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Abstract: Secret sharing is one of the most important cryptographic protocols. Secret sharing schemes
(SSS) have been created to that end. This protocol requires a dealer and several participants. The dealer
divides the secret into several pieces ( the shares), and one share is given to each participant. The secret
can be recovered once a subset of the participants (a coalition) shares their information. In this paper,
we present a new multisecret-sharing scheme inspired by Blakley’s method based on hyperplanes
intersection but adapted to a coding theoretic situation. Unique recovery requires the use of linear
complementary (LCD) codes, that is, codes in which intersection with their duals is trivial. For a given
code length and dimension, our system allows dealing with larger secrets and more users than other
code-based schemes.
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1. Introduction

Secret sharing schemes (SSS) form one of the key management or establishment schemes
introduced independently in 1979 by both Shamir [1] and Blakley [2]. The working principle of
these schemes is based on protecting the encryption keys. SSS are also used to save a secret recipe,
or a password to a bank vault, check access of nuclear weapons, and more. We need these schemes
because many cryptosystems that use one sole master key have various vulnerabilities. For instance,
if the main key is accidentally disclosed to the public, this will compromise the entire system.
In addition, if the main key is lost, then all the other keys it controls become unattainable. Additionally,
if the keeper of the main key turns out to be disloyal, then all sensitive information will be leaked to
the opponents [3]. In addition, these schemes are useful when we do not trust a single person owning
a certain secret.

The technique of a SSS is to keep the key and then this secret is split into several parts called
shares and distributed them among participants. The secret can be reconstructed thanks to the certain
subsets of the pieces. The one who produces such pieces and privately delivers them to the participants
is called the dealer [4].

SSS have been implemented in different areas, such as Information Security, Threshold
Cryptography, Key Recovery Mechanism, Information Hiding, Electronic Voting, and many
others [5–7].

Another important class of SSS is multisecret-sharing schemes. Some of them were proposed
in [8–13]. There is a set of r secrets in these schemes. Either the r secrets can be shared immediately or
all r secrets cannot be recovered [10,11,14]. To reconstruct the secret it is needed that the participants
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transmit a pseudo− share instead of the secret share itself. This pseudo− share is computed from their
secret share.

In this article, we present a new multisecret-sharing scheme based on linear codes. We give its
reconstruction algorithm by using Blakley’s method. To ensure unique recovery of the secret, we need
to assume that the code used is Linear Complementary Dual (LCD). Such codes were studied by
Massey in 1992 [15]. Massey constructed some LCD cyclic codes over finite fields as BCH codes [16].
These codes are called reversible codes. LCD codes have enjoyed a renaissance in recent years
due to their application to Boolean masking [17], a security countermeasure in embarked electronics.
Many constructions of such codes are recognized from either combinatorics [18] or algebraic codes [19].
Yang and Massey found a necessary and sufficient condition for a cyclic code to have a complementary
dual [20]. Sendrier showed LCD codes meet the asymptotic Gilbert-Varshamov bound using the hull
dimension spectra of linear codes [21]. Esmaeili and Yari examined 1-generator LCD quasi-cyclic
codes [22]. Muttoo and Lal explored reversible codes over GF(q) [23]. Tzeng and Hartmann showed
the minimum distance of a class of reversible cyclic codes is larger than the BCH bound [24]. A linear
programming bound on the largest size of a binary LCD code of given length and minimum distance
was derived in [18]. Güneri, Özkaya and Solé also studied quasi-cyclic LCD codes [19]. Carlet and
Guilley studied an application of LCD codes against side-channel attacks and explained several
constructions of LCD codes [17].

We assayed the security of our scheme by means of linear algebra over finite fields.
We counted the size of minimal coalitions in this scheme. Massey’s scheme [25], Ding et al.’s [26],
and Çalkavur et al.’s [13] are some of code-based schemes in the literature. We conclude the article by
a comparison between our scheme and these schemes.

