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Abstract: There is an increasing push to make automated systems capable of carrying out tasks which
humans perform, such as driving, speech recognition, and anomaly detection. Automated systems,
therefore, are increasingly required to respond to unexpected conditions. Two types of unexpected
conditions of relevance in the chemical process industries are anomalous conditions and the responses of
operators and engineers to controller behavior. Enhancing responsiveness of an advanced control design
known as economic model predictive control (EMPC) (which uses predictions of future process behavior
to determine an economically optimal manner in which to operate a process) to unexpected conditions of
these types would advance the move toward artificial intelligence properties for this controller beyond
those which it has today and would provide new thoughts on interpretability and verification for the
controller. This work provides theoretical studies which relate nonlinear systems considerations for
EMPC to these higher-level concepts using two ideas for EMPC formulations motivated by specific
situations related to self-modification of a control design after human perceptions of the process response
are received and to controller handling of anomalies.

Keywords: economic model predictive control; chemical processes; responsive control; artificial intelligence;
interpretability; controller verification

1. Introduction

The buzz around artificial intelligence (AI), machine learning, and data in recent years has sparked
both excitement and skepticism from the process systems engineering community [1,2]. Some of the most
prevalent uses of data in the process systems field have included its use in developing models of various
processes (e.g., Reference [3]) with potential applications in model-based control [4], in learning control
laws [5,6], and in process monitoring [7,8]. Control engineers have debated about whether control itself
should be considered to be artificial intelligence, particularly as control laws become more advanced.
For example, a particularly intelligent form of control (known as economic model predictive control
(EMPC) [9–12]) is an optimization-based control strategy that determines the optimal manner in which to
operate a chemical process in the sense that the control actions optimize a profit metric for the process
over a prediction horizon, subject to process constraints. The significant potential benefits of this control
law for next-generation manufacturing have prompted a wide range of investigations in the context of
EMPC, including how it may be used for building temperature regulation [13], wastewater treatment [14],
microgrid dispatch [15], and gas pipeline networks [16]. Though chemical processes have traditionally
been operated at steady-state, EMPC does not necessarily enforce steady-state operation in its efforts to
optimize process economic performance. This has raised key questions for this control design regarding
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important properties of intelligent systems such as interpretability of its operating strategy and verification
that it will work correctly for the real environment that it will need to control and interact with.

Interpretability is a desirable property for artificially intelligent systems. It has been considered
in a variety of contexts; for example, the issue of building interpretable data-driven models has been
considered to be enhanced by sparse regression, where a model with a small number of available possible
terms which could be utilized to build it is derived (with an underlying assumption being that simpler
models are more physically realistic and therefore should be more interpretable) [17]. Models identified via
sparse regression techniques have been utilized in model predictive control for hydraulic fracturing [18].
Interpretability of other model-building strategies has also been a consideration; for example, for neural
networks, where interpretability may be considered to be multidimensional, but to generally constitute
whether a human can trace how a neural network obtained its conclusions via how the input information
was processed [19], recurrent neural networks with long short-term memory were analyzed for how their
cells processed different aspects of character-level language models [20].

It is recognized that interpretability of the control actions computed by an EMPC will be a major
determining factor in the adoption of EMPC in the process industries (because, if operators and engineers
do not know if the process is in an upset condition, they will likely disable features of the controller
that make it difficult to understand due to the need to be sure that safety is maintained at all times).
Interpretability for EMPC has not yet received significant focus in the literature. The subset of EMPC
formulations which track a steady-state [21] possess a form of interpretability in that the reference behavior
is understood by engineers and operators. Reference [22] developed an EMPC formulation in which the
desired closed-loop process response specified or restricted by an operator or engineer is tracked by the
controller. However, developing the best means for ensuring interpretability for EMPC to appropriately
trade off end user understanding with economic optimality remains a largely open question. This work
provides new perspectives on this important issue, suggesting that a controller formulation that bridges
the human–machine interface by allowing the adjustment of constraints in response to human opinions
about the process behavior under the EMPC may provide new avenues of both democratizing advanced
control and allowing end users to adjust the response to their liking from an interpretability standpoint.

Another important topic for intelligent control systems is enabling their verification (i.e., certifying
that they will perform in practice as intended). Verification can take a significant amount of engineering
time and expense, and methods for reducing the time required to validate the controller’s performance
could reduce the cost of advanced control, could promote operational safety, and could make the controller
more straightforward to implement (a lack of ability to verify can prevent an intelligent system from
being placed online at all). In the control community, a traditional approach to verification is to design
controllers with guaranteed robustness to bounded uncertainty and to use this as a certificate that the
controller will be able to maintain closed-loop stability in practice (e.g., References [23–25]). This requires
some knowledge of the disturbance characteristics (e.g., upper bounds), which may be difficult to fully
determine a priori but is important for EMPC, as the controller could drive the closed-loop state to operate
at boundaries of safe operating regions to optimize profits, where the uncertainty in the disturbance
characteristics could lead to unsafe conditions. Additional conservatism to account for the uncertainty
could lead to over-conservatism that could decrease profits. Other methods for handling disturbances in
EMPC have been developed, including methods that account for disturbances probabilistically (making
assumptions on their distribution) [26] or adapting models used by the predictive controller online
(e.g., References [27–29]). Results on the use of adapting models in EMPC have even included closed-loop
stability guarantees when a recurrent neural network that is updated via error triggering is used as the
process model [30]. An example of an adaptive control strategy which handles uncertain dynamics in batch
processing is that in Reference [31], which uses model predictive control equipped with a probabilistic
recursive least squares model parameter update algorithm with a forgetting factor to capture batch process
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dynamics. In addition, Reference [32] analyzed a learning-based MPC strategy with a terminal constraint
for systems with unmodeled dynamics, where performance is enhanced by using a learned model in the
MPC but safety goals are met by ensuring that control actions computed via the MPC are stabilizing.

Another direction that has received attention for handling uncertainty is fault tolerance in the sense of
controller reconfigurations upon detection of an actuator fault/anomaly (e.g., Reference [33]) or anomaly
response cast in a framework of fault-tolerant control handled via fault/anomaly detection followed by
updating the model used by a model-based controller [34]. In Reference [35], fault-tolerant control for
nonlinear switched systems was analyzed in the context of safe parking for model predictive control
with a steady-state tracking objective function for actuator faults. For EMPC, Reference [36] handled
faults through error-triggered data-driven model updates in the controller, and the uniting of EMPC with
driving the state into safety-based regions in state-space (e.g., References [37,38]) also constitutes a form
of fault-handling. Despite these advances in handling anomalies and uncertainty, which are critical for
addressing moving toward a verification paradigm for EMPC, verifying the controller today would still be
expected to be time-consuming; additional work is needed to explore further ways of considering and
establishing verification for the control design.

Another approach in verification of controllers has been online verification via data-driven models
complemented by detection algorithms for problematic controller behavior leading to bounds on the time
that would elapse before detection of problematic controller behavior [39]. A feature of this direction
in verification, therefore, is the combination of data-driven modeling for control (to address model
uncertainty) with guarantees that problematic behavior due to model inaccuracies can be flagged within
a given time period. In the present work, we take a conceptually similar approach to verification for
EMPC using online anomaly handling with a conservative Lyapunov-based EMPC (LEMPC) [24] design
approach that facilitates guaranteed detection of significant plant/model mismatch under sufficient
conditions and allows upper bounds on the amount of time available until the mismatch would need to be
compensated via model updates without compromising closed-loop stability (as well as the characteristics
of the resulting control law after model reidentification required to obtain these theoretical results) to be
presented. The development of theoretical guarantees on closed-loop stability with data-driven models
that can be updated online in LEMPC has some similarities to References [30,40] but is pursued from
a different angle that allows the underlying process dynamics to suddenly change and also allows for more
general nonlinear data-driven models to be considered (i.e., we do not restrict the modeling methodology
to neural networks as in References [30,40]). It also has similarities to the framework for accounting for
faults in LEMPC via model updates in Reference [41] but considers a theoretical treatment of anomaly
conditions with data-driven LEMPC, which was not explored in that work.

Motivated by the above considerations, this work focuses on advancing both interpretability and
verification for EMPC. These are important considerations for human–machine interaction and can
be viewed as different aspects of a “responsive” control design in the sense that the controller is
made responsive to changing or unexpected conditions like a human would be. We first address the
interpretability concept suggested above in an LEMPC framework in which we elucidate conditions under
which an LEMPC could be made responsive to potentially inaccurate metrics reflecting the reactions
of end users to the LEMPC’s behavior without loss of closed-loop stability. We subsequently move in
the direction of addressing verification considerations for LEMPC by developing theoretical guarantees
which can be made for the controller in the presence of process dynamics anomalies/changes when
potentially adapting data-driven models are used in the controller. We evaluate the conditions under
which closed-loop stability may be lost in such circumstances, with exploration of bounds on times
before which detection and accommodation of the anomaly could be stabilized to avoid potential plant
shutdown. Numerical examples utilizing continuous stirred tank reactors (CSTRs) are presented to
illustrate major concepts. Throughout, we highlight cases where the proposed methods could interface
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with other artificial intelligence techniques (e.g., sentiment analysis or image-based sensing) without
compromising closed-loop stability, highlighting the range of intelligent techniques which can be used to
enhance next-generation control within an appropriate theoretical framework.

This work is organized as follows: in Section 2, preliminaries are presented. These are followed by
the main results in Section 3, which consist of controller formulations and implementation strategies,
with demonstration via numerical examples, where (1) the controller constraints can be adjusted online
in response to potentially inaccurate stimuli without closed-loop stability being lost (Section 3.1) and
(2) the control strategy has characterizable properties in the presence of process anomalies resulting
in unanticipated changes in the underlying process dynamics (Section 3.2). Section 4 concludes and
provides an outlook on the presented results. Proofs for theoretical results associated with the second
control strategy noted above are provided in the Appendix. This manuscript is an extended version of
Reference [42].

2. Preliminaries

2.1. Notation

The operator | · | denotes the vector Euclidean norm. A function α : [0, a) → [0, ∞) is in class
K if it is continuous, if it strictly increases, and if α(0) = 0. The notation Ωρ defines a level set of
a scalar-valued function V (i.e., Ωρ := {x ∈ Rn : V(x) ≤ ρ}). The operator ′/′ signifies set subtraction
(i.e., A/B := {x ∈ Rn : x ∈ A, x /∈ B}). xT represents the transpose of the vector x. We define a sampling
time with the notation tk := k∆, k = 0, 1, . . ..

2.2. Class of Systems

This work considers switched nonlinear systems of the following form:

ẋa,i = fi(xa,i(t), u(t), wi(t)) (1)

where xa,i ∈ X ⊂ Rn denotes the state vector, u ∈ U ⊂ Rm denotes the input vector (u = [u1, . . . , um]T),
and wi ∈ Wi ⊂ Rz denotes the disturbance vector, where Wi := {wi ∈ Rz : |wi| ≤ θi, θi > 0}, for
i = 1, 2, . . .. In this notation, the ith model is used for t ∈ [ts,i, ts,i+1), where xa,i(ts,i+1) = xa,i+1(ts,i+1)

and ts,1 = t0. The vector function fi is assumed to be a locally Lipschitz function of its arguments
with f1(0, 0, 0) = 0 and fi(xa,i,s, ui,s, 0) = 0 for i > 1 (i.e., the steady-state of the updated models when
wi = 0 is at xa,i = xa,i,s, u = ui,s). The system of Equation (1) with wi ≡ 0 is known as the nominal
system. Synchronous measurement sampling is assumed, with measurements available at every tk = k∆,
k = 0, 1, . . .. It is noted that ts,i, i = 1, 2, . . ., is not required to be an integer multiple of tk. We define
x̄a,i = xa,i − xa,i,s and ūi = u − ui,s and define f̄i as fi rewritten to have its origin at x̄a,i = 0, ūi = 0,
wi = 0. Similarly, we define Ui to be the set U in deviation variable form from ui,s and Xi to be the set X in
deviation variable form from xa,i,s.

