Children 10 Children 15 Children

30,000 vertices 0.176 0.154 0.134
60,000 vertices 0.357 0.292 0.268
90,000 vertices 0.552 0.452 0.408

CPLEX:

5 Children 10 Children 15 Children

30,000 vertices 17.417 32.336 33.582
60,000 vertices 25.671 28.138 37.576
90,000 vertices 37.576 34.802 41.975

Next, we analyze the results from Tables 3 and 4, corresponding to robust deviation and relative
robust deviation, respectively. Both tables contain values that do not differ significantly; therefore,
we analyze them together. We can see that the algorithm still works reasonably well since it produces
errors between 4% and 8%. Moreover, errors again become lower when the number of vertices

Mathematics 2020, 8, 285 14 of 16

increases—this is similar to the case of absolute robustness. However, contrary to absolute robustness,
errors now increase if the number of children becomes larger.

If we compare the best relative errors within Tables 2–4 to the corresponding average relative
errors within the same table, we see that there is no significant difference. Indeed, although the
population algorithm is randomized, its solutions do not show much diversity. It seems that the
algorithm is quite firmly guided by its greedy components. There is nothing similar to mutation which
would bring more volatility.

The obtained results become even more attractive when we take execution time into account.
Tables 5–7 present the execution times for all three robustness criteria. Each table has two parts,
which correspond to the population algorithm and CPLEX, respectively.

From Tables 5–7, we can see that the population algorithm is considerably faster than CPLEX.
The speedup is between 70 and 250 for absolute robustness, between 60 and 850 for robust deviation,
and from 45 to 425 for relative robust deviation.

Table 6. Average CPU time in seconds—robust deviation.

Population Algorithm:

5 Children 10 Children 15 Children

30,000 vertices 1.154 0.909 0.760
60,000 vertices 2.557 1.918 1.648
90,000 vertices 3.864 2.895 2.469

CPLEX:

5 Children 10 Children 15 Children

30,000 vertices 163.743 119.776 109.281
60,000 vertices 851.177 137.453 127.226
90,000 vertices 3294.592 188.199 142.982

Table 7. Average CPU time is seconds—relative robust deviation.

Population Algorithm:

5 Children 10 Children 15 Children

30,000 vertices 1.681 1.167 0.986
60,000 vertices 3.467 2.496 2.101
90,000 vertices 5.205 3.809 3.187

CPLEX:

5 children 10 children 15 children

30,000 vertices 250.002 104.695 80.759
60,000 vertices 1426.761 150.37 106.375
90,000 vertices 2217.743 199.58 142.479

We can also notice that CPLEX needs more time for (relative) robust deviation than for absolute
robustness. In addition, CPLEX spends much more time when the number of children is small. This is
according to our expectations because, in such situations, exact branch-and-bound methods used by
CPLEX become more demanding.

At the end of this section, let us mention that we have also tested our algorithm on trees with only
a few hundreds of vertices. On such small trees, the algorithm often finds exact solutions, i.e., the same
solutions as CPLEX. But then CPLEX is also extremely fast, so that in such cases, our heuristic does not
show any advantage.

Mathematics 2020, 8, 285 15 of 16

6. Conclusions

In this paper, we were concerned with the maximum weight independent set (MWIS) problem,
with trees, and with robust optimization. It is well known that the conventional (non-robust) variant
of the MWIS problem on trees is solvable in polynomial time. However, according to the results from
this paper, almost all robust variants of the same problem on trees are NP-hard. Due to NP-hardness,
such variants probably cannot be solved efficiently by an exact algorithm. Therefore, we put emphasis
on approximate solutions. The population algorithm developed in this paper combines elements of
dynamic programming, evolutionary computing, and greedy decision-making. It solves robust MWIS
variants on trees by taking advantage of the involved special graph structure. The algorithm has
been evaluated experimentally on problem instances involving trees with up to 90,000 vertices and
10 scenarios for vertex weights. Such instances are large enough to be nontrivial but still small enough
to be solved exactly by a general-purpose optimization package, such as CPLEX. According to our
experiments, the algorithm can solve the considered problem instances with satisfactory accuracy and
in acceptable time. Depending on the chosen robustness criterion and tree depth, approximation errors
range between 0.08% and 8%, while the speedup against CPLEX is between 45× and 850×. The results
from this paper are analogous to some well known results from the literature, where robust variants of
the MWIS problem have been considered on interval graphs rather than on trees.

In our future, work we plan to further explore complexity of the (relative) robust deviation
variant of the MWIS problem. We will consider again variants posed on trees but combined with
interval uncertainty.