This paper is organized as follows. In Section 2, some facts about linear codes and SSS are
introduced. In Section 3, we present the new system and explain its security. In Section 4, we compare
our scheme with the other schemes. Finally, Section 5 concludes our work.

2. Background and Preliminaries

In this section, we introduce some principles as a preliminary.

2.1. Linear Codes

Denote the finite field of order q by Fq, where q is a prime power. An [n, k]−code C over Fq of
length n and dimension k is a subspace in (Fq)n. The dual code of C consists of all vectors in (Fq)n

that are orthogonal to every codeword of C. This code is denoted by C⊥ and is an [n, n− k]−code.
One of the important invariants of a linear code C is the generator matrix G. G is a k× n matrix the
rows of which form a basis of C. A generator matrix for the dual code C⊥ is a parity-check matrix H.

The hull of a code is the intersection of C with C⊥. If the hull of a code is trivial, this code is linear
complementary dual (LCD).

2.2. LCD Code

A linear code with complementary code (LCD) is a linear code C satisfying C ∩ C⊥ = {0}.
Any code over a field is equivalent to a code generated by a matrix of the form (Ik|A), where Ik denotes
the k by k identity matrix [18].

2.3. Overview of Secret Sharing Schemes

Secret sharing is a method by which a dealer distributes shares that are called the pieces of the
secret. The main idea is the certain subsets of participants can recover the secret, the others cannot.
SSS play an important role for several secure records. Some of them are threshold cryptography,
attribute-based encryption, and access control [27].

We will need the following notations to define SSS:
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• Shares or shadows which are pieces of information. In this SSS, these shares have the property that
certain component group of shares can recover the secret, and the other group of shares cannot.

• The set of all possible shares is called the share set.
• The secret could be a key, or a message, or any valuable information.
• The participants are the parties that will receive the pieces.
• The dealer who picks the secret key and distributes its pieces among participants.
• The access structure is the set of all minimal coalitions sets. The elements in this structure are the

authorized combinations of participants whose shares can be used to retrieve the secret.

Thus, we can say that any secret sharing scheme contains the following two phases.

• Distribution Phase: The secret is splitted into N shares y1, y2, · · · , yN that are privately delivered
to the participants.

• Reconstruct Phase: The secret can be recovered by using a specific algorithm for a suitable
set of shares.

2.4. Blakley Secret Sharing Scheme

Blakley’s SSS was constructed in 1979. It is based on finite geometry [5]. This scheme uses
hyperplane geometry as a solution of the secret sharing problem. Here, the n participants are given
a hyperplane equation in a k-dimensional space over a finite field. Thus, a (k, n)-threshold scheme is
generated. In some cases, all hyperplane meet through a particular point. The intersection point of the
hyperplanes is the secret. Coefficient of hyperplanes corresponds to the shares.

In this approach, the secret and the shares can be considered as a linear system AX = T, where the
matrix A and the vector T corresponds to hyperplane equations. Once participants need to reconstruct
the secret by solving the equation systems [28]. Blakley’s method is based on geometry to share the
secret. More clearly secret key is a point in a t-dimensional space which is the intersection point of the
all hyperplanes. Affine hyperplanes represent n shares. Blakley scheme can be represented as a linear
system AX mod p = T. The general full rank matrix A is the important data in this method [29].

2.5. Ramp Secret Sharing Schemes

Another family of SSS is the ramp SSS. In this scheme, first a secret s is split into multiple shares
y1, y2, . . . , yN . Then, only authorized subsets of the pieces can recover s. The encoding rule is as follows.
Each secret s corresponds a set of possible share vectors:

Y = (y1, y2, . . . , yN).