We assume that there exists an explicit stabilizing (Lyapunov-based) control law hi(x̄a,i) =

[hi,1(x̄a,i) . . . hi,m(x̄a,i)]
T that renders the origin of the nominal system of Equation (1) asymptotically

stable in the sense that the following inequalities hold:

α1,i(|x̄a,i|) ≤ Vi(x̄a,i) ≤ α2,i(|x̄a,i|) (2)

∂Vi(x̄a,i)
∂x̄a,i

f̄i(x̄a,i, hi(x̄a,i), 0) ≤ −α3,i(|x̄a,i|) (3)
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∣∣∣ ∂Vi(x̄a,i)
∂x̄a,i

∣∣∣ ≤ α4,i(|x̄a,i|) (4)

hi(x̄a,i) ∈ Ui (5)

for all x̄a,i ∈ Di ⊆ Rn and i = 1, 2, . . ., where Di is an open neighborhood of the origin of f̄i, and for
a positive definite, sufficiently smooth Lyapunov function Vi. The functions α1,i, α2,i, α3,i, and α4,i are of class
K. A level set of Vi denoted by Ωρi ⊂ Di is referred to as the stability region of the system of Equation (1)
under the controller hi(x̄a,i). We consider that Ωρi is selected to be contained within X. The Lyapunov-based
controller is assumed to be Lipschitz continuous such that the following inequalities hold:

|hi,j(x)− hi,j(x′)| ≤ Lh,i|x− x′| (6)

for a positive constant Lh,i for all x, x′ ∈ Ωρi , and i = 1, 2, . . ., with j = 1, . . . , m.
Lipschitz continuity of fi and sufficient smoothness of Vi provide the following inequalities,

for positive constants Mi, Lx,i, Lw,i, L′x,i, and L′w,i:

| f̄i(x, u, wi)| ≤ Mi (7)

| f̄i(x, u, wi)− f̄i(x′, u, 0)| ≤ Lx,i|x− x′|+ Lw,i|wi| (8)∣∣∣ ∂Vi(x)
∂x f̄i(x, u, wi)− ∂Vi(x′)

∂x f̄i(x′, u, 0)
∣∣∣ ≤ L′x,i|x− x′|+ L′w,i|wi| (9)

for all x, x′ ∈ Ωρi , u ∈ Ui, and wi ∈Wi.
As this work considers responses to unexpected conditions, we consider that there may be cases in

which the nonlinear model of Equation (1) may not be available, though an empirical model with the
following form may be available:

ẋb,q(t) = fNL,q(xb,q(t), u(t)) (10)

where fNL,q is a locally Lipschitz nonlinear vector function in xb,q ∈ Rn and in the input u ∈ Rm with
fNL,1(0, 0) = 0 and fNL,q(xb,q,s, uq,s) = 0 for q > 1 (i.e., the steady-state of the updated models is at
xb,q = xb,q,s, u = uq,s). Here, q = 1, 2, . . ., to allow for the possibility that, as the underlying process
dynamics change (i.e., the value of i increases in Equation (1)), it may be desirable to switch the empirical
model used to describe the system. However, we utilize the index q instead of i for the empirical model
to signify that we do not assume that the empirical model must switch with the same frequency as the
process dynamics. When the model of Equation (10) does switch, we assume that the switch occurs at
a time ts,NL,q+1 in a manner where xb,q(ts,NL,q+1) = xb,q+1(ts,NL,q+1). We define x̄b,q = xb,q − xb,q,s and
ūq = u− uq,s and define f̄NL,q as fNL,q, rewritten to have its origin at x̄b,q = 0, ūq = 0, as follows:

˙̄xb,q(t) = f̄NL,q(x̄b,q(t), ūq(t)) (11)

Similarly, we define Uq to be the set U in deviation variable form from uq,s and Xq to be the set X in
deviation variable form from xb,q,s.

We consider that, for the empirical models in Equation (10), there exists a locally Lipschitz explicit
stabilizing controller hNL,q(x̄b,q) that can render the origin asymptotically stable in the sense that:
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α̂1,q(|x̄b,q|) ≤ V̂q(x̄b,q) ≤ α̂2,q(|x̄b,q|) (12a)

∂V̂q(x̄b,q)

∂x̄b,q
f̄NL,q(x̄b,q, hNL,q(x̄b,q)) ≤ −α̂3,q(|x̄b,q|) (12b)∣∣∣∣∂V̂q(x̄b,q)

∂x̄b,q

∣∣∣∣≤ α̂4,q(|x̄b,q|) (12c)

hNL,q(x̄b,q) ∈ Uq (12d)

for all x̄b,q ∈ DNL,q (where DNL,q is a neighborhood of the origin of f̄b,q contained in X), where V̂q : Rn →
R+ is a sufficiently smooth Lyapunov function, α̂i,q, i = 1, 2, 3, 4, are class K functions, and q = 1, 2, . . ..
We define Ωρ̂q ⊂ DNL,q as the stability region of the system of Equation (10) under hNL,q and Ωρ̂sa f e,q as
a superset of Ωρ̂q contained in DNL,q and X. Lipschitz continuity of fNL,q and sufficient smoothness of V̂q

imply that there exist ML,q > 0 and LL,q > 0 such that

| f̄NL,q(x, u)| ≤ ML,q (13a)∣∣∣∣∂V̂q(x1)

∂x
f̄NL,q(x1, u)−

∂V̂q(x2)

∂x
f̄NL,q(x2, u)

∣∣∣∣≤ LL,q|x1 − x2| (13b)

∀x, x1, x2 ∈ Ωρ̂q , u ∈ Uq, and q = 1, 2, . . ..
Furthermore, we define x̄a,i,q = xa,i − xb,q,s as the variable representing the deviation of each xa,i from

the steady-state of the qth empirical model of Equation (10) and f̄i,q as the right-hand side of Equation (1)
when the model is rewritten in terms of the deviation variables x̄a,i,q and ūq, as follows:

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (14)

We assume that the following holds:

| f̄i,q(x, u′, w)− f̄i,q(x′, u′, 0)| ≤ Lx,i,q|x− x′|+ Lw,i,q|w| (15)∣∣∣∣ ∂V̂q(x)
∂x f̄i,q(x, u′, w)− ∂V̂q(x′)

∂x f̄i,q(x′, u′′, 0)
∣∣∣∣ ≤ L′x,i,q|x− x′|+ L′w,i,q|w| (16)

for all x, x′, u′, u′′ and w such that x + xb,q,s− xa,i,s ∈ Ωρi , x′+ xb,q,s− xa,i,s ∈ Ωρi , u′+ uq ∈ U, u′′+ uq ∈ U,
and w ∈ Wi. We define a level set of V̂q contained in Ωρ̂sa f e,q that is also contained in Ωρi to be Ωρ̂q,i , and
Lx,i,q, Lw,i,q, L′x,i,q, L′w,i,q > 0

2.3. Economic Model Predictive Control

Economic model predictive control (EMPC) [12] is an optimization-based control design formulated
as follows:

minūi∈S(∆)
∫ tk+N

tk
Le( ˜̄xa,i(τ), ūi(τ))dτ (17)

s.t. ˙̄̃xa,i(t) = f̄i( ˜̄xa,i(t), ūi(t), 0) (18)

˜̄xa,i(tk) = x(tk) (19)

ūi(t) ∈ Ui, ∀ t ∈ [tk, tk+N) (20)

˜̄xa,i(t) ∈ Xi, ∀ t ∈ [tk, tk+N) (21)
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where Le(·, ·) represents the stage cost of the EMPC, which can be a general scalar-valued function that is
optimized in Equation (17). The notation u ∈ S(∆) signifies that u is a piecewise-constant input trajectory
with period ∆. The prediction horizon is denoted by N. Equation (18) represents the nominal process
model, with predicted state ˜̄xa,i for the ith model. Equations (20) and (21) represent the input and state
constraints, respectively. We denote the optimal solution of an EMPC at tk by u∗p(tj|tk), p = 1, . . . , m,
j = k, . . . , k + N − 1, where each u∗p(tj|tk) holds for t ∈ [tj, tj+1) within the prediction horizon. x(tk)

in Equation (19) signifies that the state measurement represents the actual system state at tk placed in
deviation variable form with respect to x̄a,i,s. Due to the potential switching of the underlying process
dynamics before the model in Equation (18) is updated, the measurement may come from a dynamic
system different than the ith model used in Equation (18).

2.4. Lyapunov-Based Economic Model Predictive Control

A variety of variations on the general EMPC formulation in Equations (17)–(21) have been developed.
One such variation which will receive focus in this paper is Lyapunov-based EMPC (LEMPC) [24], which
is formulated as in Equations (17)–(21) but with the following Lyapunov-based constraints added as well:

Vi( ˜̄xa,i(t)) ≤ ρe,i, ∀ t ∈ [tk, tk+N), if tk ≤ t′ and Vi(x(tk)) ≤ ρe,i (22)

∂Vi(x(tk))

∂x
f̄i(x(tk), u(tk), 0) ≤ ∂Vi(x(tk))

∂x
f̄i(x(tk), hi(x(tk)), 0),

if tk > t′ or Vi(x(tk)) > ρe,i

(23)

where Ωρe,i ⊂ Ωρi is selected such that the closed-loop state is maintained within Ωρi over time when the
process of Equation (1) is operated under the LEMPC of Equations (17)–(23). t′ is a time after which the
constraint of Equation (23) is always applied, regardless of the value of Vi(x(tk)). The activation conditions
of the LEMPC with respect to Vi(x(tk)) ensure that the LEMPC can maintain closed-loop stability within
Ωρi as well as recursive feasibility.

2.5. Lyapunov-Based Economic Model Predictive Control with an Empirical Model

Several prior works have developed LEMPC formulations including empirical models [43,44] when
the model of Equation (1) is either unknown or undesirable for use (e.g., more computationally intensive
than an empirical model). They have the following form:

min
ūq(t)∈S(∆)

∫ tk+N

tk

[Le(x̄b,q(τ), ūq(τ))]dτ (24a)

s.t. ˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (24b)

x̄b,q(tk) = x(tk) (24c)

x̄b,q(t) ∈ Xq, ∀ t ∈ [tk, tk+N) (24d)

ūq(t) ∈ Uq, ∀ t ∈ [tk, tk+N) (24e)

V̂q(x̄b,q(t)) ≤ ρ̂e,q, ∀ t ∈ [tk, tk+N) if x(tk) ∈ Ωρ̂e,q (24f)

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), u(tk))) ≤

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), hNL,q(x(tk)))) if x(tk) /∈ Ωρ̂e,q

or tk ≥ t′ (24g)
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where the notation follows that found in Equations (17)–(23) except that the predictions from the nonlinear
empirical model are denoted by x̄b,q (Equation (24b)) and are initialized from a measurement of the state
of the ith system of Equation (1) (i.e., from the state measurement of whichever model describes the
process dynamics at tk). Regardless of which dynamic model describes the underlying process dynamics,
the qth empirical model along with the state (Equation (24d)) and Lyapunov-based stability constraints
corresponding to that model are used.

3. Responsive Economic Model Predictive Control Design

The next sections present two concepts for moving toward interpretability and verifiability goals for
EMPC, cast within a framework of making EMPC more responsive to “unexpected” behavior.

3.1. Automated Control Law Redesign

In this section, we focus on a case in which the process model used does not change over time
(i.e., the i = 1 process model in Equation (1) is used for all time) and consider the problem that, despite
the pushes toward next-generation manufacturing, many companies that may benefit from automation
can have difficulty implementing the appropriate advances if they do not have a knowledgeable control
engineer on site due to both a lack of knowledge of advanced control as well as a lack of interpretability
of the controller’s actions. We present one idea for making an LEMPC easier to work with by giving it
a “self-design” capability that allows the controller to update its formulation in a manner that satisfies
end-user requirements without requiring understanding of the control laws on the part of the end users.
Critically, closed-loop stability and recursive feasibility guarantees are retained. This can be considered to
be a case in which the human response to the operating strategy is “unexpected” (in the sense that it is not
easily predictable by the control designer), but the controller must have the ability to adjust its control law
in response to the human reaction.

The first step toward designing an appropriate controller for this scenario is to recognize that the
human response to the process behavior is some function of the pattern observed in the state and input
data and that the pattern is dictated by the control formulation. For EMPC, for example, it is dictated
by the constraints and objective function (though the process model of Equation (18) also plays a role
in determining the response, we consider that the model must represent the process at hand and that
therefore it cannot be tuned to impact the state/input behavior). Conceptually, then, the solution to
handling the “unexpected” response of the end user of the controller is to learn the mapping between the
end user’s satisfaction with the response and the constraint/objective function formulation and then to use
that mapping to find the constraint/objective function formulation that provides “optimal” satisfaction to
the end user.

An open question is how to do this and, in particular, how to do it in a manner that provides theoretical
guarantees on feasibility/closed-loop stability. To demonstrate this challenge, consider the LEMPC of
Equations (17)–(23). The theoretical results for LEMPC which guarantee closed-loop stability and recursive
feasibility under sufficient conditions when no changes occur in the underlying process dynamics rely
on the constraints of Equations (22) and (23) being present in the control design [24]. Therefore, ad hoc
constraint development in an attempt to optimize end-user “satisfaction” with the process response would
not be a means for providing closed-loop stability and recursive feasibility guarantees. Instead, any
modification of constraints must take place in a more rigorously defined manner.

