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Abstract: For precise modeling of electromagnetic devices, we have to model material hysteresis.
A Genetic Algorithm, Differential Evolution with three different strategies, teaching–learning-based
optimization and Artificial Bee Colony, were used for testing seven different modified mathematical
expressions, and the best combination of mathematical expression and solving method was used for
hysteresis modeling. The parameters of the hysteresis model were determined based on the measured
major hysteresis loop and first-order reversal curves. The model offers a simple determination of
the magnetization procedure in the areas between measured curves, with the only correction of two
parameters based on only two known points in the magnetization process. It was tested on two
very different magnetic materials, and results show good agreement between the measured and
calculated curves. The calculated curves between the measured curves have correct shapes. The main
difference between our model and other models is that, in our model, each measured curve, major
and reversal, is described with different parameters. The magnetization process between measured
curves is described according to the nearest measured curve, and this ensures the best fit for each
measured curve. In other models, there is mainly only one curve, a major hysteresis or magnetization
curve, used for the determination of the parameters, and all other curves are then dependent on this
curve. Results confirm that the evolutionary optimization method offers a reliable procedure for
precise determination of the parameters.
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1. Introduction

Precise modeling of electromagnetic devices helps us to develop energy-efficient devices.
Modeling of modern electromagnetic devices is done mainly with the use of numerical models, such as
the finite element model. To get a precise model that allows accurate modeling of electromagnetic
devices, the description of the materials’ properties should be as good as possible. Often nonlinear
magnetic material is described using a magnetization curve. To make a better material description and
consider hysteresis losses, material hysteresis also has to be modeled. In the past, different hysteresis
models were presented by different authors.

To understand the meaning of the hysteresis model better, the magnetization of the motor
cross-section using hysteresis is presented schematically in Figure 1. The value of the excitation current
(Figure 1a) changes from the value presented with point 1 to values in points 2, 3, . . . to point 8.
Magnetization changes according to the curves presented between points marked at the hysteresis loop
(Figure 1b) and appropriate magnetic flux density B at a cross-section of the motor for magnetization
at each presented point (Figure 1c).
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Figure 1. Schematically presented magnetization using hysteresis: (a) Excitation current; (b) 
Hysteresis loop; (c) Magnetic flux density in the cross-section of the motor 

The magnetization process starts with demagnetized material at point 1. Magnetization from 
zero to the maximum current, point 2, is made using the original magnetization curve. From point 2 
to point 4, magnetization is made according to the left part of the major hysteresis loop. From point 
4 to point 5, magnetization is made according to the right part of the major hysteresis loop. For smaller 
current at points 6, 7 and 8, the magnetization is made according to the first-order reversal 
magnetization curves. The current can have any value, so the magnetization can be anywhere inside 
the hysteresis loop. Some of the first-order curves inside the hysteresis loop are measured, but most 
of them should be obtained using a hysteresis model. 

Mathematical models can be classified into two main categories: physical and 
phenomenological. The former (physical model) is created from the physics of a phenomenon, while 
the latter merely describes the end result with mathematical functions. Therefore, the latter is usually 
less complex, but it loses the connection to the physics of the material. Among the physical models is 
the Stoner–Wohlfarth model [1], which is often used to describe events in ferromagnetic thin layers. 
The material is treated as a single magnetic domain. Jiles-Atherton [2–4], on the other hand, also 
considers inter-domain interactions. Their main advantage is the connection with the physical 
parameters. More numerically oriented is the Preisach model of hysteresis [5–7]. It enables the 
description of different forms of hysteresis loops that are constructed from the so-called hysterons. 
They can switch between −1 and 1, depending on whether the input data exceed the start-up or shut-
off threshold. Other less known hysteresis models can be found, such as the Mayergoyz Vector 
Hysteresis model [8], or Vector Magneto–Hysteretic H&S model [9], and many modifications and 
corrections of existing models. The phenomenological, numerically oriented approach is presented 
in the paper. 

