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Abstract: This paper deals with the study of the existence and non-existence of solutions of a
three-parameter family of nonlinear fractional differential equation with mixed-integral boundary
value conditions. We consider the α-Riemann-Liouville fractional derivative, with α ∈ (1, 2].
To deduce the existence and non-existence results, we first study the linear equation, by deducing the
main properties of the related Green functions. We obtain the optimal set of parameters where the
Green function has constant sign. After that, by means of the index theory, the nonlinear boundary
value problem is studied. Some examples, at the end of the paper, are showed to illustrate the
applicability of the obtained results.

Keywords: fractional equations; Green functions; integral boundary conditions; fixed-point index;
existence and non-existence.

1. Introduction

In recent years, fractional calculus has been applied to a huge number of fields in science,
engineering, and mathematics. Some of the areas where fractional calculus has made a profound
impact include biology, physics, viscoelasticity, rheology, electrical, engineering, electrochemistry and
control theory, see for instance [1–7].

Integral boundary conditions have been considered, for instance, in [8], where various applications
in applied fields such as chemical engineering, thermoelasticity, population dynamics are explained.

The existence of solutions of nonlinear boundary value problem coupled with integral boundary
conditions in ordinary and fractional cases has been widely studied by many authors, see for
example [9–14] and the references therein. In 2009, Ahmad and Nieto [15] obtained some
existence results for the following nonlinear fractional integrodifferential equations with integral
boundary conditions:

CDqx(t) = f (t, x(t), (χx)(t)), 0 < t < 1, 1 < q ≤ 2,

αx(0) + βx′(0) =
∫ 1

0 q1(x(s))ds,

αx(1) + βx′(1) =
∫ 1

0 q2(x(s))ds,

where f : [0, 1]× X× X −→ X, for γ : [0, 1]× [0, 1] −→ [0, ∞),

(χx)(t) =
∫ t

0
γ(t, s)x(s)ds,
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q1, q2 : X −→ X α ≥ 0, β ≥ 0 are real numbers and X is a Banach space, by employing to
Guo-Krasnoselskii fixed-point theorem and contraction mapping principle.

In [16], it is studied the following nonlinear problem involving nonlinear integral conditions:
CDαy(t) = f (t, y(t)), t ∈ [0, T], 1 < α ≤ 2,

y(0)− y′(0) =
∫ T

0 g(s, y(s)ds,

y(T)− y′(T) =
∫ T

0 h(s, y(s))ds.

Here, f , g and h : [0, T]× E −→ E are given functions that satisfy suitable assumptions and E is
a Banach space. By means of the technique associated with measures of non-compactness and the
fixed-point theorem of Monch type, it is proved the existence of solutions of the problem.

In [17], it is considered the following nonlinear fractional differential equations with boundary
value conditions {

Dαu(t) + g(t) f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u′(1) =
∫ 1

0 h(t)u(t)dt,

where 1 < α ≤ 2, g ∈ C((0, 1), [0, ∞)) and g may be singular at t = 0 or/and at t = 1, h ∈ L1[0, 1] and
f ∈ C[0, 1]× [0, 1], [0, ∞)). The authors derive the Green function associated with the above problem
and sharp estimates on it are established. Thus, by using fixed-point theorem in cones, they proved
some results on the existence of positive solutions.

In this paper, the following nonlinear fractional differential equation with non-homogeneous
integral boundary conditions is considered:Dαu(t)− λu(t) + f (t, t2−αu(t)) = 0, t ∈ I := [0, 1],

lim
t→0+

t2−αu(t) = µ
∫ 1

0 u(s)ds, u′(1) = η
∫ 1

0 u(s)ds.
(1)

Here λ ∈ R, µ, η ≥ 0, Dα, 1 < α ≤ 2, is the Riemann-Liouville fractional derivative and
f ∈ C([0, 1]× [0, ∞), [0, ∞)).

We look for solutions u : I → R such that function t2−α u(t) ∈ C1(I). Thus, as a direct
consequence, we deduce that, in particular, u ∈ C1((0, 1]). Moreover, it may be discontinuous
at t = 0.