Ramp SSS have a stability between coding efficiency and security. For example, in the (K, N, m)-
threshold ramp SSS, we can reconstruct s from randomly K or more pieces, but no information on s can
be obtained from K−N or fewer pieces . Moreover, any K− ` pieces can recover s for ` = 1, 2, ..., N− 1.
If N = 1, then this (K, N, m)-threshold SSS means the usual (K, m)- ramp SSS. If a ramp SSS does
not recover any part of a secret from any randomly chosen K− ` shares (for ` = 1, 2, ..., N), then this
scheme is called a strong ramp secret sharing scheme .

A linear ramp SSS is called t-privacy if the set of size t has no information about the secret,
but a set of size at least t + 1 has some information about it.

3. Multisecret-Sharing Schemes Based on Linear Codes

3.1. Scheme Description

In this part, we propose a new system to construct the multisecret-sharing schemes based on
linear codes. We use Blakley’s method to explain our approach.

We need an [n, k]− code C over Fq with generator matrix G.
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3.1.1. Secret Distribution

Let Fn
q be the secret space and let a given codeword be the secret S = (s1, s2, · · · , sn). The rows

of a generator matrix G are minimal access elements, and all of elements of C are participants in this
scheme. The dealer, knowing the secret S, computes the share y of the user with attached codeword c,
by taking the scalar product of that codeword with the secret. Thus,

y = 〈c, s〉 = c.ST ,

where T denotes transposition.

3.1.2. Secret Recovery

Consider again the system with private secret S and the coalition corresponding to the rows of G.
By the preceding paragraph, we have

G.ST = YT ,

where Y = (y1, y2, · · · , yk), and yi is the share attached to the row i of G. The set of solutions of this
system forms an affine space with associated vector space C⊥. In other words, if S is a special solution
then S + d with d ∈ C⊥, is also a solution and every solution is of that form. Since we assume that
C is LCD or, in other words, that C ∩ C⊥ = {0}, we see that the system admits a unique solution in

C. Moreover, C is LCD if

(
G
H

)
is invertible [30]. Note that the condition that S ∈ C can be expressed

matricially as HST = 0. The secret can then be computed in practice by solving the following linear
system of n equations and n unknowns.

G.ST = YT ,

H.ST = 0.

Note that the LCD condition implies that the matrix of this system in S, namely the square matrix(
G
H

)
, is of full rank n. This gives another proof of unicity of S, by inversion of

(
G
H

)
.

The following properties of the scheme are immediate but important.

Theorem 1. We obtain the following information in this multisecret-sharing scheme.

1. The access structure forms the k-tuple of codewords that are linearly independent.
2. The number of elements recovering the secret is at least k.

Proof. 1. The secret is reconstructed by a full rank matrix G in which the set of rows is the said
k-tuple.

2. The number of rows of G cannot be less than k by definition. So only k elements can be reached
the secret, but no set of elements of size less than k can.

Corollary 1. This new scheme is also a (k, n, qk) ramp SSS with k− 1 privacy.

Proof. The number of participants recovering the secret is k and the number of participants who are
all of elements of C is qk. The k-tuples of codewords of participants that are linearly independent can
be reached the secret together. But some k-tuples, (those that are linearly dependent) cannot. Moreover,
the secret S is split into multiple shares (s1, s2, · · · , sn).
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3.2. Statistics on Coalitions

Theorem 2. Let C be an [n, k]- code over Fq with generator matrix G. In a multisecret-sharing scheme based
on C, the number of minimal coalitions is

qk(qk − 1)(qk − q) · · · (qk − qk−1)

k!
.

Proof. A minimal coalition is a set of participants, whose attached codewords form a basis of C.
The number of bases of Fq- vector space of dimension k is given by the said formula.

Remark 1. Note that this number is strictly less than (qk

k ).

Example 1. We consider an LCD [7, 4]-code C over F2 found by a random search in Magma [31]. A generator
matrix G can be given as follows:

G =


1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 1 1
0 0 0 1 1 1 0

 =


g1

g2

g3

g4

 .