The history of the magnetization process must also be known in the case of magnetic field 
calculation considering hysteresis. For the Finite Element Method (FEM) calculation [10–20], the 
magnetization process could be different for almost every element. Due to this fact, it is favorable 
that the description of the magnetization history is as simple as possible. It is expected that the model 

Figure 1. Schematically presented magnetization using hysteresis: (a) Excitation current; (b) Hysteresis
loop; (c) Magnetic flux density in the cross-section of the motor.

The magnetization process starts with demagnetized material at point 1. Magnetization from zero
to the maximum current, point 2, is made using the original magnetization curve. From point 2 to point
4, magnetization is made according to the left part of the major hysteresis loop. From point 4 to point 5,
magnetization is made according to the right part of the major hysteresis loop. For smaller current
at points 6, 7 and 8, the magnetization is made according to the first-order reversal magnetization
curves. The current can have any value, so the magnetization can be anywhere inside the hysteresis
loop. Some of the first-order curves inside the hysteresis loop are measured, but most of them should
be obtained using a hysteresis model.

Mathematical models can be classified into two main categories: physical and phenomenological.
The former (physical model) is created from the physics of a phenomenon, while the latter merely
describes the end result with mathematical functions. Therefore, the latter is usually less complex, but it
loses the connection to the physics of the material. Among the physical models is the Stoner–Wohlfarth
model [1], which is often used to describe events in ferromagnetic thin layers. The material is treated
as a single magnetic domain. Jiles-Atherton [2–4], on the other hand, also considers inter-domain
interactions. Their main advantage is the connection with the physical parameters. More numerically
oriented is the Preisach model of hysteresis [5–7]. It enables the description of different forms of
hysteresis loops that are constructed from the so-called hysterons. They can switch between −1
and 1, depending on whether the input data exceed the start-up or shut-off threshold. Other less
known hysteresis models can be found, such as the Mayergoyz Vector Hysteresis model [8], or Vector
Magneto–Hysteretic H&S model [9], and many modifications and corrections of existing models.
The phenomenological, numerically oriented approach is presented in the paper.

The history of the magnetization process must also be known in the case of magnetic field
calculation considering hysteresis. For the Finite Element Method (FEM) calculation [10–20],
the magnetization process could be different for almost every element. Due to this fact, it is favorable
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that the description of the magnetization history is as simple as possible. It is expected that the model is
suitable for a wide range of different materials. It is a challenging problem to determine the parameters
of the hysteresis models.

In our work, a phenomenological scalar hysteresis model is made, which offers a simple description
of the magnetization process. Different mathematical expressions are tested to get the most appropriate.

This test is possible only if a reliable tool to determine the parameters is available. Different
evolutionary optimization methods were used for the determination of the parameters, with the aim to
determine the best for such a problem. The improper determination of model parameters due to the
improper selection of the optimization method can lead to an incorrect evaluation of model quality.
The used methods were genetic algorithm (GA) [21–26], differential evolution (DE) with three different
strategies, which are DE/rand/1/exp, DE/rand/2/exp, DE/best/1/bin [27–36], teaching–learning-based
optimization (TLBO) [37–45] and artificial bee colony (ABC) [46–55]. If an inappropriate solving
method is used, the adequacy of the mathematical expression will not be determined correctly.

Two measured hystereses of materials 9S20 and Alnico with first-order reversal curves were used
for the tests, and both are presented in Figure 2. The materials 9S20 and Alnico are magnetic, with very
different hysteresis curves.
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expression and solving method which is suitable for a wide range of different materials. The 
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Figure 2. Measured hysteresis of materials: (a) 9S20; (b) Alnico.

For the material 9S20, the parts of major hysteresis are marked with the left/right part of the
measured major hysteresis loop (SML/SMR), decreasing first-order reversal curves are marked as
SD1–SD4, and increasing first-order reversal curves are marked with SI1–SI4. For the material Alnico,
the parts of major hysteresis are marked with the left/right part of the Alnico measured major hysteresis
loop (AML/ AMR), decreasing curves are marked as AD1–AD3, and increasing curves are marked
with AI1–AI3. The measured major hysteresis curve and first-order reversal curves were used to
determine the parameters of the model. After that, only two points, the point at which the excitation is
changed (for example, C–F in Figure 2) and the point at the ends of the hysteresis (for example, A and
B in Figure 2), were used to determine the magnetization process in the hysteresis area between the
measured curves.