One approach would be to develop constraints for EMPC which allow “tuning” of the process
response but impact neither closed-loop stability nor feasibility as the tuning parameter in these constraints
is adjusted. They thus offer some flexibility to the end user in modifying the response but also ensure that
the end user’s power to adjust the control law is appropriately restricted for feasibility/stability purposes.
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An example of constraints which meet this requirement is the input rate of change constraints added to
LEMPC in Reference [45]. In the following section, we will discuss in detail how these constraints may
be incorporated within the proposed framework for providing an end user with a restricted flexibility in
adjusting the process response without losing theoretical properties of LEMPC.

Remark 1. The question of how the human response may be accurately sensed is outside the scope of the present
manuscript. A process example will be provided below in which the end user is assumed to take time to rank his or
her “satisfaction” with the process behavior under a number of different controllers to develop a mapping between
satisfaction and the tuning parameter of the control law. However, human responses could also be considered to be
obtained through other machine learning/artificial intelligence methods, such as sentiment analysis [46].

Remark 2. Potential benefits of an approach that adjusts the controller’s behavior based on the end user’s response
(rather than assuming that some type of standard metric for evaluating control performance (e.g., settling time,
rise time, or overshoot of the steady-state) is able to capture the desired response) are that (1) EMPC may operate
processes in a potentially time-varying fashion, meaning that the closed-loop state may not be driven to a steady-state
and that the behavior of the process under the EMPC may not be easily predictable a priori (e.g., without running
closed-loop simulations). Therefore, determining what metrics to use to state whether performance under EMPC
is acceptable or not may not be intuitive or easily generalizable, unlike in the case where steady-state operation is
desired. (2) Again, unlike the steady-state case, not all end users of a given EMPC formulation may have the same
definition of “good” behavior. Ideally, the “best” behavior is the one computed by the EMPC when it optimizes the
process economics over the prediction horizon in whatever manner is necessary to ensure that the constraints are
met but profit is maximized. However, an end user may not find this to constitute the “best” behavior due to other
considerations that are perhaps difficult or costly to include in the control law (for example, the most profitable input
trajectories from the perspective of the profit metric being used in Equation (17) may be expected to lead to more
actuator wear than is desirable, which will be the subject of the example below). Therefore, it may be difficult to set
a general metric on “good” behavior under EMPC, as the additional considerations defining “goodness” that are
not directly included in the control law may vary between processes. (3) The concept of designing a controller that
is responsive to unexpected evaluations of its behavior could have broader implications, if appropriately developed,
than the initial goal of achieving desired process behavior for a given control law. Ideally, developments in this
direction would serve as a springboard for reducing a priori control design efforts while increasing flexibility for
next-generation manufacturing such that end users are able to achieve many goals during production that they
may conceive over time as being important to their operation but without needing to interface extensively with
vendors or even needing to update their software to achieve these updated process responses. The vision is one where
modifications for manufacturing could become as flexible and safe through new responsive and intelligent controller
formulations as modifications to codes are for computer scientists who do not work with physical processes and
therefore can readily test and evaluate new protocols to advance the field quickly.

3.1.1. LEMPC with Self-Designing Input Rate of Change Constraints

In Reference [45], an LEMPC formulation with input rate of change constraints was designed with
the form in Equations (17)–(23) but with the following rate of change constraints added on the inputs:

|up(tk)− h1,p(x(tk))| ≤ εr, p = 1, . . . , m (25)

|up(tj)− h1,p( ˜̄xa,i(tj))| ≤ εr, p = 1, . . . , m, j = k + 1, . . . , k + N − 1 (26)
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where εr ≥ 0. This formulation is demonstrated in Reference [45] to maintain closed-loop stability and
recursive feasibility under sufficient conditions and to cause the following constraints to be met:

|u∗p(tk|tk)− u∗p(tk−1|tk−1)| ≤ εdesired, ∀ p = 1, . . . , m (27)

|u∗p(tj|tk)− u∗p(tj−1|tk)| ≤ εdesired, ∀ p = 1, . . . , m, j = k + 1, . . . , k + N − 1 (28)

where εdesired > 0. The goal of this formulation of LEMPC is to utilize input rate of change constraints
to attempt to reduce variations in the inputs between sampling periods that have the potential to cause
actuator wear.

However, as noted in Reference [47], despite the intent of the method to prevent actuator wear,
there is no explicit relationship between εdesired or εr and the amount of actuator wear. Therefore, a control
engineer seeking to prevent actuator wear for a given process under the LEMPC of Equations (17)–(23),
(25), and (26) might design the value of εr by performing closed-loop simulations of the process under
various values of εr and then by selecting the one that gives the response that the engineer judges to
present a sufficient tradeoff between optimizing economic performance and reducing actuator wear.
A company with little control expertise on hand, however, may have difficulties with tuning εr without
vendor assistance. The fact that controllers today cannot readily “fix” their response if engineers who do
not have control expertise would like the response to have different characteristics presents a hurdle to the
adoption of even simple control laws, let alone the more complex designs which we would like to move
into widespread use as part of the next-generation manufacturing paradigm.

These potential negative responses to a lack of on-site control expertise might be prevented by
allowing the controller itself to be responsive to end-user preferences. For example, the value of εr might
be designed by allowing a short period of operation under the control law of Equations (17)–(23), (25),
and (26) with different values of εr. The engineers at the plant could then look at time periods in the plant
data during which each of the values of εr were used and could evaluate the performance of the plant
through some metric that can be recorded. Then, the value of εr that is predicted to provide the highest
rate of satisfaction (based on some relationship between the value of εr and the evaluation metrics which
can be derived through techniques for fitting appropriate models to the kind of data generated, such as
regression or other techniques of machine learning) could be selected for use (and further updated over
time through a similar mechanism as necessary).

Remark 3. One could argue that the algorithm by which a control engineer judges whether a given value of εr is
preferable could be represented mathematically (e.g., as an optimization problem with an objective function representing
a tradeoff between penalties on input variation and loss of profit). However, for the reasons noted in Remark 2 above and
also with the goal of developing an algorithm which may facilitate interpretability of LEMPC by allowing its control law to
be self-adjusted based on how end users feel about the response of the process under the controller, we handle this within the
general case of “unexpected” scenarios to which we would like to make EMPC responsive.

LEMPC with Self-Designing Input Rate of Change Constraints: Theoretical Guarantees

The methodology proposed above incorporates human judgments on the process response for
different values of εr for setting εr in Equations (17)–(23), (25), and (26). Despite the fact that human
judgment is imprecise, the LEMPC formulations of Equations (17)–(23), (25), and (26), by design, maintains
closed-loop stability and recursive feasibility under sufficient conditions (proven in Reference [45]) that are
unrelated to the value of εr, demonstrating that the combination of control theory and data-driven models
for “unexpected” behavior or human intuition may be possible to achieve with theoretical guarantees.
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When the proposed strategy for evaluating εr online via human responses to different values of the
parameter εr is used, closed-loop stability and feasibility still hold; however, it may not be guaranteed
that Equations (27) and (28) hold. Since εdesired is arbitrary in many respects since it is indirectly tied to
actuator wear (primarily though human evaluation), the satisfaction of Equations (27) and (28) may not be
significant during the time period that an operator or engineer is evaluating εr.

There is no guarantee that the proposed method will produce a value of εr that gives “optimal
satisfaction” to the end user. However, this is not considered a limitation of the method, as the end user’s
satisfaction is subjective and various methods for modeling the relationship between εr and the end user’s
satisfaction could be examined if one is found to produce an inadequate result. The value of εr can also
be adjusted further over time if the response after an initial value of εr is chosen is determined not to be
preferable. Reference [45] does guarantee however that, throughout all of the time of operation (both when
various values of εr are tested and when a single value of εr is selected), closed-loop stability and recursive
feasibility can be guaranteed. This is because the value of εr only impacts whether Equations (27) and (28)
are satisfied under the LEMPC of Equations (17)–(23), (25), and (26), and Equations (27) and (28) are
only of potential concern for actuator wear and not closed-loop stability or feasibility. Furthermore,
because Reference [45] demonstrates that hi( ˜̄xa,i(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . , k + N − 1 is a feasible
solution to Equations (17)–(23), (25), and (26) at every sampling time regardless of the value of εr because
Equations (25) and (26) can be satisfied by hi( ˜̄xa,i(tq)), t ∈ [tq, tq+1), q = k, . . . , k + N − 1 for any εr ≥ 0,
the value of εr can change between two sampling periods as εr is being evaluated and recursive feasibility
(and therefore closed-loop stability, since closed-loop stability depends on Equations (22) and (23) and not
on Equations (25) and (26)) will be maintained. Finally, though when εr is being evaluated, the process
profit or actuator wear level may not be the same as they would be after the value of εr is selected, this is
not expected to pose significant problems for many processes if it is performed over a short period of
time. Furthermore, if there are hard process constraints defined by Xi that must be met in order to ensure
that the product produced during the time when εr is evaluated can be sold, these can be met even as
various values of εr are tried because x̄a,i(t) ∈ Ωρi ⊆ Xi according to Reference [45] for any value of εr.
Furthermore, Reference [45] also guarantees that, even as the values of εr are adjusted, the closed-loop
state can be driven to a neighborhood of a steady-state to avoid production volume losses as εr is adjusted
if necessary.

Remark 4. The fact that the above stability analysis holds regardless of the value of εr indicates that the accuracy of
the method used in obtaining εr does not impact closed-loop stability. This is particularly important if the method
used in obtaining εr involves, for example, performing sentiment analysis of human speech data to determine how
well humans like a given value of that parameter. We overcome the limitation of interfacing humans with machines
by ensuring that the only parameter of the control law design which is modified in response to the algorithm that
carries uncertainty is one which, deterministically, does not impact closed-loop stability.

Remark 5. Though this section on automated control law redesign has explored only input rate of change constraints,
other online redesigns may also be possible in control. For example, in the LEMPC formulation of Equations (17)–(23),
the value ρe,i could be modified over time if an appropriate implementation strategy was developed. Specifically,
there exist bounds on ρe,i given in Reference [24] which are required for closed-loop stability to be maintained for
the process of Equation (1) operated under the LEMPC of Equations (17)–(23). Given this, a similar strategy to
that presented for the selection of εr could be utilized to adjust the value of ρe,i within its bounds online without
impacting closed-loop stability. This holds because a value of ρe,i between the minimum and maximum at a given
time would always be utilized. According to Reference [24], the consequence of this is that, at the next sampling
time, x̄a,i(tk) ∈ Ωρi . If x̄a,i(t) ∈ Ωρi at the end of every sampling period for any ρe,i between its minimum and
maximum, x̄a,i(t) ∈ Ωρi at all times. If both εr and ρe,i were to be simultaneously varied, for example, closed-loop
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stability would again hold, as the value of εr does not impact closed-loop stability for the reasons noted above and the
value of ρe,i can vary between its minimum and maximum value as just described without impacting closed-loop
stability. Recursive feasibility would also not be impacted. This suggests that it may be possible to design more
complex control laws with multiple self-tuning parameters that are simultaneously optimized based on human
response to develop control laws that behave in a desirable manner online without posing a safety concern due to loss
of closed-loop stability.

EMPC with Self-Designing Input Rate of Change Constraints: Application to a Chemical Process Example

In this section, we employ a process example that demonstrates the concept of self-designing input
rate of change constraints. For simplicity, in this example, we do not employ the Lyapunov-based stability
constraints of Equations (22) and (23); therefore, no theoretical stability guarantees can be made for this
example. However, this does not present problems for illustrating the core concepts of the method of
integrating human responses to operating conditions with EMPC.

The process under consideration is an ethylene oxidation process in a continuous stirred tank reactor
(CSTR) from Reference [48] with reaction rates from Reference [49]. The following three reactions are
considered to occur in the CSTR:

C2H4 +
1
2 O2 → C2H4O (29)

C2H4 + 3O2 → 2CO2 + 2H2O (30)

C2H4O + 5
2 O2 → 2CO2 + 2H2O (31)

Mass and energy balances for the reactor, in dimensionless form, are as follows:

˙̄x1 = ū1(1− x̄1 x̄4) (32)

˙̄x2 = ū1(ū2 − x̄2 x̄4)− A1eγ1/x̄4(x̄2 x̄4)
0.5 − A2eγ2/x̄4(x̄2 x̄4)

0.25 (33)

˙̄x3 = −ū1 x̄3 x̄4 + A1eγ1/x̄4(x̄2 x̄4)
0.5 − A3eγ3/x̄4(x̄3 x̄4)

0.5 (34)

˙̄x4 = ū1
x̄1
(1− x̄4) +

B1
x̄1

eγ1/x̄4(x̄2 x̄4)
0.5 + B2

x̄1
eγ2/x̄4(x̄2 x̄4)

0.25 + B3
x̄1

eγ3/x̄4(x̄3 x̄4)
0.5 − B4

x̄1
(x̄4 − Tc) (35)

where the process model parameters are listed in Table 1; the state vector components x̄1, x̄2, x̄3,
and x̄4 (i.e., x̄ = [x̄1 x̄2 x̄3 x̄4]

T) are dimensionless quantities corresponding to the gas density, ethylene
concentration, ethylene oxide concentration, and temperature in the CSTR, respectively; and the input
vector components ū1 and ū2 are dimensionless quantities corresponding to the feed volumetric flow rate
and the feed ethylene concentration. The process of Equations (32)–(35) has a steady-state at x̄1 = 0.998,
x̄2 = 0.424, x̄3 = 0.032, x̄4 = 1.002, ū1 = 0.35, and ū2 = 0.5.