The parity-check matrix H of this code is

H =

 1 1 1 1 1 0 0
1 1 1 1 0 1 0
0 1 1 0 0 0 1

 =

h1

h2

h3

 .

There are 24 = 16 codewords in the code C . These codewords are
{(0000000), (1000110), (1100001), (0100111),
(0110000), (1110110), (1010001), (0010111),
(0011001), (1011111), (1111000), (0111110),
(0101001), (1101111), (1001000), (0001110)}.

Now, we examine a multisecret-sharing scheme based on C. Let the secret vector be S = (1101111).
We calculate the shares as follows.

yT
1 = g1ST = 〈(1000110), (1101111)〉 = 1

yT
2 = g2ST = 〈(0100111), (1101111)〉 = 0

yT
3 = g3ST = 〈(0010111), (1101111)〉 = 1

yT
4 = g4ST = 〈(0001110), (1101111)〉 = 1.

Moreover,
h1ST = 〈(1111100), (1101111)〉 = 0

h2ST = 〈(1111010), (1101111)〉 = 0

h3ST = 〈(0110001), (1101111)〉 = 0.

Therefore, we should solve the following linear system to recover the secret.(
G
H

)
ST =

(
YT

0

)
.
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1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 1 1
0 0 0 1 1 1 0
1 1 1 1 1 0 0
1 1 1 1 0 1 0
0 1 1 0 0 0 1


.



s1

s2

s3

s4

s5

s6

s7


=



1
0
1
1
0
0
0


.

Conversely, it can be seen that the secret is S = (1100101) by solving the above linear system.

Example 2. We consider an LCD [3, 2]-code C over F2. Its generator matrix G and parity-check matrix H are

G =

(
1 1 0
1 0 1

)
=

(
g1

g2

)
,

H =
(

1 1 1
)
=
(

h1

)
.

It is clear that the number of codewords of C is 22 = 4. These are

C = {(000), (110), (101), (011)}.

We try to construct a multisecret-sharing scheme based on C. Let the secret vector be S = (011). We calculate
the shares as follows.

yT
1 = g1ST = 〈(110), (011)〉 = 1

yT
2 = g2ST = 〈(101), (011)〉 = 1.

Moreover,
h1ST = 〈(111), (011)〉 = 0.

If we solve the following linear system, then we reach the secret.(
G
H

)
ST =

(
YT

0

)
.

 1 1 0
1 0 1
1 1 1

 .

 s1

s2

s3

 =

 1
1
0

 .

It is seen that the secret is S = (011).

Example 3. We consider an LCD [7, 2]− code over F2, in which the generator matrix G and parity-check
matrix H are given by

G =

(
1 0 1 1 1 0 0
0 1 0 1 0 1 1

)
=

(
g1

g2

)
,

H =


1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1

 =


h1

h2

h3

h4

h5

 .

C has 22 = 4 codewords:
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C = {(0000000), (1011100), (0101011), (1110111)}.

We examine a multisecret-sharing scheme based on C. Let the secret vector be S = (0101011). We calculate
the shares as follows.

yT
1 = g1ST = 〈(1011100), (0101011)〉 = 1

yT
2 = g2ST = 〈(0101011), (0101011)〉 = 0.

Moreover,
h1ST = 〈(1010000), (0101011)〉 = 0

h2ST = 〈(1101000), (0101011)〉 = 0

h3ST = 〈(1000100), (0101011)〉 = 0

h4ST = 〈(0100010), (0101011)〉 = 0

h2ST = 〈(0100001), (0101011)〉 = 0.

Now, we need to solve the following linear system to obtain the secret.(
G
H

)
ST =

(
YT

0

)
.



1 0 1 1 1 0 0
0 1 0 1 0 1 1
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1


.



s1

s2

s3

s4

s5

s6

s7


=



1
0
0
0
0
0
0


.

By solving this system it can be seen that the secret is S = (0101011).