We are interested in to prove the existence and non-existence of solutions of the treated problem.
To this end, we will use the classical index theory [18–20], in the line of the papers [21–25], where it is
used for ordinary differential equations.

The main tool is the construction of the Green function related to the corresponding linear problemDαu(t)− λu(t) + y(t) = 0, t ∈ I,

lim
t→0+

t2−αu(t) = µ
∫ 1

0 u(s)ds, u′(1) = η
∫ 1

0 u(s)ds.
(2)

It is important to mention that the results obtained in [26] are fundamental in the development
of our results. In such reference we consider the homogeneous case µ = η = 0, i.e., with no integral
boundary conditions. There, we obtain the explicit expression of its related Green function (denoted
by G1 on this paper). Moreover, we deduce some sharp properties concerning its constant sign,
compiled on Lemmas 1 and 2. The main properties of the Green function G related to the considered
problem (2) are derived from the ones proved in [26] for G1. Therefore, we use the qualitative properties
obtained on those reference and study the parameter relationship between α, λ, µ and η that ensure the
constant sign of the Green function related to the linear problem (2). We follow similar arguments to
the ones used on [12,27–30].
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The paper is scheduled as follows: after some introductory results, we study, in Section 3,
the related linear equation and deduce suitable properties on the qualitative behavior and constant
sign of the related Green function. Next section is devoted to ensuring the existence and non-existence
of solutions of the considered nonlinear boundary value problem. The results follow from index theory.
Finally, in last section, some examples are given to point out the applicability of the obtained results.

2. Preliminary Results

In this section, we introduce some notations and definitions that which we need in later.

Definition 1 ([31]). The Riemann-Liouville fractional integral of order α > 0 for a measurable function
f : (0,+∞)→ R is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t > 0,

where Γ is the Euler Gamma function, assuming that the right-hand side is point-wise defined on (0,+∞).

Definition 2 ([31]). The Riemann-Liouville fractional derivative of order α > 0 for a measurable function
f : (0,+∞)→ R is defined as

Dα f (t) =
1

Γ(n− α)
(

d
dt
)n
∫ t

0
(t− s)n−α−1 f (s)ds = (

d
dt
)n In−α f (t),

provided that the right-hand side is point-wise defined on the interval (0,+∞). Here n = [α] + 1, where [α]
denotes the integer part of the real number α.

Let C(I) be the Banach space of all continuous functions defined on I endowed with the maximum
norm ‖ f ‖ =: max{| f (t)| : t ∈ I}. Define for t ∈ I, fγ(t) = tγ f (t), if t > 0 and fγ(0) = limt→0+ tγ f (t),
provided it exists. Let Cγ(I), γ ≥ 0 be the space of all functions f such that fγ ∈ C(I). It is well known
that Cγ(I) is a Banach space endowed with the norm

‖ f ‖γ =: max{tγ| f (t)| : t ∈ I}.

3. Linear Problem

This section is devoted to the study of the linear problem (2). More concisely, we deduce the exact
values of the parameter λ for which the Green function G satisfies a strong positiveness condition. In a
first moment we introduce the concept of Mittag-Leffler function.

Definition 3 ([31], p. 42). A two-parameter function of the Mittag−Leffler Eα,β(x) is defined by the
series expansion

Eα,β(x) =
∞

∑
k=0

xk

Γ(αk + β)
, α, β > 0, x ∈ R.

For β = 1, Eα,1 coincides with the usual Mittag−Leffler function Eα.