No comparison between different mathematical expressions and their use on cases of very different
hysteresis have been found in the literature, to know which of them is the most appropriate for the
hysteresis modeling. Our contributions in this work are:

• Modification of the mathematical expressions from the literature, such as expressions from [56],
by adding additional terms, with the aim to get a more suitable expression.

• Determination of a mathematical expression, selected between seven modified expressions, and
determination of an appropriate method for the calculation of the parameters, selected between six
methods (four methods and three different strategies of DE), to get the combination of expression
and solving method which is suitable for a wide range of different materials. The appropriate
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method for the determination of the parameters is suggested, and tested by using it for the
determination of parameters of a major hysteresis loop and more reversal curves inside the
hysteresis loop for two very different materials.

• An innovative description of the magnetization process inside the hysteresis areas between the
measured curves is presented, which offers a fast determination of the magnetization process and,
with that, is suitable for use in the scope of the FEM calculation. It is impossible to make so many
measurements that the calculation of curves in the area between the measurements would not
be necessary.

Other authors have tried to make models appropriate for FEM calculation. In [7] M. Kuczmann
developed an inverse vector Preisach hysteresis model, and it was inserted in the finite element
procedure. Y. Zhang et al. in [57] presented a novel hysteresis core loss model for magnetic laminations,
which is used in the scope of the finite element model. Like us, L. Petreswcu et al. in [56] also used
Sigmoid’s functions in hysteresis phenomena modeling. The main difference between our model
and other models is that, in our model, each measured curve, major and reversal, is described with
different parameters, obtained using the optimization method, and the magnetization process between
measured curves is described according to the nearest measured curve. In other models there is
mainly only one curve, a major hysteresis or magnetization curve, used for the determination of the
parameters, and all other curves are then dependent on this curve.

The paper consists of six Sections. In Section 2, different mathematical expressions are tested using
standard optimization methods and evolutionary methods, and the best combination is presented of
expression and method for determination of the parameters. The use of the model for the material
9S20 is presented in Section 3, and for the material Alnico in Section 4. The limits of the parameters
are presented in Section 5 and the use of the model is presented in Section 6. In the last, Section 7,
conclusions are given considering the proposed model.

2. Tested Mathematical Expressions and Solving Methods

Many engineering problems were solved using optimization methods. Sometimes the number of
function evaluations is severely limited by time or cost. In [58] Jones et al. presented a response surface
methodology to address this challenge. These surfaces can then be used for visualization, tradeoff

analysis, and optimization. We were dealing with a problem presented in [59] by Jesenik et al., where
the Newton–Raphson method was used to solve it. It is combined with approximation planes for a
two-dimensional problem, obtained with the time consuming Finite Element Model. In the presented
work, we are dealing with a curve-fitting problem, and function evaluations are not costly. Therefore,
approaches for decreasing the number of fitness evaluations are not used, such as the approach with
response surface methodology.

2.1. Tested Mathematical Expressions

Hysteresis occurs in various fields of engineering work [60–62]. In the past, different mathematical
expressions were used for hysteresis modeling. The magnetization curve, and also hysteresis, can
be modeled in the easiest way by using a Sigmoid function. In the literature, different expressions
of the Sigmoid function can be found [56], and it plays a very important role in hysteresis modeling.
A Sigmoid function is a mathematical function, which usually has an “S” shape. It is real-valued
and differentiable. It is used in many fields, such as in the field of Neural Networks, to describe
the processes in the human brain, in mathematical psychology, etc. We selected seven mathematical
expressions of Sigmoid function from [56]. The Langevin function is related to the Boltzmann law of
magnetic moment distributions. Other functions are mathematical expressions in which parameters
have less physical meaning. These are used to adjust mathematical expressions to hysteresis curves.