3.3. Security Analysis

Assume that t users with t < k with corresponding t codewords being linearly independent
collude together to try to guess the secret. Let Vt be the span of these t codewords. They can find
a complementary subspace Wt of Vt into C so that C = Vt ⊕Wt. Thus, the dimensions of Vt and Wt are
t and k− t, respectively. By using Theorem 2 twice, double counting shows that the number of times
any basis of Vt can be extended into a basis of C is equal to

X(k, t) =
∏k−1

i=0 (q
k − qi)

(k− t)! ∏t−1
i=0(q

t − qi)
.

Given a basis of Wt, there are qn−t choices for shares of the codewords of this basis.
The probability of success of such an attack is thus

q−(k−t) 1
X(k, t)

.

For instance, if k = t + 1, we see that, for large k, the quantity X(k, t) is of the order of qk.
Thus, the security of the system requires k to be large. Having a large q is also beneficial to security but
might be costly in term of arithmetic implementation.
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3.4. Information Theoretic Efficiency

The information rate ρ of the scheme is one of the other basic parameters in secret sharing [32].
It is the ratio of the size (in q-digits) of the secret to the maximum size of the pieces given to the
participants. Since the secret is a codeword of a code of dimension k, its size is k. If we regard a share as
the ordered pair of a scalar yi and a codeword, then we see that the size is k + 1. Thus, the information
rate of the SSS is

ρ =
k

k + 1
.

If the information rate of a SSS is equal to one, which is the maximum possible value, then this scheme
is called to be ideal. So the information rate of our scheme is close to one for k→ ∞.

4. Comparison with Other Schemes

In this section, we compare our scheme with other code based SSS by means of, respectively,
the number of participants, the size of a secret, and the number of coalitions for an [n, k]− code over Fq.
We denote by A, B, and C these three quantities in the following table. In the fourth column, the symbol
t denotes the error-correcting capacity of code.

It transpires that the length of the code does not enter directly into the parameters of the new
scheme. For codes of similar alphabets and dimensions, the new scheme allows exponentially more
participants and more coalitions, compared to the other schemes, for a secret size of the same order
of magnitude.

Moreover, Massey’s scheme is a single secret sharing system in contrast with the other three
schemes. All the schemes in Table 1 are ideal in the sense that the size of each secret equals the size of
any shares. In Ding’s scheme, the reconstruction algorithm is based on linear algebra, while the one in
Çalkavur et al.’s scheme is based on decoding. We used Blakley’s method to explain the reconstruction
algorithm and obtain a linear equation system for our scheme. The advantage of our new system is
the fact that it has a unique solution since it consists of n independent equations and n unknowns.
So, the secret will be recovered definitely.

Table 1. Comparison with Other Schemes

System [25] [26] [13] This paper

A n− 1 n n qk

B q qk qk qn

C (n
k) (n

k) ≥ ( n
d−t)

∏k−1
i=0 (q

k−qi)
k!

ρ 1 k
k−1 1 k

k+1

In addition, our scheme is also a (k, n, qk) ramp SSS. It is clear that this scheme does not get out any
part of a secret from any randomly chosen k− ` shares (for ` = 1, 2, · · · , n). Otherwise, this contradicts
that the rows of generator matrix are linear independent. So, this new scheme is a strong ramp secret
sharing scheme.

5. Conclusions and Open Problems

In this paper, we presented a new multisecret-sharing scheme based on LCD codes.
We used Blakley’s method to explain the reconstruction algorithm. We determined the access

structure and have calculated the information rate of this scheme. Regarding security, we can say that
this system stands well for codes of a reasonably high dimension. Compared to other SSS, which are
based on codes, it displays for codes of the same order of a magnitude of parameters, more users,
and more coalitions at the price of shorter secret sizes.
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Surprisingly, our scheme does not use the error correcting properties of the LCD codes employed.
It would be nice to use them for cheater detection, for instance.
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