It is not difficult to verify that, provided Eα,α−1(λ) 6= 0,

v1(t) = Γ(α− 1)
(

tα−2Eα,α−1(λtα)− Eα,α−2(λ)

Eα,α−1(λ)
tα−1Eα,α(λtα)

)
(3)



Mathematics 2020, 8, 255 4 of 13

is the unique solution of the problemDαv1(t)− λv1(t) = 0, t ∈ I,

lim
t→0+

t2−αv1(t) = 1, v′1(1) = 0,
(4)

and

v2(t) =
tα−1Eα,α(λtα)

Eα,α−1(λ)
. (5)

the unique one of Dαv2(t)− λv2(t) = 0, t ∈ I,

lim
t→0+

t2−αv2(t) = 0, v′2(1) = 1.
(6)

Moreover, as it is showed in Theorem 6 in [26], if Eα,α−1(λ) 6= 0, the unique solution of problemDαv(t)− λv(t) + y(t) = 0, t ∈ I,

lim
t→0+

t2−αv(t) = v′(1) = 0,

follows the expression

v(t) =
∫ 1

0
G1(t, s)y(s)ds,

with

G1(t, s) =


tα−1Eα,α(λtα)Eα,α−1(λ(1−s)α)

(1−s)2−αEα,α−1(λ)
− (t− s)α−1Eα,α(λ(t− s)α), 0 ≤ s ≤ t ≤ 1,

tα−1Eα,α(λtα)Eα,α−1(λ(1−s)α)

(1−s)2−αEα,α−1(λ)
, 0 ≤ t < s < 1.

(7)

In order to characterize the uniqueness of solutions of Problem (2), we denote (See Figures 1
and 2)

θ ≡ θ(α, λ) :=
∫ 1

0
v1(t)dt and σ ≡ σ(α, λ) :=

∫ 1

0
v2(t)dt.

Theorem 1. Let y ∈ C(0, 1] ∩ L∞(0, 1), 1 < α ≤ 2, µ, η ≥ 0 and λ ∈ R be such that Eα,α−1(λ) 6= 0 and
1− µθ − ησ 6= 0. Then problem (2) has a unique solution u ∈ C1

2−α(I), given by

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = G1(t, s) +
(µv1(t) + ηv2(t))
(1− µθ − ησ)

(∫ 1

0
G1(r, s)dr

)
, (8)

with v1, v2 and G1 given in (3), (5) and (7) respectively.

Proof. Arguing in a similar way as in Theorem 6 in [26], we deduce that

u(t) =
∫ 1

0
G1(t, s)y(s)ds + µ

(∫ 1

0
u(s)ds

)
v1(t) + η

(∫ 1

0
u(s)ds

)
v2(t). (9)

Let us denote
∫ 1

0 u(s)ds = A. Then, from the previous equality, we deduce that

A =
∫ 1

0
u(t)dt =

∫ 1

0

(∫ 1

0
G1(t, s)y(s)ds

)
dt + A(µθ + ησ),
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that is, since 1− µθ − ησ 6= 0,

A =

∫ 1
0

(∫ 1
0 G1(t, s)y(s)ds

)
dt

(1− µθ − ησ)
.

Replacing A in (9), we obtain the following expression of the function u

u(t) =
∫ 1

0
G1(t, s)y(s)ds +

∫ 1
0

(∫ 1
0 G1(t, s)y(s)ds

)
dt

(1− µθ − ησ)
(µv1(t) + ηv2(t)). (10)

According to Fubini’s Theorem, we have

u(t) =
∫ 1

0

(
G1(t, s) +

µv1(t) + ηv2(t)
(1− µθ − ησ)

∫ 1

0
G1(t, s)dt

)
y(s)ds

=
∫ 1

0
G(t, s)y(s)ds,

and the result is concluded.

In our approach, we need the following properties of G1(t, s) proved in Lemma 8 in [26].

Lemma 1. Let G1 be the Green function given in (7) and λ∗1 be the first negative zero of Eα,α−1(λ) = 0.
Then for 1 < α ≤ 2, it is satisfied that

G1(t, s) > 0 f or all t, s ∈ (0, 1) i f and only i f λ > λ∗1 .

Lemma 2. Let G1 be the Green function given in (7), 1 < α ≤ 2 and λ > λ∗1 . Then there exists a positive
constant M and a continuous function m such that m(t) > 0 on (0, 1] and m(0) = 0, for which the following
inequalities are fulfilled:

m(t) ≤ t2−αG1(t, s)
s(1− s)α−2 ≤ M, f or all t, s ∈ (0, 1). (11)

Next, we prove the following properties for the Green function G(t, s). To this end, in Table 1,
by means of numerical approach, we give some values of θ and σ for 1 < α ≤ 2 for which we ensure
that the Green function G(t, s) has a constant sign.