Table 1. Parameters for the continuous stirred tank reactor (CSTR) of Equations (32)–(35).

Parameter Value

γ1 −8.13
γ2 −7.12
γ3 −11.07
A1 92.80
A2 12.66
A3 2412.71
B1 7.32
B2 10.39
B3 2170.57
B4 7.02
TC 1.0
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An EMPC is designed to control this process by maximizing the yield of ethylene oxide, which is
defined by the following equation over a time interval from the initial time (t0 = 0) to the final time of
operation t f :

Y(t f ) =
∫ t f

0 ū1(τ)x̄3(τ)x̄4(τ)dτ∫ t f
0 ū1(τ)ū2(τ)dτ

(36)

However, it is assumed that, in addition to the following bounds on the inputs,

0.0704 ≤ ū1 ≤ 0.7042 (37)

0.2465 ≤ ū2 ≤ 2.4648 (38)

there is also a constraint on the total amount of material which can be fed to the CSTR over time:

∫ t f
0 ū1(τ)ū2(τ)dτ = 0.175t f (39)

As Equation (39) fixes the denominator of Equation (36), the stage cost to be minimized using the
EMPC is as follows:

Le(x, u) = −ū1(t)x̄3(t)x̄4(t) (40)

To attempt to avoid actuator wear, input rate of change constraints will also be considered. The general
form of the EMPC for this example is therefore as follows:

minū1,ū2∈S(∆)
∫ tk+Nk

tk
−ū1(τ) ˜̄x3(τ) ˜̄x4(τ)dτ (41)

s.t. Equations (32)–(35) (42)

˜̄x(tk) = x̄(tk) (43)

0.0704 ≤ ū1(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
) (44)

0.2465 ≤ ū2(t) ≤ 2.4648, ∀ t ∈ [tk, tk+Nk
) (45)

1
tv

∫ tk
rtv

ū∗1(τ)ū
∗
2(τ)dτ + 1

tv

∫ tk+Nk
tk

ū1(τ)ū2(τ)dτ = 0.175 (46)

|ūp(tj)− ūp(tj−1)| ≤ ε, j = k, . . . , k + Nk − 1, p = 1, 2 (47)

In this formulation, no Lyapunov-based stability constraints are employed and no closed-loop stability
issues arose in the simulations (i.e., the closed-loop state always remained within a bounded region of
state-space). Furthermore, due to the lack of Lyapunov-based stability constraints, the input rate of change
constraints of Equations (27) and (28) are enforced directly on input differences (i.e., they have the form
of Equations Equations (27) and (28) rather than the form of Equations (25) and (26)). ˜̄x represents the
predicted value of the process state according to the model of Equation (42). ū∗1 and ū∗2 represent the optimal
values of ū1 and ū2 that have been applied in past sampling periods (i.e., ū∗1 = ū1(tk−1), and ū∗2 = ū2(tk−1)).
The values of ū1(tk−1) and ū2(tk−1) for k = 0 are assumed to be the steady-state values of these inputs. Nk is
a shrinking prediction horizon in the sense that, at the beginning of every operating period of length tv = 46.8,
the value of Nk is reset to 5 but is then reduced by 1 at each subsequent sampling time of the operating period.
This shrinking horizon allows the constraint of Equation (39) to be enforced within every operating period to
ensure that, by the end of the time of operation, Equation (39) is met. In Equation (46), r signifies the operating
periods completed since the beginning of the time of operation (e.g., in the first tv time units, r = 0 because
no operating periods have been completed yet).
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We assume that the engineers and operators do not know the value of ε that they would like to
impose in the EMPC of Equations (41)–(46) but plan to determine an appropriate value by assessing the
process behavior from the same initial condition under EMPC’s with different values of ε and by selecting
a value that they expect will give the optimal tradeoff between economic performance and actuator wear
reduction. To represent the process behavior as ε is varied in these experiments, we performed eight
closed-loop simulations of the process of Equations (32)–(35) under the EMPC of Equations (41)–(46)
from the same initial condition x̄I = [x̄1I x̄2I x̄3I x̄4I ]

T = [0.997 1.264 0.209 1.004]T using eight different
input-rate-of-change constraint formulations (the simulations were performed both with no input rate
of change constraints and with ε values of 0.01, 0.05, 0.1, 0.3, 0.5, 1, and 3). The simulations lasted
for 10 operating periods and used a sampling period of ∆ = 9.36, an integration step for the model of
Equation (42) (i.e., the model used by the controller) of 10−4 and an integration step for the model of
Equations (32)–(35) (i.e., the model of the plant) of 10−5. The open-source interior point solver Ipopt [50]
was used to solve all optimization problems. Figures 1 and 2 show the state and input trajectories for each
of the values of ε chosen. Table 2 shows how the yield varies with the choice of ε. To express the engineer’s
or operator’s judgment of the relative “goodness” of the response that they see when both profit and input
variations are considered, the engineers and operators are considered to have ranked the response for
a given ε on a scale of 1 to 10 as shown in Table 2, with 1 being the worst and 10 being the best.

Figure 3 shows the rankings as a function of ε as solid blue circles. From this figure, we postulate that
a model that may fit this data has the following form:

Ranking = c1e(−c2ε)εc3 + c4 (48)

Using the MATLAB function lsqcurvefit, the data from Table 2 for the various values of ε reported
was fit to the function in Equation (48), resulting in c1 = 68.8901, c2 = 3.8356, c3 = 0.8480, and c4 = 0.7933.
The plot of the function fit to the data is shown as the red curve on Figure 3. A more rigorous method could
have been utilized to fit the model and the data (involving, for example, more samples and an evaluation
of the deviation of the model from the data), but the present method is sufficient for demonstrating the
concepts developed in this work.

The utility of the function in Equation (48) is that it provides a mathematical representation of the
model that an engineer or operator is using within his or her mind to determine the best value of ε

to utilize when this engineer or operator is not aware of the model himself or herself. This makes the
advanced control design more tractable for the operator or engineer to utilize without advanced control
knowledge by fitting the “mind of the human” to a function that can then be utilized in optimizing the
control design automatically. To demonstrate this, we determine the “optimal” value of ε based on the
model of Equation (48) by differentiating the equation with respect to ε and by setting it to 0. This gives
an “optimal” value of ε of c3/c2 or 0.22. Simulations were performed for 10 operating periods of the
process of Equations (32)–(35) under the EMPC of Equations (41)–(46) with this value of ε and initialized
from x̄I , and the resulting state and input trajectories are shown in Figures 4 and 5. The yield is 8.33%.

Table 2. Yield variation with ε.

ε Yield (%) Ranking

0.01 7.17 2
0.05 7.93 5
0.1 8.23 8
0.3 8.37 8
0.5 8.44 7
1 9.03 2
3 9.61 1

No input rate of change constraint 9.61 Not ranked
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Figure 1. x̄1, x̄2, x̄3, and x̄4 trajectories under economic model predictive controllers (EMPCs) with different
values of ε specified in the legend (the gray trajectory labeled “None” corresponds to no input rate of
change constraint applied).
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Figure 2. ū1 and ū2 trajectories under EMPCs with different values of ε specified in the legend (the gray
trajectory labeled “None” corresponds to no input rate of change constraint applied).
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Figure 3. Scatter plot reflecting rankings in Table 2 (solid blue circles) and the curve fit using lsqcurvefit
(solid red line).
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Figure 4. State trajectories under EMPC with ε = 0.22.

Remark 6. The rankings in Table 2 are fabricated to demonstrate the concept that a human judgment could be
translated to a modification of an EMPC formulation parameter. They were contrived to display a form to which
a reasonable model could be readily fit using lsqcurvefit and, furthermore, are highly simplified (e.g., only a single
ranking is provided for each value of ε rather than an average ranking with additional information such as standard
deviation that might be expected if more than one individual was to rank the response). For an actual process,
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the transformation of human opinion on the response to a function of ε would therefore be expected to be more
complex and to potentially involve statistics-based techniques or other methods for obtaining models from process
data; however, an investigation of such methods is outside of the scope of this paper, and therefore, a simplified
ranking model was used to demonstrate the concept that a control law parameter might be decided upon by evaluating
characteristics of a response where there is a tradeoff between competing operating objectives where at least one of
them (in this case, the actuator wear) is more difficult to quantify with a simple model such that the incorporation of
human judgment can make the control law design potentially simpler (than if, for example, a detailed actuator wear
model was to be developed to allow the controller to more accurately predict the wear itself to then prevent it through
a constraint on wear rather than input rate of change).
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0.1
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0.3
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Figure 5. Input trajectories under EMPC with ε = 0.22.

3.2. EMPC Response to Unexpected Scenarios via Model Updates

A second case for which we will explore EMPC designs which are responsive to unexpected events
considers these “unexpected” events to be defined by a change in the underlying process dynamics
(i.e., the value of i increases in Equation (1)). This class of problems covers anomaly responses for EMPC,
for which we will adopt the common anomaly-handling strategy (as described in the Introduction section)
of updating the process model. Mathematically, we assume that the process model was known with
reasonable accuracy before the anomaly (i.e., there is an upper bound on the error between the model used
in the LEMPC and the model of Equation (1) with i = 1).

We make several points with respect to model updates in this section. First, if the underlying dynamics
change, it is possible that the structure of the underlying dynamic model has fundamentally changed. When
identifying a new model, it may therefore be preferable to identify the parameters of one with a revised
structure; this is a case of seeking to identify a more physics-based model from process data [51]. In keeping
with the prior section where the potential was shown for integrating machine learning algorithms known to
not be guaranteed to provide accurate data with control, we here highlight that, if machine learning-based
sensors (e.g., image-based sensors) are utilized with the process, they may aid in suggesting how to update
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a process model’s structure over time to attempt to keep the structure physically relevant. Because such
sensing techniques may not provide correct suggestions, however, a model with a structure suggested by such
an algorithm does not need to be automatically implemented in model-based control; instead, engineers could
consider multiple models after a machine learning-based algorithm suggests that an anomaly/change in the
underlying process model has occurred, where one model to be evaluated is that used until this point and the
second is a model that includes any updates implied by the sensing techniques. Subsequently, the prediction
accuracy of the two models could be compared, and whichever is most accurate can be considered for use
in the LEMPC [52]. Like the methodology in Section 3.1.1, this method limits the ability of any attempts to
integrate machine learning (in the sensors) and control from impacting closed-loop stability by using it to
complement a rigorous control design approach rather than to dictate it.

Second, at a chemical plant, anomalies may be considered to be either those which pose an immediate
hazard to humans and the environment and are considered to require plant shutdown upon detection or
those which do not. When the anomaly detected requires plant shutdown, generally the safety system is
used to take extreme actions like cutting feeds to shut down the plant as quickly as possible; these generally
have a prespecified nature (e.g., closing the feed valve). Anomalies that do not present immediate hazards
to humans may either result in sufficiently small plant/model mismatch that the controller is robust
against or the plant/model mismatch could cause subsequent control actions to drive the closed-loop
state out of the expected region of process operation (at which point, the anomaly may be a hazard). We
consider that characterizing conditions under which closed-loop stability is not lost in the second case may
constitute steps in moving toward verification of EMPC for the process industries with adaptive model
updates in the presence of changing process dynamics.

3.2.1. Automated Response to Anomalies: Formulation and Implementation Strategy

In the next section, we will present theoretical results regarding conditions under which an LEMPC
could be conservatively designed to handle anomalies of different types in the sense that closed-loop
stability would not be lost upon the occurrence of an anomaly or that impending loss of closed-loop
stability could be detected by defining a region Ωρ̂samp,q (a superset of Ωρ̂q ) which the closed-loop state
should not leave unless the anomaly has been significant and the model used by the LEMPC should be
attempted to be reidentified to try to maintain closed-loop stability. If the closed-loop state leaves Ωρ̂samp,q ,
however, it has also left Ωρ̂q , so that the LEMPC of Equation (24) may not be feasible. For this reason,
the implementation strategy below suggests that, if the closed-loop state leaves Ωρ̂samp,q , hNL,q should be
applied to the process so that a control law with no feasibility issues is used.