Seven mathematical expressions from [56] are modified appropriately by adding additional terms
into the expressions, and tested on the basis of two very different hystereses of a material named 9S20,
with coercive magnetic field strength 4096 A/m, and a material named Alnico, with coercive magnetic
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field strength 47,289 A/m, and both materials are presented in Figure 2. Measurements were made in
our laboratory (the Laboratory of Applied Electromagnetics at the Faculty of Electrical Engineering
and Computer Science, University of Maribor). Based on our experience in working with magnetic
materials, we added the following parts in each used expression:

- After each H, a parameter was added in the form (H + Pa), which offers the possibility to move a
curve with respect to the H axis.

- Parameter + Pb was added, which offers the possibility to move a curve with respect to the B axis.
- Part Pc·µ0·(H + Pa) was added for better adjustment of saturation.

The used modified expressions are:
Langevin:

B(H) = P1

(
coth

(H + P3

P2

)
−

P2

H + P3

)
+ P4µ0(H + P3) + P5. (1)

Grompertz:
B(H) = 2P1e− exp (−P2(H+P3)) − P1 + P4µ0(H + P3) + P5. (2)

Hyptan (Hyperbolic tangents):

B(H) = P1tanh(P2(H + P3)) + P4µ0(H + P3) + P5. (3)

Algebraic:

B(H) =
P1(H + P3)√

P4(P2(H + P3))
2
+ P5µ0(H + P3) + P6. (4)

Logistic:

B(H) =
2P1

P4 + e−P2(H+P3)
− P1 + P5µ0(H + P3) + P6. (5)

Sigmoid:

B(H) =
P1eP2(H+P3)

P4 + eP2(H+P3)
+ P5µ0(H + P3) + P6. (6)

Elliot:

B(H) =
P1(H + P3)

P4 + P2|H + P3|
+ P5µ0(H + P3) + P6. (7)

2.2. Calculation of the Parameters Using Standard Optimization Methods

Standard optimization methods can be used for the determination of the parameters. We tested
the Levenberg-Marquardt algorithm and nonlinear regression to determine their usefulness for solving
the described problem.For the test of the standard optimization methods, we used Elliot’s expression
(7) and SML of the material 9S20, presented in Figure 2.

The Objective Function (OF) is written in (8).

OF =
1
n

n∑
i=1

(Bcalculated_i − Bmeasured_i)
2, (8)

where n is the number of measured points, Bmeasured are the measured points, and Bcalculated are the
calculated points.

An initial guess is needed to start standard optimization methods. The Levenberg-Marquardt
(LM) algorithm is often used for solving curve-fitting problems, which is also evident from the
literature [63,64]. A set of nonlinear equations was solved in the least-square sense. The minimization
of a sum of squares of equation residuals was made using the LM algorithm.
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Unfortunately, the local minima caused that different initial values led to different results. The lack
of change of the parameters was the stopping condition of the algorithm (the maximum change must
be less than 10−12). Figure 3 shows the tests for the SML curve, and the values of the parameters which
were used for both the initial and final curves are presented in Table 1.
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Figure 3. Final curves obtained with Levenberg–Marquardt algorithm (LM) for curve left part of the
measured major hysteresis loop (SML) using four different initial curves: (a) The correct result; (b) An
incorrect result; (c) An incorrect result; (d) The correct result.

Table 1. The OF and parameters’ values calculated with LM and used for both the initial and final
analytical curves presented in Figure 3.

OF Parameters

(a) Initial curve 8.02·10−1 P1 = 7; P2 = 20; P3 = 0; P4 = 2000; P5 = 15; P6 = 0
(a) Final curve 6.34·10−4 P1 = 6.89; P2 = 4.47; P3 = 428.8; P4 = 1999.6; P5 = 21.4; P6 = 1.60·10−3

(b) Initial curve 3.00·10−1 P1 = 19; P2 = 12; P3 = −400; P4 = 6000; P5 = 21; P6 = 0
(b) Final curve 1.55·10−1 P1 = 18.13; P2 = 12.28; P3 = −256.6; P4 = 6000; P5 = 24.09; P6 = 1.36·10−1