Table 1. Somevalues of θ and σ for 1 < α ≤ 2.

α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

λ −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

θ(α, λ) 12.647 5.62054 2.83501 1.47577 0.657725 −0.0336574 −1.21724 54.6033 2.13745 1.20846

σ(α, λ) −4.52049 −1.94567 −0.99204 −0.688973 −0.638201 −0.777128 −1.40827 38.7227 1.22996 0.630732

Lemma 3. Let G be the Green function related to problem (2) and λ∗1 be the first negative zero of Eα,α−1(λ) = 0.
Then for (1− µθ − ησ) > 0 and 1 < α ≤ 2, the following properties hold:

1. G is a continuous function on (0, 1]× [0, 1).
2. If λ > λ∗1 then G(t, s) > 0 for all t, s ∈ (0, 1)
3. Consider the function m(t) and the positive content M, introduced in Lemma 2. Then the following

inequality holds:

m(t) ≤ t2−αG(t, s)
s(1− s)α−2 ≤ M′, for all t, s ∈ (0, 1), (12)

with

M′ = M
(

1 +
L

(1− µθ − ησ)(α− 1)

)



Mathematics 2020, 8, 255 6 of 13

and
L = µ ‖v1‖2−α + η ‖v2‖2−α.

- 2 0 5

- 10

20

Figure 1. Graph of θ for α = 1.1 (blue) and α = 1.5 (orange).

- 2 0 5

- 4

2

Figure 2. Graph of σ for α = 1.1 (blue) and α = 1.5 (orange).

Proof. 1. It is obvious from the continuity of G1, v1 and v2.
2. From Lemma 1, G1(t, s) > 0 for all t, s ∈ (0, 1). Moreover, from Lemma 18 in [26], we have that

v1 and v2 are positive on (0, 1]. And so, Property 2 holds immediately from expression (8).
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3. From Lemma 2 and for t ∈ (0, 1] and s ∈ (0, 1), since (1− µθ − ησ) > 0, we have

t2−αG(t, s) = t2−αG1(t, s) + t2−α (µv1(t) + ηv2(t))
(1− µθ − ησ)

(∫ 1

0
G1(t, s)dt

)
≥ t2−αG1(t, s)

≥ s(1− s)α−2m(t).

Now, using again Lemma 2, from equation (8) we obtain

t2−αG(t, s) ≤ s(1− s)α−2M +
L

(1− µθ − ησ)
s(1− s)α−2M

∫ 1

0
rα−2dr

= s(1− s)α−2M
(

1 +
L

(1− µθ − ησ)(α− 1)

)
.

Which completes the proof.

4. Nonlinear Problem

4.1. Existence of Solutions

This section is devoted to proving the existence of at least one solution of the nonlinear fractional
differential equation with non-homogeneous integral boundary conditions (1). To this end, we will
apply the classical index theory.

Let K be a cone in a Banach space X. If Ω is a bounded open subset of K, we denote by Ω and
∂Ω the closure and the boundary relative to K. When D is an open bounded subset of X we write
DK = D ∩ K, an open subset of K.

The following result is well-known in fixed index theory for completely continuous operators
T (i.e., continuous and T(S) compact for each bounded subset S ⊂ K). See for example [18,20,32] for
further information.

Lemma 4. Let D be an open bounded set with DK 6= ∅ and DK 6= K. Assume that T : DK → K is a
completely continuous operator such that x 6= Tx for x ∈ ∂DK. Then the fixed-point index iK(T, DK) has the
following properties.

(1) If there exists e ∈ K \ {0} such that x 6= Tx + µe for all x ∈ ∂DK and all µ > 0, then iK(T, DK) = 0.
(2) If γx 6= Tx for all x ∈ ∂DK and all γ ≥ 1, then iK(T, DK) = 1.
(3) Let D1 be open in X such that D1 ⊂ DK. Then

iK(T, DK) = iK(T, D1) + iK(T, DK\D1).