The implementation strategy proposed below relies on the existence of two controllers hNL,q and
hNL,q+1, where hNL,q can stabilize the origin of the nominal closed-loop system of Equation (10) and hNL,q+1

can stabilize the origin of the nominal closed-loop system of Equation (10) with respect to the q+ 1th model.
Specifically, before the change in the underlying process dynamics that occurs at ts,i+1 is detected at td,q,
the process is operated under the LEMPC with the qth empirical model. After the change is detected (in
a worst case via the closed-loop state leaving Ωρ̂q ), a worst-case bound th,q is placed on the time available
until the model must be updated at time tID,q to the q + 1th empirical model to prevent the closed-loop
state from leaving a characterizable operating region.

We consider the following implementation strategy for carrying out the above methodology:

1. At t0, the i = 1 first-principles model (Equation (1)) describes the dynamics of the process. The q = 1
empirical model (Equation (10)) is used to design the LEMPC of Equation (24). An index ihx is set to 0.
An index ζ is set to 0. Go to step 2.
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2. At ts,i+1, the underlying dynamic model of Equation (1) changes to the i + 1th model. The LEMPC is
not yet alerted that the anomaly has occurred; the model used in the LEMPC is not changed despite
the change in the underlying process dynamics. Go to step 3.

3. While ts,i+1 < tk < ts,i+2, apply a detection method to determine if an anomaly has occurred. If
an anomaly is detected, set ζ = 1 and td,k = tk. Else, ζ = 0. If x(tk) /∈ Ωρ̂q but ζ = 0, set ζ = 1 and
td,k = tk. Go to step 4.

4. If ihx = 1, go to step 4a. Else, if ζ = 1, go to step 4b, or if ζ = 0, go to step 4c. If tk > ts,i+2, go to step 5.

(a) If x(tk) ∈ Ωρ̂q+1 , operate the process under the LEMPC of Equation (24) with q← q + 1 and set
ihx = 0. Else, apply hNL,q+1(x(tk)) to the process. Return to step 3. tk ← tk+1.

(b) If (tk+1 − td,q) < th,q, gather online data to develop an improved process model as well as
updated functions V̂q+1 and hNL,q+1(x) and an updated stability region Ωρ̂q+1 around the
steady-state of the new empirical model but do not yet update the LEMPC and control the
process using the prior LEMPC. Else, if (tk+1 − td,q) ≥ th,q, set ihx = 1 and apply hNL,q+1(x(tk)).
Return to step 3. tk ← tk+1.

(c) Operate the process under the LEMPC of Equation (24) that was used at the prior sampling time.
Return to step 3. tk ← tk+1.

5. If tk > ts,i+2, a process dynamics change occurred at ts,i+2. Set ts,i+1 ← ts,i+2 and tk ← tk+1. Return to
step 2 with ζ = 0 and ihx = 0. Else, if tk < ts,i+2, tk ← tk+1; return to step 3.

We note that we do not specify the detection method to be used in step 3, but the use of a sufficiently
conservative Ωρ̂q (in a sense to be clarified in the following section) allows a worst-case detection
mechanism to be that the closed-loop state exits Ωρ̂q in step 3. We consider that each ts,i+1 and ts,i+2
are separated by a sufficient period of time such that no second change in the underlying process dynamics
occurs before the first change has resulted in an update in the dynamic model and the closed-loop state is
within Ωρ̂q+1 .

Remark 7. A significant difference between the proposed procedure and that in References [53,54], which also
involves switched systems under LEMPC, is that Reference [53] assumes that the time at which the model is to
be switched is known a priori. In handling of anomalies, this cannot be known; therefore, the proposed approach
corresponds to LEMPC for switched systems with unknown switching times. We place bounds in the next section on
a number of properties of the LEMPC of Equation (24) for this case to demonstrate the manner in which closed-loop
stability guarantees depend on, for example, how large the possible changes in the process model could be when they
occur. The goal is to provide a perspective on the timeframes available for detecting various anomalies without loss of
closed-loop stability, which could aid in verification and self-design studies for EMPC.

3.2.2. Automated Response to Anomalies: Stability and Feasibility Analysis

According to the implementation strategy above, when an anomaly occurs that changes the underlying
process dynamics, one of two things will happen: (1) the model used in Equation (24b) remains the same
or (2) the change in the underlying process dynamics is detected and the model used in Equation (24b) is
changed within a required timeframe to a new model (i.e., q is incremented by one in Equation (10)). In this
section, we present the conditions under which closed-loop stability can be maintained in either case. For
readability, proofs of theorems presented in this section are available in the Appendix.

We first present several propositions. The first defines the maximum difference between the process
model of Equation (1) and that of Equation (10) over time when the two models are initialized from the
same state, as long as the states of both systems are kept within a level set of V̂q which is also contained
within the stability region around the steady-state for the model of Equation (1) and as long as there is no
change in the underlying dynamics. The second sets an upper bound on the difference between the value
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of V̂q at any two points in Ωρ̂q . The third provides the closed-loop stability properties of the closed-loop
system of Equation (10) under the controller hNL,q.

Proposition 1 ([51]). Consider the systems

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (49a)

˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (49b)

with initial states x̄a,i,q(t0) = x̄b,q(t0) = x̄(t0) contained within Ωρ̂q,i , with t0 = 0, ūq ∈ Uq, and wi ∈ Wi.
If x̄a,i,q(t) and x̄b,q(t) remain within Ωρ̂q,i for t ∈ [0, T], then there exists a function fW,i,q(·) such that:

|x̄a,i,q(t)− x̄b,q(t)| ≤ fW,i,q(t) (50)

with:
fW,i,q(t) :=

Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qt − 1) (51)

where Merr,i,q > 0 is defined by:
| f̄i,q(x, u, 0)− f̄NL,q(x, u)| ≤ Merr,i,q (52)

for all x contained in Ωρ̂q,i and u ∈ Uq.

Proposition 2 ([24,55]). Consider the Lyapunov function V̂q(·) of the nominal system of Equation (10) under the
controller hNL,q(·) that meets Equation (12). There exists a quadratic function fV,q(·) such that:

V̂q(x) ≤ V̂q(x′) + fV,q(|x− x′|) (53)

for all x, x̄′ ∈ Ωρ̂sa f e,q with
fV,q(s) := α̂4,q(α̂

−1
1,q (ρ̂q))s + Mv,qs2 (54)

where Mv,q is a positive constant.

Proposition 3 ([51]). Consider the closed-loop system of Equation (10) under hNL,q(x̄b,q) that satisfies the
inequalities of Equation (12) in sample-and-hold. Let ∆ > 0, ε̂W,q > 0, and ρ̂sa f e,q > ρ̂q > ρ̂e,q > ρ̂minq > ρ̂s,q > 0
satisfy the following:

−α̂3,q(α̂
−1
2,q (ρ̂s,q)) + LL,q ML,q∆ ≤ −ε̂W,q/∆ (55)

ρ̂minq := max{V̂q(x̄b,q(t + ∆)) : V̂q(x̄b,q(t)) ≤ ρ̂s,q}. (56)

If x̄b,q(0) ∈ Ωρ̂sa f e,q , then,
V̂q(x̄b,q(tk+1))− V̂q(x̄b,q(tk)) ≤ −ε̂W,q (57)

for x̄b,q(tk) ∈ Ωρ̂sa f e,q /Ωρ̂s,q and the state trajectory x̄b,q(t) of the closed-loop system is always bounded in Ωρ̂sa f e,q

for t ≥ 0 and is ultimately bounded in Ωρ̂minq
.

The next proposition bounds the error between the actual process state and a prediction of the process
state using an empirical model initialized from the same value of the process state over a period of time in
which the underlying process dynamics change, but the empirical model is not updated. This requires overlap
in stability regions for the ith and i + 1th models of Equation (1) and for the qth model of Equation (10) within
Ωρ̂q,i while the qth model is used. The proof of this proposition is available in Appendix A.
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Proposition 4. Consider the following systems:

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (58)

˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (59)

˙̄xa,i+1,q = f̄i+1,q(x̄a,i+1,q(t), ūq(t), wi+1(t)) (60)

with initial states x̄a,i,q(t0) = x̄b,q(t0) ∈ Ωρ̂q,i with t0 = 0, ūq ∈ Uq, wi ∈ Wi, and wi+1 ∈ Wi+1.
Also, x̄a,i,q(ts,i+1) = x̄a,i+1,q(ts,i+1). If x̄a,i,q(t), x̄b,q(t), x̄a,i+1,q(t) ∈ Ωρ̂q,i for t ∈ [0, t1] and

| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))| ≤ Mchange,i,q (61)

for all x̄a,i,q, x̄a,i+1,q ∈ Ωρ̂q,i , ūq ∈ Uq, wi ∈Wi, and wi+1 ∈Wi+1, then

|x̄a,i,q(t)− x̄b,q(t)| ≤ fW,i,q(t) (62)

where fW,i,q(t) is defined in Equation (51) for t ∈ [0, ts,i+1] and

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) + (Mchange,i,q)(t− ts,i+1) +
Lw,i,qθi+Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1 ) (63)

for t ∈ [ts,i+1, t1].

The following theorem provides the conditions under which, when no change in the underlying
dynamic model occurs throughout the time of operation and x(tk) ∈ Ωρ̂q , the LEMPC of Equation (24)
designed based on hNL,q and the qth empirical model of Equation (10) guarantees that the closed-loop
state is maintained within Ωρ̂q over time and is ultimately bounded in a neighborhood of the origin of the
model of Equation (10).

Theorem 1 ([51]). Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) based
on the controller hNL,q(x) that satisfies the inequalities in Equation (12). Let εW,i,q > 0, ∆ > 0, N ≥ 1,
and ρ̂q > ρ̂e,q > ρ̂min,i,q > ρ̂s,q > 0 satisfy the following:

− α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi ≤ −εW,i,q/∆ (64)

ρ̂e,q ≤ ρ̂q − fV,q( fW,i,q(∆)) (65)

If x(0) ∈ Ωρ̂q and Proposition 3 is satisfied, then the state trajectory x̄a,i,q(t) of the closed-loop system is always
bounded in Ωρ̂q for t ≥ 0. Furthermore, if t > t′ and

− α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi ≤ −εW,i,q/∆ (66)

then the state trajectory xa,i(t) of the closed-loop system is ultimately bounded in Ωρ̂min,i,q and defined as follows:

ρ̂min,i,q := max{V̂q(x̄a,i,q(t + ∆)) | V̂q(x̄a,i,q(t)) ≤ ρ̂s,q} (67)

The prior theorem provided conditions under which the closed-loop state is maintained within Ωρ̂q in
the absence of changes in the dynamic model. In the following theorem, we provide sufficient conditions
under which the closed-loop state is maintained in Ωρ̂q after ts,i. The proof of this result is presented
in Appendix B.
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Theorem 2. Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) with hNL,q meeting
Equation (12), where the conditions of Propositions 3 and 4 hold and where Ωρ̂sa f e,q is contained in both Ωρi and
Ωρi+1 . If ts,i+1 ∈ [tk, tk+1), such that, after ts,i+1, the system of Equation (1) is controlled by the LEMPC of
Equation (24), where xa,i(ts,i+1) = xa,i+1(ts,i+1) ∈ Ωρ̂q , and if the following hold true,

− α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,p,q + L′x,p,q Mp∆ + L′w,p,qθp ≤ −εW,p,q/∆ (68)

ρ̂e,q ≤ ρ̂q − fV,q( fW,p,q(∆)) (69)

for both p = i and p = i + 1, and

ρ̂e,q + fV,q( fW,i,q∆ + (Mchange,i)∆ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,q∆ − eLx,i,qts,i+1)) ≤ ρ̂q (70)

−α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q + L′x,i+1,q Mi+1∆

+L′w,i+1,qθi+1 ≤ −ε′W,i,q/∆
(71)

then the closed-loop state is bounded in Ωρ̂q for all t ≥ 0.