Author Contributions: Conceptualization, formal analysis, software, writing—original draft, A.K.;
conceptualization, formal analysis, funding acquisition, supervision, validation, writing—review & editing, R.M.
All authors contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been fully supported by Croatian Science Foundation under the project
IP-2018-01-5591.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completness; W.H. Freeman:
San Francisco, CA, USA, 1979.

2. Chen, G.H.; Kuo, M.T.; Sheu, J.P. An optimal time algorithm for finding a maximum weight independet set
in a tree. BIT 1988, 28, 253–256. [CrossRef]

3. Brandstädt, A.; Lozin, V.V.; Mosca, R. Independent sets of maximum weight in apple-free graphs. SIAM J.
Discret. Math. 2010, 24, 239–254. [CrossRef]

4. Frank, A. Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings of the 5th British
Combinatorial Conference, Aberdeen, UK, 14–18 July 1975; pp. 211–271.

5. Mandal, S.; Pal, M. Maximum weight independent set of circular-arc graph and its application. J. Appl. Math.
Comput. 2006, 22, 161–174. [CrossRef]

6. Pal, M.; Bhattacharjee, G.P. A sequential algorithm for finding a maximum weight k-independent set on
interval graphs. Int. J. Comput. Math. 1996, 60, 205–214. [CrossRef]

7. Saha, A.; Pal, M.; Pal, T.K. Selection of programme slots of television channels for giving advertisement:
A graph theoretic approach. Inf. Sci. 2007, 177, 2480–2492. [CrossRef]

8. Kasperski, A.; Zielinski, P. Complexity of the robust weighted independent set problems on interval graphs.
Optim. Lett. 2015, 9, 427–436. [CrossRef]

9. Talla Nobibon, F.; Leus, R. Robust maximum weighted independent-set problems on interval graphs.
Optim. Lett. 2014, 8, 227–235. [CrossRef]

10. Pop, P.C. The generalized minimum spanning tree problem: An overview of formulations, solution
procedures and latest advances. Eur. J. Oper. Res. 2020, 283, 1–15. [CrossRef]

11. Gross, J.L.; Yellen, J.; Zhang, P. Handbook of Graph Theory, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014.
12. Jungnickel, D. Graphs, Networks and Algorithms, 4th ed.; Springer: Berlin, Germany, 2013.

http://dx.doi.org/10.1007/BF01934098
http://dx.doi.org/10.1137/090750822
http://dx.doi.org/10.1007/BF02832044
http://dx.doi.org/10.1080/00207169608804486
http://dx.doi.org/10.1016/j.ins.2007.01.015
http://dx.doi.org/10.1007/s11590-014-0773-3
http://dx.doi.org/10.1007/s11590-012-0563-8
http://dx.doi.org/10.1016/j.ejor.2019.05.017

Mathematics 2020, 8, 285 16 of 16

13. Aissi, H.; Bazgan, C.; Vanderpooten, D. Min-max and min-max regret versions of combinatorial optimization
problems: A survey. Eur. J. Oper. Res. 2009, 197, 427–438. [CrossRef]

14. Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ,
USA, 2009.

15. Bertsimas, D.; Brown, D.B.; Caramanis, C. Theory and applications of robust optimization. SIAM Rev. 2011,
53, 464–501. [CrossRef]

16. Kasperski, A.; Zielinski, P. Robust discrete optimization under discrete and interval uncertainty: A survey.
In Robustness Analysis in Decision Aiding, Optimization, and Analytics; Doumpos, M., Zopounidis, C.,
Grigoroudis, E., Eds.; Springer: Berlin, Germany, 2016.

17. Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Applications; Springer: Berlin, Germany, 1997.
18. Klobucar, A.; Manger, R. Independent sets and vertex covers considered within the context of robust

optimization. Math. Commun. 2020, 25, 67–86.
19. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Natural Computing Series; Springer:

Berlin, Germany, 2015.
20. Korte, B.; Vygen, J. Combinatorial Optimization—Theory and Algorithms, 5th ed.; Springer: Berlin,

Germany, 2012.
21. Oracle Corporation. Java Documentation. Available online: https://docs.oracle.com/en/java (accessed on

22 August 2019).
22. IBM Corporation. IBM ILOG CPLEX Optimization Studio. CPLEX User’s Manual, Version 12,

Release 8. Available online: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0 (accessed on
10 October 2018).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejor.2008.09.012
http://dx.doi.org/10.1137/080734510
https://docs.oracle.com/en/java
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definitions and Preliminaries
	Complexity Issues
	Algorithms
	Testing and Results
	Conclusions
	References