(4) If iK(T, DK) 6= 0 then there exists u ∈ DK such that u = Tu.

We assume the following regularity for the nonlinear part of the equation:

(H1) f : [0, 1]× [0, ∞) −→ [0, ∞) is a continuous function.

Next, we define the operator T : C2−α[0, 1]→ C2−α[0, 1] by

Tu(t) =
∫ 1

0
G(t, s) f (s, s2−αu(s))ds, 0 < t ≤ 1, (13)

where G is given by expression (8).
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Now, fix c1 ∈ (0, 1), denote m0 = min
t∈[c1,1]

m(t) > 0 and c = m0/M′, and define the following cone

K = {u ∈ C2−α(I) : u ≥ 0 on (0, 1], min
t∈[c1,1]

{t2−αu(t)} ≥ c‖u‖2−α}. (14)

To use the properties showed in Theorem 4, it is not difficult to verify that T is a completely
continuous operator on K such that T(K) ⊂ K (see Lemma 12 in [26] for details).

To prove the existence of solutions of problem (1), we need to prove that iK(T, DK) = 0 for an
open set DK ⊂ K. Therefore, we construct a relatively open set DK = Ωρ for which Ωρ 6= Ks for each
s > 0 and show that iK(T, Ωρ) = 0. This allows f to satisfy weaker conditions than those used in [26].

Definition 4. Let us define the following sets for every ρ > 0:

Kρ = {u ∈ K : ‖u‖2−α < ρ},

and
Ωρ = {u ∈ K : t2−αu(t) < ρ f or all t ∈ [c1, 1]}.

It is clear that
Kρ ⊂ Ωρ ⊂ K ρ

c
,

and, in particular, both Kρ and Ωρ are open and bounded sets of C2−α(I) for all ρ > 0.
In the two following lemmas some sufficient conditions are given to ensure that for a suitable

ρ > 0, the index is either 1 or 0.

Lemma 5. Let

0 < H =

(
max

0≤t≤1
{
∫ 1

0 t2−αG(t, s)ds}
)−1

∈ R

and

f ρ := max{ f (t, u)
ρ

; 0 ≤ t ≤ 1, 0 ≤ u ≤ ρ}.

If there exists ρ > 0 such that f ρ < H, then iK(T, Kρ) = 1.

Proof. To apply Lemma 4 (2), we will show that Tu 6= γu for all u ∈ ∂Kρ and every γ ≥ 1.
Suppose, on the contrary, that there exists u ∈ ∂Kρ and γ ≥ 1 such that

γt2−αu(t) = t2−α
∫ 1

0
G(t, s) f (s, s2−αu(s))ds.

Taking the maximum for t ∈ I, we obtain

γρ = γ‖u‖2−α = max
t∈I
{t2−α

∫ 1

0
G(t, s) f (s, s2−αu(s))ds}

≤ ρ f ρ max
t∈I
{t2−α

∫ 1

0
G(t, s)ds}

= ρ
f ρ

H
< ρ,

which contradicts the fact that γ ≥ 1. Therefore, the result is proved.

Lemma 6. Let

m1 =

(
min

c1≤t≤1
{
∫ 1

c1
t2−αG(t, s)ds}

)−1
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and

f 1
ρ := min{ f (t, u)

ρ
; c1 ≤ t ≤ 1, 0 ≤ u ≤ ρ

c
}.

If there exists ρ > 0 such that f 1
ρ > m1, then iK(T, Ωρ) = 0.