We highlight that these conditions are conservative and not intended to form the least conservative
bounds possible. However, they do help to elucidate some of the factors which impact whether a model
used in an LEMPC will need to be reidentified to continue to maintain closed-loop stability when the
underlying dynamics change, such as the extent to which the dynamics change. The above theorem
indicates that, if Ωρ̂q is initially chosen in a sufficiently conservative fashion and the empirical model
is sufficiently close to the underlying process dynamics before the model change, closed-loop stability
may be maintained even after the underlying dynamics change if the model changes are such that the
empirical model remains sufficiently close to the new dynamic model after the change. In general,
anomalies may occur that could violate the conditions of Theorem 2. The result of this could be that the
closed-loop state may leave Ωρ̂q . In this case, it is helpful to characterize conditions under which changes
in the underlying dynamics that could be destabilizing could be detected, triggering a model update and
controller redesign for the new dynamic model to stabilize the closed-loop system. Therefore, the following
theorem characterizes the length of time that the closed-loop state can remain in Ωρ̂sa f e,q after a change in
the underlying process dynamics occurs if the conditions of Theorem 2 are not met. This can be used in
determining how quickly a model reidentification algorithm would need to successfully provide a new
model for the LEMPC of Equation (24) for closed-loop stability to be maintained as a function of factors
such as the extent that the new model deviates from the empirical model used in the LEMPC when the
underlying dynamics change, the sampling period, and the conservatism in the selection of ρ̂q. The proof
of this theorem is presented in Appendix C.

Theorem 3. Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) with hNL,q
meeting Equation (12) and Proposition 3, where Ωρ̂sa f e,q is contained in both Ωρi and Ωρi+1 . If at t = ts,i+1, where
ts,i+1 ∈ [tk, tk+1), such that, after ts,i+1, the system of Equation (1) is controlled by the LEMPC of Equation (24),
where xa,i(ts,i+1) = xa,i+1(ts,i+1) ∈ Ωρ̂sa f e,q , then if the following hold true with ρ̂sa f e,q > ρ̂samp,q > ρ̂q > ρ̂q,e,
ρ̂q,e > ρ̂min,q,i > ρ̂s,q > 0, and ρ̂q,e > ρ̂min,i+1,q > ρ̂s,q > 0:

− α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i+1,q + L′x,i+1,q Mi+1∆ + L′w,i+1,qθi+1 ≤ εW,i+1,q/∆ (72)

ρ̂e,q + fV,q( fW,i,q∆ + (Mchange,i,q)∆ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,q∆ − eLx,i,qts,i+1)) ≤ ρ̂samp,q (73)
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ρ̂q + fV,q( fW,i,q∆ + (Mchange,i,q)∆ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,q∆ − eLx,i,qts,i+1)) ≤ ρ̂samp,q (74)

ρ̂e,q + fV,q( fW,i+1,q(∆)) ≤ ρ̂samp,q (75)

ρ̂q + εW,i+1,q ≤ ρ̂samp,q (76)

as well as Equations (65)–(67), then if x(ts,i+1) ∈ Ωρ̂q and Ωρ̂min,i+1,q ⊂ Ωρ̂samp,q and the change to the model is not
detected until a sampling time td,q with x̄(td,q) ∈ Ωρ̂sa f e,q /Ωρ̂q (x̄(td,q) ∈ Ωρ̂samp,q ⊂ Ωρ̂sa f e,q ) after which hNL,q is
used to control the system in sample-and-hold, then the number of sampling periods between tID,q and td,q within
which the model in the LEMPC can be updated to a new model meeting Equation (65) with i replaced by i + 1 and q

replaced by q + 1 without the closed-loop state exiting Ωρ̂sa f e,q is given by th,q = floor(
(ρ̂sa f e,q−ρ̂samp,q)

ε′W,i,q
), where floor

represents the “floor” function that returns the largest integer less than the value of the argument. x̄(t) refers either
to x̄a,i+1,q(t) or x̄a,i,q(t), depending on whether ts,i+1 is within the sampling period preceding the closed-loop state
exiting Ωρ̂q .

The following theorem provides the conditions under which the closed-loop state is maintained
within Ωρ̂sa f e,q+1 for all times after tID,q and is driven into Ωρ̂q+1 after the model reidentification. The proof
of the result is presented in Appendix D.

Theorem 4. If Ωρ̂sa f e,q ⊂ Ωρ̂sa f e,q+1 and if both Ωρ̂sa f e,q and Ωρ̂sa f e,q+1 are contained in Ωρi and Ωρi+1 , then if hNL,q+1

is used to control the system after tID,q while x(tk) ∈ Ωρ̂sa f e,q+1 /Ωρ̂q+1 with the conditions of Equations (65) and (66)
met for the q + 1th empirical model for the i + 1th dynamic system and the LEMPC of Equation (24) using the
q + 1th empirical model of Equation (10) is used to control the system for all times after x(tk) ∈ Ωρ̂q+1 , then the
closed-loop state is then maintained within Ωρ̂sa f e,q+1 until it enters Ωρ̂q+1 and is then maintained in Ωρ̂q+1 for all
subsequent sampling times.

Remark 8. From a verification standpoint, the proofs above move toward addressing the question of what may
happen if a controller is designed and even tested for certain conditions, but the process dynamics change. It provides
a theoretical characterization of conditions under which action would subsequently need to be taken as well as
indications of the time available to take the subsequent action. However, the results above may be difficult to utilize
directly in developing an online monitoring scheme, as many of the theoretical conditions rely on knowing properties
of the current and updated models that would likely not be characterizable or would not be known until after the
anomaly occurred. However, these still may aid in gaining an understanding of different possibilities. For example,
a conservative stability region Ωρ̂q suggests that larger anomalies could still be detected and mitigated by a combined
detection and reidentification procedure without loss of closed-loop stability. Earlier detection may provide more time
for reidentification.

Remark 9. If there is an indication from detection methods that are not based on the closed-loop state leaving
the stability region that the underlying dynamics may have changed but that the closed-loop state has not yet left
Ωρ̂q , then until the closed-loop state leaves Ωρ̂q , online experiments (e.g., modifying the objective function as in
Reference [51]) could be performed if they do not impact the constraint set to attempt to probe whether the dynamics
are more consistent with the prior process model or the potential model postulated after the anomaly is suggested.
This may be a method for attempting to detect the changes before the closed-loop state leaves Ωρ̂q , which could allow
larger changes in the process model to be handled practically than could be guaranteed to be handled in the theorems
above, as the magnitude of the deviations in the dynamic model allowed above without loss of closed-loop stability
depends on the distance between Ωρ̂sa f e,q and Ωρ̂samp,q . However, it is also highlighted that the above is a conservative
result, meaning that, in general, larger changes may be able to be handled without loss of closed-loop stability.
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Remark 10. The above results can be used to comment on why giving greater flexibility to the process after
an anomaly to handle it could introduce additional complexity. Specifically, consider the possibility that some
actuators may not typically be used for control but could be considered for use after an anomaly (similar to how safety
systems activate for chemical processes, but in this case, they would not act according to a prespecified logic but
might be able to be manipulated in either an on-off or continuous manner to give the process additional capabilities
for handling the anomaly). It is noted that this would constitute dynamics not previously considered. According to
the proofs above, one way to guarantee closed-loop stability in the presence of sufficiently small disturbances is to
cause the dynamics after they change to not differ too radically from those assumed before the change and used in the
prior dynamic model in the EMPC. If additional flexibility is given to the system, this would be an additional model
that would have to match up well.

Remark 11. The results above suggest that, if a model identification algorithm could be guaranteed to provide an
accurate model with a small amount of data that could be gathered between when the closed-loop state leaves Ωρ̂q but
before it leaves Ωρ̂sa f e,q (where the amount of data available in that timeframe could be known a priori by the number
of measurements available in a given sampling period), then the model could be reidentified and placed within the
LEMPC in a manner that is stabilizing.

Remark 12. Instead of changes to the underlying dynamic model, anomalies may present changes in the constraint
set (e.g., anomalies may change equipment material limitations (e.g., maximum shear stresses, which can change
with temperature) used to place constraints on the state in an LEMPC). Because the above results assume that the
stability region is fully contained within the state constraint set, the detection and response procedure above would
need to ensure that there is no time at which the stability region is no longer fully included within the state constraint
set under the new dynamic model. This may be handled by making Ωρ̂sa f e,q sufficiently conservative such that the
closed-loop state never exits a region where the state constraints can be met under different dynamic models.

3.2.3. Automated Response to Unexpected Hazards: Application to a Chemical Process Example

In this section, we demonstrate concepts described above through a process example. This example
considers a nonisothermal reactor in which an A → B reaction takes place, but the reactant inlet
concentration CA0 and the heat rate Q supplied by a jacket are adjusted by an LEMPC. The process
model is as follows:

ĊA = F
V (CA0 − CA)− k0e

− E
RgT C2

A (77)

Ṫ = F
V (T0 − T)− ∆Hk0

ρLCp
e
− E

RgT C2
A + Q

ρLCpV (78)

where the parameters are listed in Table 3 and include the reactor volume V, inlet reactant temperature
T0, pre-exponential constant k0, solution heat capacity Cp, solution density ρL, feed/outlet volumetric
flow rate F, gas constant Rg, activation energy E, and heat of reaction ∆H. The state variables are the
reactant concentration CA and temperature T in the reactor, which can be written in deviation form from
the operating steady-state vector CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4 kmol/m3, and Qs = 0
kJ/h as x = [x1 x2]

T = [CA − CAs T − Ts]T and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]T . The model of

Equations (77) and (78) has the following form:

ẋ = f̃ (x) + g(x)u (79)

where f̃ represents a vector function derived from Equations (77) and (78) that is not multiplied by
u and where g(x) = [g1 g2]

T = [ F
V 0; 0 1

ρLCpV ]T represents the vector function which multiplies u in
these equations.
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Table 3. Parameters for the CSTR model of Equations (77) and (78).

Parameter Value Unit

V 1 m3

T0 300 K
k0 8.46× 106 m3/h·kmol
Cp 0.231 kJ/kg·K
ρL 1000 kg/m3

F 5 m3/h
Rg 8.314 kJ/kmol·K
E 5× 104 kJ/kmol

∆H −1.15× 104 kJ/kmol

The EMPC utilized to adjust the manipulated inputs CA0 and Q utilizes the following stage cost
(to maximize the production rate of the desired product) and physical bounds on the inputs:

Le = −k0e−E/(RgT(τ))CA(τ)
2 (80)

0.5 ≤ CA0 ≤ 7.5 kmol/m3 (81)

−5× 105 ≤ Q ≤ 5× 105 kJ/h (82)

Lyapunov-based stability constraints are also enforced (where a constraint of the form of Equation (22)
is enforced at the end of every sampling time if x(tk) ∈ Ωρ̂e , and the constraint of the form of Equation (23)
is enforced at tk when x(tk) ∈ Ωρ̂/Ωρ̂e but then followed by a constraint of the form of Equation (22) at
the end of all sampling periods after the first).

We will consider several simulations to demonstrate the developments above. In the first, we explore
several aspects of the case in which there is a change in the underlying dynamics while the process is
operated under LEMPC that is minor such that the closed-loop state does not leave Ωρ̂ after the change in the
underlying dynamics. For this case, the Lyapunov function selected was V̂q = xTPx, with P given as follows:

P =

[
1200 5

5 0.1

]
(83)

The Lyapunov-based controller hNL,1(x) was designed such that its first component hNL,1,1(x) = 0
kmol/m3 and its second component hNL,1,2(x) is computed as follows (Sontag’s formula [56]):

hNL,1,2(x) =

−
L f̃ V̂q+

√
L f̃ V̂2

q +Lg̃2 V̂4
q

Lg̃2 V̂q
, if Lg̃2 V̂q 6= 0

0, if Lg̃2 V̂q = 0
(84)

Then, it is saturated at the input bounds of Equation (82) if they are met. L f̃ V̂q and Lg̃2 V̂q are Lie derivatives

of V̂q with respect to the vector functions f̃ and g̃2, respectively. ρ̂ and ρ̂e were taken from Reference [57]
to be 300 and 225, respectively. The process state was initialized at xinit = [−0.4 kmol/m3 8 K]T , with
controller parameters N = 10 and ∆ = 0.01 h. The process model of Equations (77) and (78) was integrated
with the explicit Euler numerical integration method using an integration step size of 10−4 h within the
LEMPC and of 10−5 h to simulate the process.