(c) Initial curve 4.61·10−1 P1 = 10; P2 = 12; P3 = −400; P4 = 6000; P5 = 21; P6 = 0
(c) Final curve 1.22·10−1 P1 = 11.58; P2 = 9.07; P3 = −190.8; P4 = 6000; P5 = 65.41; P6 = 1.36·10−1

(d) Initial curve 5.40·10−1 P1 = 20; P2 = 12; P3 = −400; P4 = 2000; P5 = 21; P6 = 0
(d) Final curve 6.34·10−4 P1 = 7.60; P2 = 4.93; P3 = 428.9; P4 = 2204.5; P5 = 21.24; P6 = 1.60·10−3

The results presented in Figure 3b,c are not correct (OF is 0.1548 and 0.1215). The OF for cases (a)
and (d) is 6.342·10−4. Based on the results presented as (b) and (c) in Table 1 and Figure 3, it can be seen
that, for two initial curves, the obtained results are in two different local minima (the final curve is not
similar to the measured values), and they are not the global minimum. The results presented in (a) and
(d) are global minima.

LM is very fast. A very good result can be obtained by using appropriate initial values. Due to the
fact that LM is not able to bypass the local minima, it is not suitable to be used as a stand-alone method.
Also, NonLinear regression using the Matlab function “nlinfit” and using analytical derivatives were
not suitable for the presented problem.
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2.3. Calculation of the Parameters Using Evolutionary Methods

Evolutionary optimization methods [21–55] are population-based search algorithms, where the
space of all possible solutions is searched through many solutions with various suitability (fitness).
Better solutions have a higher probability to survive into the next generation, where they might be
altered by mutation and/or crossover. Evolutionary optimization methods have a remarkable ability
to balance exploration and exploitation [25] and, as such, avoid local optima. They are often used
for technical problems, and also to determine the parameters of different models [65] describing real
material properties or real devices. In this work, we used and compared GA [21–26], DE [27–36],
TLBO [37–45] and ABC [46–55]. In GA 0.5 was used for the fraction of the kept population, and 0.2 was
used for the mutation rate. For all three used DE strategies, which were DE/rand/1/exp (Algorithm 1),
DE/rand/2/exp and DE/best/1/bin, 0.8 was used for the crossover probability, and 0.6 was used for the
amplification of the differential variation. Different strategies are used, because it is known that the
appropriateness of the strategy depends on the problem being addressed. The duplication elimination
phase was omitted in the TLBO used in our work. Therefore, the number of Fitness Evaluations (FEs)
which were consumed for the calculation was determined statically as FEs = 2 * population size *
iterations. The limit value used in ABC was set at 100, and was used as a control parameter for the bee
population. A scout bee might not be used for every iteration [49], therefore the number of FE’s used
in ABC cannot be determined statically.

Algorithm 1. Pseudo-code for DE/rand/1/exp.

1. Setting control parameters (maximum number of FEs, population size, F, Cr)
2. Randomly generates the initial population of vectors in the D-dimensional search space
3. repeat
4. for each vector i in the population do
5. select three mutually exclusive random vectors

→

x 1 ,
→

x 2 ,
→

x 3

6. generate a donor vector according to (9)
7.

→

v i =
→

x 1 + F ·
(
→

x−1
→

x 3
)

(9)

8. L = 0
9. do
10. L = L + 1
11. while (rand(0,1) <= Cr AND L <= D)
12. N = a random integer in the range of [1,D]
13. generate a trial vector

→

u i using exponential crossover by (10)
14.

ui j =


vi j for each dimension j = (N mod D), (N + 1 mod D),

. . . , (N + L− 1 mod D)

xi j for all other dimensions j ∈ [1, D]

(10)

15. evaluate the candidate vector
→

u i using (8)
16. replace

→

x i with
→

u i, if fitness of
→

u i is better than fitness of
→

x i
17. end-for
18. until a termination condition is met

For all tests we used 83,160 FEs, which were appropriate in [66] for nine parameters, and in this
work we are dealing with five (D = 5) or six parameters (D = 6). The population size is ten times the
number of parameters, fifty for five parameters and sixty for six parameters. The OF which was used
for the analytical curves’ quality estimation was defined previously in (8).