Proof. Let us see that there exists e ∈ K \ {0} such that u 6= Tu + γe for all x ∈ ∂Ωρ and all γ > 0.
Indeed, take e(t) = tα−2+r in I, with r ∈ (0, 1) such that cr

1 > m0/M′. It is clear that e ∈ K\{0}.
Assume, on the contrary, that there is u ∈ ∂Ωρ and γ > 0 such that u = Tu + γe. Then, for all

t ∈ [c1, 1], the following inequalities hold:

t2−αu(t) = t2−α

(∫ 1

0
G(t, s) f (s, s2−αu(s))ds + γtα−2+r

)
≥

∫ 1

0
t2−αG(t, s) f (s, s2−αu(s))ds

≥
∫ 1

c1

t2−αG(t, s) f (s, s2−αu(s))ds

Now, since
ρ ≥ s2−α u(s) ≥ m0

M′
‖u‖2−α = c ‖u‖2−α, for all s ∈ [c1, 1],

we have that previous expression is bigger than or equals to

ρ f 1
ρ

∫ 1

c1

t2−αG(t, s)ds > ρ
f 1
ρ

m1
> ρ

and we arrive at a contradiction.
Thus, from Lemma 4 (1), we deduce that iK(T, Ωρ) = 0.

The previous results allow us to deduce the following new result on existence of solutions for
problem (1).

Theorem 2. Let H and m1 be as in Lemmas 5 and 6 and 0 < ρ1 < c ρ2. Suppose that f ρ2 < H and f 1
ρ1

> m1.
Then Problem (1) has at least one solution u such that ‖u‖2−α ≤ ρ2 and there is t0 ∈ [c1, 1] for which
t2−α
0 u(t0) ≥ ρ1.

Proof. As we have proved along this section, the solutions of Problem (1) coincide with the fixed
points of operator T.

Of course, if T has a fixed-point u ∈ K, such that ‖u‖2−α = ρ2, we have that Problem (1) has a
solution satisfying such property. Moreover, we have, for any t ∈ I,

t2−αu(t) ≥
∫ 1

c1

t2−αG(t, s) f (s, s2−αu(s))ds.

Therefore, if t2−αu(t) < ρ1 for all t ∈ [c1, 1], we arrive at a contradiction as in the proof of
Lemma 6.

Therefore, suppose that u 6= Tu for all u ∈ ∂Kρ2 . By Lemmas 5 and 6, it is fulfilled that
iK(T, Kρ2) = 1 and iK(T, Ωρ1) = 0. In addition, since ρ1 < c ρ2, we have that Ωρ1 ⊂ K ρ1

c
⊂ Kρ2 .

Therefore, from Lemma 4 (3), we have that

iK(T, Kρ2 \Ωρ1) = iK(T, Kρ2)− iK(T, Ωρ1) = 1,



Mathematics 2020, 8, 255 10 of 13

and, from Lemma 4, (4), we have that T has a fixed-point u in Kρ2 \Ωρ1 . As a consequence we know
that Problem (1) has at least one solution u such that ‖u‖2−α < ρ2 and there is t0 ∈ [c1, 1] for which
t2−α
0 u(t0) ≥ ρ1.

Analogously, we may prove the following existence result.

Theorem 3. Let H and m1 be as in Lemmas 5 and 6 and 0 < ρ2 < c ρ1. Suppose that f ρ1 < H and f 1
ρ2

> m1.
Then Problem (1) has at least one solution u such that ‖u‖2−α ≤ ρ1 and there is t0 ∈ [c1, 1] for which
t2−α
0 u(t0) ≥ ρ2.

Proof. In this case, it is enough to take into account that Ω̄ρ2 ⊂ Kρ2/c ⊂ Kρ1

Since, in this case, if u 6= Tu in ∂Kρ1 , we have that iK(T, Kρ1) = 1 and iK(T, Ωρ2) = 0. The proof
follows from Lemma 4 (3) and (4).

4.2. Non-Existence Results

In this section, under the assumption of suitable sufficient conditions of the nonlinear part of the
equation of Problem (1) we deduce that such problem has no non-trivial and non-negative solution in
C2−α(I).

Theorem 4. Suppose that f : I × [0, ∞) → [0, ∞) is a continuous function and one of the following
conditions holds

(i) f (t, u) ≤ m̃u for u ≥ 0 and t ∈ I, where 0 < m̃ < α(α−1)
M′ .