For this first simulation, we assume that a change in the underlying process dynamics occurs at 0.5 h
that does not compromise closed-loop stability. Specifically, at 0.5 h, it is assumed that an additional source
of heat arises outside the reactor such that the right-hand side of Equation (78) is modified by the addition
of another term Qextra = 300 K/h. Figures 6 and 7 show the process responses when the LEMPC is not
aware of the change in the process dynamic model when it occurs and when it is aware of the change in
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the process dynamic model after it occurs such that it is fully compensated (i.e., an accurate process model
is used in the LEMPC at all times, even after the dynamics change). In both cases, the closed-loop state was
maintained within the stability region at all times. These simulations were carried out in MATLAB R2016b
using fmincon with the default settings except for the increased iterations/function evaluations allowed,
scaling u2 down by 105 and providing the steady-state input values as the initial guess for the optimization
problem solution at each sampling time. No attempt was made to check whether the LEMPCs in the
simulations located globally optimal solutions to the LEMPC optimization problems. However, the profit
was higher than that at the steady-state around which the LEMPC was designed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7
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0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

440

460

480
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Figure 6. State trajectories under Lyapunov-based EMPC (LEMPC) with Qextra = 300 K/h starting at 0.5 h,
where the LEMPC has not been made aware (“Unaware”) and has been made aware (“Aware”) of the
change in the energy balance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 7. Input trajectories under LEMPC with Qextra = 300 K/h starting at 0.5 h, where the LEMPC has not
been made aware (“Unaware”) and has been made aware (“Aware”) of the change in the energy balance.
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The oscillatory behavior of the states before 0.5 h is caused by the fact that the profit is maximized
for this process at the boundary of Ωρ̂e . Without plant-model mismatch, the LEMPC is able to maintain
the closed-loop state exactly on the boundary of Ωρ̂e and therefore always operates the process using
the constraint of Equation (22); however, when the plant-model mismatch occurs (induced by the use of
different integration steps to simulate the process dynamic model within the LEMPC and for the simulation
of the process under the computed control actions), the closed-loop state then exits Ωρ̂e when the LEMPC
predicts it will stay inside of it under the control actions computed by the controller. The result is that
the constraint of Equation (23) is then activated until the closed-loop state reenters Ωρ̂e . This process of
entering Ωρ̂e , attempting to operate at its boundary, and then being kicked out only to be driven back in
is the cause of the oscillatory response of the states and inputs in Figures 6 and 7. It is noted, however,
that though this behavior may be undesirable from, for example, an actuator wear perspective, it does not
reflect a loss of closed-loop stability or a malfunction of the controller. The controller is in fact maintaining
the closed-loop state within Ωρ̂ as it was designed to do; the fact that it does so in perhaps a visually
unfamiliar fashion means that we have not specified in the control law that it should not do that, so it is not
aware that an end user would find that behavior strange (if the oscillatory behavior is deemed undesirable,
one could consider, for example, input rate of change constraints and potentially the benefits of the human
response-based input rate of change strategy in the prior section for handling unexpected events).

In the case that the LEMPC is not aware of the change in the process dynamics, the profit is 32.7103,
whereas when the LEMPC is aware of the change in the dynamics, the profit is 32.5833. Though these
values are very close, an interesting note is that the profit when the LEMPC is not aware of the change in
the underlying dynamics is slightly higher than when it is aware. Intuitively, one would expect an LEMPC
with a more accurate process model to be able to locate a more economically optimal trajectory for the
closed-loop state to follow than an LEMPC that cannot provide as accurate predictions. Part of the reason
for the enhanced optimality in the case without knowledge of the change in the underlying dynamics,
however, comes from the two-mode nature of LEMPC. In the case that the LEMPC is aware of the change
in the underlying dynamics, it drives the closed-loop state to an operating condition that remains closer to
the boundary of Ωρ̂e after 0.5 h than when it is not aware of the change in the underlying dynamics due to
the plant/model mismatch being different in the different cases. The result is that the process accesses
regions of state-space that lead to higher profits when the LEMPC does not know about the change in the
dynamics than if the LEMPC knows more about the process dynamics.

The remainder of this example focuses on elucidating the conservativeness of the proposed approach.
Specifically, we now consider the Lyapunov function selected as V̂q = xT Px, with P given as follows:

P =

[
2000 −10
−10 3

]
(85)

Again, hNL,1(x) is designed such that hNL,1,1(x) = 0 kmol/m3, and hNL,1,2(x) is computed via
Sontag’s formula but saturated at the input bounds of Equation (82) if they are met. ρ̂ and ρ̂e were
taken to be 1300 and 975, respectively, and ρ̂sa f e was set to 1800. The process state was initialized at
xinit = [0 kmol/m3 0 K]T , with controller parameters N = 10 and ∆ = 0.01 h. The process model
of Equations (77) and (78) was integrated with the explicit Euler numerical integration method using
an integration step size of 10−4 h within the EMPC and with an integration step size of 10−5 h to simulate
the process. The constraint of the form of Equation (23) is enforced at tk when x(tk) ∈ Ωρ̂/Ωρ̂e but then
followed by a constraint of the form of Equation (22) at the end of all sampling periods.

At 0.5 h, it is assumed that an additional source of heat arises outside the reactor such that the
right-hand side of Equation (78) is modified by the addition of another heat term Qextra = 500 K/h.
In this case, with no change in the process model used by the EMPC or even in the control law
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(i.e., in contrast to the implementation strategy in Section 3.2.1, hNL,1 is not employed when the closed-loop
state exits Ωρ̂), the behavior in Figure 8 results. Notably, the closed-loop state does not leave Ωρ̂sa f e , and no
infeasibility issues occurred. In contrast, if we begin to utilize hNL,1 when the closed-loop state leaves Ωρ̂,
the closed-loop state will eventually leave Ωρ̂sa f e (Figure 9). While we can obtain a new empirical model
(in this case, we assume that the dynamics become fully known at 0.54 h and are accounted for completely
to demonstrate the result) and can use that to update hNL,1 to hNL,2 (i.e., hNL,1 but with modified saturation
bounds to reflect design around the new steady-state of the system with QAdded = 500 K/h) before the
closed-loop state leaves Ωρ̂sa f e as suggested in the implementation strategy in Section 3.2.1 (creating the
profile shown in Figure 10 corresponding to 2 h of operation in which the closed-loop state is driven back
to the origin under hNL,2), the fact that the closed-loop state would not have left the stability region if the
controller had not been adjusted illustrates the conservativeness of the approach. We note that Figure 10
does not complete the implementation strategy in Section 3.2.1 (which would involve the use of a new
LEMPC after the closed-loop state reenters Ωρ̂ for this example) because that part of the implementation
strategy will be demonstrated in the discussion for a slightly different LEMPC presented below.

Finally, we provide a result where the LEMPC computes a time-varying input policy due to
the desire to enforce a constraint on the amount of reactant available in the feed over an hour
(i.e., a material/feedstock constraint) as follows:

1
1 h

∫ t=1 h
t=0 h u1(τ)dτ = 0 kmol/m3 (86)

This constraint is enforced via a soft constraint formulation by introducing slack variables s1 and s2

that are penalized in a modified objective function as follows:

∫ tk+N
tk

[
−k0e

− E
RgT(τ) CA(τ)

2
]

dτ + 100(s2
1 + s2

2) (87)

They are used in the following constraints:

k−1

∑
i=0

(u∗1(ti|ti)) +
k+Nk

∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
∆
− N) ≤ s1 (88)

−
k−1

∑
i=0

(u∗1(ti|ti))−
k+Nk

∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
∆
− N) ≤ s2 (89)

where Nk = N and δ = 1 when tk < 0.9 h and where δ = 0 and Nk is the number of sampling periods
left in a 1 h operating period when tk ≥ 0.9 h. These constraints are developed based on Reference [12].
u∗1(ti|ti) signifies the value of u1 applied to the process at a prior sampling time, and u1(ti|tk) reflects
the value of u1 predicted at the current sampling time tk to be applied for t ∈ [ti, ti+1), i = k, . . . , k + Nk.
The upper and lower bounds on s1 and s2 were set to 2× 1019 and −2× 1019, respectively, to allow them
to be effectively unbounded. The initial guesses of the slack variables were set to 0 at each sampling time.

When the LEMPC with the above modifications is applied to the process with QAdded = 500 K/h
starting at 0.5 h, the closed-loop state again exits Ωρ̂ for some time after 0.5 h but reenters it and also does
not exit Ωρ̂sa f e , once again reflecting the conservatism from a closed-loop stability standpoint of a strategy
that updates the process model whenever the closed-loop state leaves Ωρ̂. Furthermore, if hNL,1 is utilized
after it is detected that the closed-loop state leaves Ωρ̂ (the first sampling time at which this occurs is
0.51 h), then it exits Ωρ̂sa f e by 0.52 h, showing that the length of the sampling period or the size of Ωρ̂ with
respect to Ωρ̂sa f e is not sufficiently small enough to impose model updates before closed-loop stability
is jeopardized because measurements are only available every sampling time. If instead, however, ρ̂ is
updated to be 1200 and ρ̂e is set to 900, then the closed-loop state remains in Ωρ̂ between 0.51 and 0.52 h.
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If at 0.52 h, we assume that the new dynamics (i.e., with QAdded = 500 K/h) become available and are
used in designing hNL,2 (used from 0.52 h until the first sampling time at which x(tk) ∈ Ωρ̂ again) and that
a second LEMPC designed based on the updated model is used after the closed-loop state has reentered
Ωρ̂, the state-space trajectory in Figure 11 results.
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Figure 8. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and no change in the
control law or model in response.
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Figure 9. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law
switched to hNL,1 in response to the closed-loop state leaving Ωρ̂.
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Figure 10. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law
switched to hNL,1 in response to the closed-loop state leaving Ωρ̂ and then switched to hNL,2 at 0.54 h.
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Figure 11. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law switched
to hNL,1 in response to the closed-loop state leaving Ωρ̂, then switched to hNL,2 at 0.52 h, and finally switched
back to an LEMPC incorporating an updated process model after the closed-loop state reenters Ωρ̂.

4. Conclusions

This work developed a Lyapunov-based EMPC framework for handling unexpected considerations of
different types. One of the types of considerations handled was end-user response to how a control
law operates a process, providing a controller self-update capability through input rate of change
constraints that allows even uncertain or imprecise information about the end-user response to be used
in optimizing the controller formulation without loss of closed-loop stability or feasibility. The second
type of consideration was the occurrence of anomalies, where conditions which would guarantee that
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the closed-loop state can be stabilized in the presence of an anomaly that changes the underlying process
dynamics as long as a detection method identifies a new process model sufficiently quickly, were presented
that uses the LEMPC stability properties in developing an anomaly detection mechanism. Chemical
process examples were presented for both cases to demonstrate the proposed approach.

The work above provides insights into interpretability and verification considerations for EMPC from
a theoretical perspective. However, these remain significant challenges for this control design. For example,
there is no guarantee that adjusting a given constraint (e.g., adjusting the upper bound on an input rate of
change constraint) will cause process behavior to appear interpretable to an end user before it approaches
steady-state behavior, which may reduce the benefits of using EMPC. Furthermore, the results related to
anomaly handling were demonstrated via process examples to be highly conservative. No methods were
presented for practically ascertaining time (online) until an anomaly would result in the closed-loop state
leaving a known region of state-space after detection to facilitate appropriate actions to be taken. Further
work on these issues needs to be undertaken to develop practical EMPC designs with appropriate safety
and interpretability properties with low time required to verify the designs before putting them into the
field for different processes.
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Appendix A. Proof of Proposition 4

Proof. The result in Equation (62) is stated in Proposition 1; therefore, it remains to prove that Equation (63)
holds. To derive the result of Equation (63), Equations (59) and (60) are integrated as follows:

x̄a,i+1,q(t) = x̄a,i,q(ts,i+1) +
∫ t

ts,i+1
f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))ds (A1)

x̄b,q(t) = x̄b,q(ts,i+1) +
∫ t

ts,i+1
f̄NL,q(x̄b,q(s), ūq(s))ds (A2)

for t ∈ [ts,i+1, t1]. Subtracting Equation (A2) from Equation (A1) and taking norms of both sides of the
resulting equation gives the following:

|x̄a,i+1,q(t)− x̄b,q(t)| = |x̄a,i,q(ts,i+1)− x̄b,q(ts,i+1) +
∫ t

ts,i+1
[ f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄NL,q(x̄b,q(s), ūq(s))]ds|

≤ |x̄a,i,q(ts,i+1)− x̄b,q(ts,i+1)|+
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))

+ f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))|ds

+
∫ t

ts,i+1
| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

(A3)

From Equations (15), (52), and (61), we have the following:

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
Mchange,i,qds +

∫ t
ts,i+1
| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄i,q(x̄b,q(s), ūq(s), 0)

+ f̄i,q(x̄b,q(s), ūq(s), 0)− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) + Mchange(t− ts,i+1)

+
∫ t

ts,i+1
| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄i,q(x̄b,q(s), ūq(s), 0)|ds

+
∫ t

ts,i+1
| f̄i,q(x̄b,q(s), ūq(s), 0)− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) + Mchange(t− ts,i+1) +
∫ t

ts,i+1
(Lx,i,q|x̄a,i,q(s)− x̄b,q(s)|+ Lw,i,q|wi(s)|)ds

+
∫ t

ts,i+1
Merr,i,qds

(A4)
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Using Equation (50) we get the following,

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t− ts,i+1) + (Lw,i,qθi + Merr,i,q)
∫ t

ts,i+1
(eLx,i,qs − 1)ds

+
∫ t

ts,i+1
(Lw,i,qθi + Merr,i,q)ds

≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t− ts,i+1) + (Lw,i,qθi + Merr,i,q)
∫ t

ts,i+1
(eLx,i,qs − 1)ds

+(Lw,i,qθi + Merr,i,q)(t− ts,i+1)

≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t− ts,i+1) +
(Lw,i,qθi+Merr,i,q)

Lx,i,q
(eLx,i,q t − eLx,i,q ts,i+1 )

(A5)

Appendix B. Proof of Theorem 2

Proof. To guarantee the results, recursive feasibility of the LEMPC must hold. Feasibility of the LEMPC
of Equation (24) follows from Theorem 1 when x(tk) ∈ Ωρ̂q . Subsequently, closed-loop stability must be
proven both when ts,i+1 = tk and when ts,i+1 ∈ (tk, tk+1).