To compare the ability of the presented expressions (1)–(7) to express hysteresis analytically,
they were tested at the left part of the 9S20 measured major hysteresis loop (SML) and AML, which
are presented in Figure 2. The number of independent runs was 30 for each expression for GA, three
DE strategies, (DE/rand/1/exp, DE/rand/2/exp and DE/best/1/bin), TLBO and ABC. The best (B), worst
(W), mean (M) OF and standard deviation (SD) are written in Table 2 for SML, and in Table 3 for
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AML. In Tables 2 and 3 the lowest best OF and the lowest mean OF are marked with bold, and the
second-lowest best OF and the second-lowest mean OF are marked with italics.

For each combination of expression and method from Table 2, appropriate parameters obtained
using results with the best OF are shown in Table 4. For each presented combination in Table 3,
appropriate parameters obtained using results with the best OF are shown in Table 5.

Table 2. Best (B), worst (W), mean (M) and standard deviation (SD) for 30 independent runs of different
methods using expressions (1) to (7) for SML.

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

B 1.11·10−3 9.75·10−4 9.75·10−4 9.75·10−4 9.75·10−4 9.79·10−4

LA 1 W 3.64·10−1 9.75·10−4 9.75·10−4 4.76·10−1 9.75·10−4 4.55·10−3

M 7.41·10−2 9.75·10−4 9.75·10−4 6.49·10−2 9.75·10−4 1.76·10−3

SD 1.25·10−1 3.25·10−19 3.25·10−19 1.61·10−1 3.25·10−19 8.61·10−4

B 7.55·10−2 3.88·10−3 3.88·10−3 3.88·10−3 2.96·10−2 2.97·10−2

GR 1 W 1.23 5.99·10−3 2.79·10−2 4.76·10−1 2.99·10−2 1.57·10−1

M 1.63·10−1 3.95·10−3 7.42·10−3 1.99·10−1 2.96·10−2 3.73·10−2

SD 2.76·10−1 3.78·10−4 7.34·10−3 2.17·10−1 7.73·10−5 2.29·10−2

B 4.21·10−3 1.77·10−3 1.77·10−3 1.77·10−3 1.77·10−3 1.77·10−3

HY 1 W 1.37 4.73·10−1 1.42·10−2 4.76·10−1 4.76·10−1 3.30·10−2

M 5.67·10−1 5.19·10−2 1.13·10−2 3.68·10−1 1.60·10−1 5.47·10−3

SD 5.93·10−1 1.34·10−1 5.27·10−3 1.96·10−1 2.08·10−1 6.98·10−3

B 1.34·10−3 1.13·10−3 1.14·10−3 1.14·10−3 1.14·10−3 1.14·10−3

AL 1 W 1.70·10−1 1.1368·10−3 1.14·10−3 1.70·10−1 3.61 4.30·10−3

M 5.41·10−2 1.13·10−3 1.14·10−3 1.24·10−2 3.45·10−1 1.82·10−3

SD 7.44·10−2 8.67·10−19 4.90·10−12 4.20·10−2 1.11 7.75·10−4

B 1.23·10−1 1.42·10−2 6.01·10−2 2.96·10−2 3.05·10−2 2.26·10−2

LO 1 W 2.01·10−1 6.01·10−2 6.01·10−2 4.76·10−1 1.70·10−1 1.50·10−1

M 1.64·10−1 5.85·10−2 6.01·10−2 3.03·10−1 1.41·10−1 7.25·10−2

SD 1.51·10−2 8.22·10−3 2.78·10−17 2.13·10−1 4.70·10−2 3.62·10−2