(ii) f (t, u) ≥ M̃u for u ≥ 0 and t ∈ [c1, 1], with M̃ > m1 (m1 given in Lemma 6).

Then Problem (1) has no non-trivial and non-negative solution in C2−α(I).

Proof. (i) Suppose, on the contrary, that there exists u ∈ C2−α(I), u ≥ 0 on I, u not identically zero
on I, that solves (1). As we have seen, this property is equivalent to the fact that u = Tu. As a
consequence, since ‖u‖2−α > 0, for t ∈ I, we have

0 ≤ t2−αu(t) = t2−α
∫ 1

0
G(t, s) f (s, s2−αu(s))ds

≤ M′
∫ 1

0
s(1− s)α−2 f (s, s2−αu(s))ds

≤ M′m̃
∫ 1

0
s(1− s)α−2s2−αu(s)ds

≤ M′m̃
α(α− 1)

‖u‖2−α

< ‖u‖2−α.

Therefore, we get ‖u‖2−α < ‖u‖2−α, which is a contradiction.
(ii) In this case, it the result is false, we have that there exists u ∈ C2−α(I), u ≥ 0 on I,

with ‖u‖2−α > 0, such that u = Tu.

Then, for t ∈ [c1, 1], we have

t2−αu(t) ≥ t2−α
∫ 1

c1

G(t, s) f (s, s2−αu(s))ds

≥ M̃t2−α
∫ 1

c1

G(t, s)s2−αu(s)ds.
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Using that t2−α G(t, s) > 0 for all t, s ∈ [c1, 1] and, since s2−αu(s) is a continuous,
non-negative and non-trivial function on [c1, 1], we have that

min
t∈[c1,1]

{
t2−α

∫ 1

c1

G(t, s)s2−αu(s)ds
}

> 0.

In particular, previous inequalities show us that

u = min
t∈[c1,1]

{t2−αu(t)} > 0.

Moreover

u ≥ M̃ min
t∈[c1,1]

{t2−α
∫ 1

c1

G(t, s)s2−αu(s)ds} ≥ M̃u min
t∈[c1,1]

{
∫ 1

c1

t2−αG(t, s)ds} > u,

which is a contradiction.

5. A Particular Example

In this section, we present a particular case where to apply the existence results given in
previous section.

Example 1. Let us consider Problem (1) with λ∗1 < λ ≤ 0, α = 3
2 , µ = 1

12 , η = 1
16 , λ = − 1

2 , c1 = 1
3 .

A simple calculation yields to (1− µθ − ησ) ≈ 0.0998338 > 0 and c ≈ 0.0160729.
Let

f (t, u) = δ
√

1 + t(1 + u
3
2 ), for δ > 0.

Let ρ1, ρ2 > . Then

f 1
ρ1

= min
{

f (t, u)
ρ1

: t ∈ [
1
3

, 1], u ∈ [0,
ρ1

c
]

}
=

2√
3ρ1

δ,

and

f ρ2 = max
{

f (t, u)
ρ2

: t ∈ [0, 1], u ∈ [0, ρ2]

}
=

√
2(ρ

3
2
2 + 1)

ρ2
δ.

Moreover, it is not difficult to verify that H ≥ 0.0213044 and m1 ≤ 0.0504397.
Hence, from Theorem 2, for any ρ1, ρ2 such that ρ1 < cρ2 and

√
3ρ1

2
m1 < δ <

ρ2
√

2(1 + ρ
3
2
2 )

H

Problem (1) has at least one solution u ∈ C1/2(I), such that ‖u‖2−α ≤ ρ2 and there is t0 ∈ [c1, 1] for
which t2−α

0 u(t0) ≥ ρ1.
In particular, since the minimum on the left-hand side of previous inequality is 0 and, by defining

f (x) =
x

1 + x3/2

we have that
max
x≥0
{ f (x)} = f ( 3√4) ≈ 0.529134,

we have that Problem (1) has a non-negative and non-trivial solution for all

0 < δ < 0.00797113,
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such that ‖u‖1/2 ≤ 3
√

4.
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