Consider first the case that ts,i+1 = tk. In this case, if Equation (68) holds with p = i + 1 and
x(tk) ∈ Ωρ̂q , then x(t) ∈ Ωρ̂q from Theorem 1 for t ≥ 0. Consider second the case that ts,i+1 ∈ (tk, tk+1).
In this case, until ts,i+1, if Equations (68) and (69) hold for p = i, the closed-loop state is maintained within
Ωρ̂q from Theorem 1. To guarantee that the closed-loop state is maintained in Ωρ̂q after ts,i+1 until tk+1,
it is first noted that, if x(tk) ∈ Ωρ̂e,q and ts,i+1 ∈ (tk, tk+1), then from Proposition 2, we have the following:

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(tk+1)) + fV,q(|x̄a,i+1,q(t)− x̄b,q(tk+1)|) (A6)

if x̄a,i+1,q(t), x̄b,q(t) ∈ Ωρ̂q for t ∈ [tk, tk+1]. If Proposition 4 holds, then from Equation (24f), we have
the following:

V̂q(x̄a,i+1,q(t)) ≤ ρ̂e,q + fV,q( fW,i,q(ts,i+1 − tk) + (Mchange,i,q)(t− ts,i+1) +
Lw,i,qθi+Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1 )) (A7)

If Equation (70) holds, then V̂q(x̄a,i+1,q(t)) ≤ ρ̂q for t ∈ [ts,i+1, tk+1].
If instead x(tk) ∈ Ωρ̂q /Ωρ̂e,q and if Equations (68) and (69) hold, the closed-loop state is maintained

within Ωρ̂q from Theorem 1 until ts,i+1. To guarantee that the closed-loop state is maintained in Ωρ̂q after
ts,i+1 until tk+1, it is first noted that the following is true:

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), ūq(tk)))

≤
∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), hNL,q(x(tk)))) ≤ −α̂3,q(|x(tk)|)

(A8)

from Equation (12b) and Equation (24g). When tk ≤ t < ts,i+1, then from Reference [51], if Equation (68)
and the conditions of Theorem 2 hold with p = i, the following is true:

∂V̂q(x̄a,i,q(τ))

∂x
( f̄i,q(x̄a,i,q(τ), ūq(tk), wi(τ)))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi

(A9)

for τ ∈ [tk, ts,i+1), and
V̂q(x̄a,i,q(ts,i+1)) ≤ V̂q(x(tk)) (A10)
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Given that x̄a,i,q(ts,i+1) = x̄a,i+1,q(ts,i+1), the following holds:

∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

=
∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0)) +
∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi +

∣∣∣∣ ∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))
∣∣∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi

+

∣∣∣∣ ∂V̂q(x̄a,i,q(ts,i+1))

∂x

∣∣∣∣ ∣∣ f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0)− f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0)
∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(|x̄a,i,q(ts,i+1)|)Mchange,i,q

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

(A11)

where the last inequality follows from the fact that x̄a,i,q(ts,i+1) ∈ Ωρ̂q if x(tk) ∈ Ωρ̂q when Equations (68)
and (69) hold according to Theorem 1.

Finally, for τ ∈ [ts,i+1, tk+1),

∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))

=
∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ)) +
∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+

∣∣∣∣ ∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))−
∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))
∣∣∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+L′x,i+1,q|x̄a,i+1,q(τ)− x̄a,i+1,q(ts,i+1)|+ L′w,i+1,qθi+1

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q Mi∆ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+L′x,i+1,q Mi+1∆ + L′w,i+1,qθi+1

(A12)

If Equation (71) holds, then integrating Equation (A12) gives that V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄a,i,q(ts,i+1)),
for all t ∈ [ts,i+1, tk+1]. Since x̄a,i+1,q(ts,i+1) ∈ Ωρ̂q , this guarantees that the closed-loop state remains in
Ωρ̂q even after the switch in the process model occurs, regardless of whether it occurs at a sampling time
or throughout a sampling period, when the conditions of the theorem hold.

Appendix C. Proof of Theorem 3

Proof. This proof consists of several parts. First, recursive feasibility of the LEMPC of Equation (24)
until td,q is presented. Second, it is demonstrated that, after ts,i+1 and before td,q, the closed-loop state
is maintained in Ωρ̂samp,q under the conditions of the theorem. Third, it is demonstrated that, after td,q,
the closed-loop state will be maintained in Ωρ̂q for a number of sampling periods given by th,q.

Part 1. Until td,q, each state measurement provided to the LEMPC of Equation (24) is within Ωρ̂q . From
Reference [51], under the conditions of Equations (65) and (66), this guarantees feasibility of the LEMPC of
Equation (24). After td,q, when the closed-loop state exits Ωρ̂q , feasibility is no longer guaranteed for the
LEMPC of Equation (24) but hNL,q is then used instead according to the statement of the theorem so that
a characterizable control law is always used.

Part 2. Until ts,i+1, closed-loop stability within Ωρ̂q is guaranteed under the LEMPC of Equation (24)
under the conditions in Equations (65) and (66) from Reference [51]. Subsequently, until td,q, it must be
demonstrated that, if the state measurement is contained within Ωρ̂q at tk, then x(t) ∈ Ωρ̂samp,q ⊂ Ωρ̂sa f e,q ,



Mathematics 2020, 8, 259 34 of 38

t ∈ [tk, tk+1]. Here, one of two cases holds: either x(tk) ∈ Ωρ̂e,q or x(tk) ∈ Ωρ̂q /Ωρ̂e,q . The state of the
underlying model before ts,i+1 is denoted by x̄a,i,q and, after, is x̄a,i,q+1.

If x(tk) ∈ Ωρ̂e,q and if ts,i+1 ∈ [tk, tk+1), from Propositions 1 and 2 and Equation (24f), we have
the following:

V̂q(x̄a,i,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q(|x̄a,i,q(t)− x̄b,q(t)|)
≤ ρ̂e,q + fV,q( fW,i,q(∆)) ≤ ρ̂q

(A13)

for t ∈ [tk, ts,i+1) when Equation (65) holds, and

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q(|x̄a,i+1(t)− x̄b,q(t)|)

≤ ρ̂e,q + fV,q( fW,i,q(ts,i+1 − tk) + (Mchange,i,q)(t− ts,i+1) +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1))

(A14)

for t ∈ [ts,i+1, tk+1) from Proposition 4. From the conditions in Equation (73), this gives that V̂q(x(t)) is
maintained within Ωρ̂samp,q for all t ∈ [tk, tk+1).

If instead ts,i+1 occurs before or at tk, then x̄b,q(tk) = x̄a,i+1,q(tk) and Propositions 1 and 2 and
Equation (24f) give the following:

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q( fW,i+1,q(∆))

≤ ρ̂e,q + fV,q( fW,i+1,q(∆))
(A15)

for all t ∈ [tk, tk+1). From the conditions in Equation (75), this gives that V̂q(x(t)) is maintained within
Ωρ̂samp,q for all t ∈ [tk, tk+1).

If x(tk) ∈ Ωρ̂q /Ωρ̂e,q , then the constraint of Equation (24g) is used. In this case, we consider the cases
where ts,i+1 ∈ [tk, tk+1) and the case where ts,i+1 occurs before tk, separately.

When ts,i+1 ∈ [tk, tk+1), then before ts,i+1, Equation (24g) holds. From Reference [51], Equation (66)
with Equation (67) cause x̄a,i,q(t) ∈ Ωρ̂q for t ∈ [tk, ts,i+1). Subsequently, this result no longer holds because
the underlying dynamic model changed so that Equation (24g) no longer provides an indication of the
conditions which the closed-loop state meets, and a worst-case scenario in which the closed-loop state could
subsequently move out of Ωρ̂q is considered. Specifically, the first inequality in Equation (A14) continues
to hold. Equation (24f) does not necessarily hold but instead it is guaranteed [51] that x̄b,q(t) ∈ Ωρ̂q under
Equations (66) and (67), so that V̂q(x̄b,q) ≤ ρ̂q. Then, if Equation (74) holds, extending the first inequality
in Equation (A14) guarantees that V̂q(x̄a,i+1,q(t)) ≤ ρ̂samp,q, for t ∈ [ts,i+1, tk+1). Therefore, throughout
a sampling period containing ts,i+1, the closed-loop state does not leave Ωρ̂samp,q . If instead ts,i+1 is before
tk, then Equation (24g) is activated at tk and when x̄a,i+1,q(tk) ∈ Ωρ̂q /Ωρ̂s,q [51]:

∂V̂q(x̄a,i+1,q(τ))

∂x
( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))

≤ −α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i+1,q + L′x,i+1,q Mi+1∆ + L′w,i+1,qθi+1

(A16)

When Equation (72) is satisfied,

∂V̂q(x̄a,i+1,q(τ))

∂x
( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ)) ≤ εW,i+1,q/∆ (A17)

or
V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄a,i+1,q(tk)) +

εW,i+1,q
∆ (t− tk) (A18)
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This indicates that V̂q is guaranteed to increase at a worst-case rate along the closed-loop state
trajectories under the control actions determined by the LEMPC of Equation (24) if the condition of
Equation (72) is satisfied after an anomaly occurs. To ensure that, at the end of the sampling period,
V̂q(x̄a,i+1,q(t)) ≤ ρ̂samp,q, given that V̂q(x̄a,i+1,q(tk)) ≤ ρ̂q, Equation (76) must hold. If ts,i+1 is before tk but
x̄a,i+1,q(tk) ∈ Ωρ̂s,q , then if ρ̂min,i+1,q ⊂ ρ̂samp,q, then x̄a,i+1,q(t) ∈ Ωρ̂samp,q from Equation (67).

Thus, whether x(tk) ∈ Ωρ̂e,q or x(tk) ∈ Ωρ̂q /Ωρ̂e,q , x(tk+1) ∈ Ωρ̂samp,q . Applying this recursively
indicates that, from ts,i+1 until td,q, the closed-loop state is maintained within Ωρ̂samp,q . This also indicates
that V̂q(x̄a,i+1,q(td,q)) ≤ ρ̂samp,q. Because Ωρ̂samp,q ⊂ Ωρ̂sa f e,q , x̄a,i+1,q(td,q) ∈ Ωρ̂sa f e,q as well.

Part 3. At td,q, hNL,q in sample-and-hold begins to be used to control the process. Again,
Equations (A16)–(A18) hold.

The time tout,q at which the closed-loop state reaches Ωρ̂sa f e,q (i.e., when V̂q(x̄a,i+1,q(tout,q)) = ρ̂sa f e,q)

when initialized from V̂q(x̄a,i+1,q(tk)) = ρ̂samp,q, where ρ̂samp,q ≤ ρ̂sa f e,q, is at least
(ρ̂sa f e,q−ρ̂samp,q)∆

εW,i+1,q
+ tk.

To ensure that the time between tk and tout,q is no greater than
(ρ̂sa f e,q−ρ̂samp,q)∆

εW,i+1,q
, the number of sampling

periods available after td,q until the model needs to be updated with one which meets the conditions in

Equation (66) with i set to i + 1 and q set to q + 1 is floor(
(ρ̂sa f e,q−ρ̂samp,q)

εW,i+1,q
).

Appendix D. Proof of Theorem 4

Proof. If hNL,q+1 is used to control the system after tID,q and the conditions of Theorem 4 are met,
then xa,i+1,q(tID,q) = xa,i+1,q+1(tID,q), which lies in both Ωρ̂sa f e,q and in Ωρ̂sa f e,q+1 so that the closed-loop
state has not left either region. From Reference [51], if Equation (66) is met for the q + 1/i + 1 model
combination, then hNL,q+1 causes V̂q+1 to decrease so that it will not leave Ωρ̂sa f e,q+1 before the closed-loop
state enters Ωρ̂q+1 . Once the closed-loop state enters Ωρ̂q+1 , then the LEMPC of Equation (24) is used
with the q + 1 model, and if Equations (65) and (66) are met for the q + 1/i + 1 model combination, the
closed-loop state is maintained in Ωρ̂q+1 from Reference [51].
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