B 1.97·10−1 4.83·10−2 7.49·10−2 1.78·10−2 2.21·10−3 1.77·10−3

SI 1 W 2.02·10−1 6.13·10−2 4.77·10−1 3.42·10−2 1.47 2.03·10−3

M 2.00·10−1 5.49·10−2 2.11·10−1 2.35·10−2 2.36·10−1 1.83·10−3

SD 1.04·10−3 5.32·10−3 1.88·10−1 7.58·10−3 3.06·10−1 5.99·10−5

B 2.23·10−2 6.34·10−4 6.34·10−4 6.34·10−4 6.34·10−4 6.42·10−4

EL 1 W 4.95·10−1 6.34·10−4 6.34·10−4 1.83·10−1 6.34·10−4 3.89·10−3

M 3.71·10−1 6.34·10−4 6.34·10−4 6.32·10−2 6.34·10−4 1.50·10−3

SD 1.98·10−1 4.34·10−19 1.80·10−13 7.68·10−2 3.62·10−11 8.57·10−4

1 LA-Langevin, GR-Grompertz, HY-Hyptan, AL-Algebraic, LO-Logistic, SI-Sigmoid, EL-Elliot.

Table 3. B, W, M and SD for 30 independent runs of different methods using expressions (1) to (7) for
left part of the Alnico measured major hysteresis loop (AML).

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

B 1.82·10−2 4.36·10−4 4.36·10−4 4.36·10−4 4.36·10−4 4.36·10−4

LA 1 W 6.61·10−1 4.36·10−4 4.36·10−4 5.61·10−1 3.55·10−1 4.37·10−4

M 2.86·10−1 4.36·10−4 4.36·10−4 2.04·10−1 2.41·10−2 4.36·10−4

SD 1.66·10−1 2.71·10−19 2.71·10−19 2.55·10−1 8.84·10−2 2.63·10−7

B 4.20·10−2 1.83·10−3 1.83·10−3 4.07·10−2 4.06·10−2 4.17·10−2

GR 1 W 6.56·10−1 5.61·10−1 3.56·10−1 5.61·10−1 5.61·10−1 4.86·10−2

M 3.46·10−1 1.11·10−1 2.01·10−1 4.12·10−1 1.92·10−1 4.33·10−2

SD 1.61·10−1 9.59·10−2 1.75·10−1 1.34·10−1 1.78·10−1 1.57·10−3

B 5.72·10−2 1.93·10−3 1.93·10−3 1.93·10−3 1.93·10−3 1.93·10−3

HY 1 W 5.65·10−1 1.16·10−1 1.93·10−3 5.61·10−1 5.61·10−1 4.93·10−2

M 3.78·10−1 5.74·10−3 1.93·10−3 2.56·10−1 9.47·10−2 4.54·10−3

SD 9.97·10−2 2.05·10−2 8.67·10−19 2.05·10−1 1.33·10−1 8.56·10−3



Mathematics 2020, 8, 201 9 of 27

Table 3. Cont.

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

B 1.33·10−2 8.82·10−4 8.82·10−4 8.82·10−4 8.82·10−4 8.82·10−4

AL 1 W 1.48·10−2 8.82·10−4 8.82·10−4 5.61·10−1 8.82·10−4 9.07·10−4

M 1.37·10−2 8.82·10−4 8.82·10−4 1.13·10−1 8.82·10−4 8.88·10−4

SD 3.82·10−4 4.34·10−19 8.22·10−12 2.24·10−1 3.16·10−11 5.69·10−6

B 4.17·10−2 2.04·10−1 2.04·10−1 4.06·10−2 4.23·10−2 1.94·10−3

LO 1 W 5.26·10−1 4.56·10−1 2.04·10−1 5.61·10−1 5.61·10−1 2.17·10−3

M 3.25·10−1 2.12·10−1 2.04·10−1 3.17·10−1 2.16·10−1 2.02·10−3

SD 1.39·10−1 4.53·10−2 8.33·10−17 1.85·10−1 1.45·10−1 7.30·10−5

B 3.17·10−1 6.713·10−3 1.98·10−2 1.93·10−3 1.96·10−3 1.15·10−2

SI 1 W 5.43·10−1 2.68·10−1 6.24·10−2 1.96·10−3 1.80·10−2 1.74·10−1

M 5.16·10−1 3.98·10−2 3.41·10−2 1.93·10−3 2.83·10−3 4.12·10−2

SD 4.88·10−2 6.94·10−2 1.24·10−2 7.32·10−6 2.84·10−3 3.17·10−2

B 5.86·10−2 4.85·10−4 4.85·10−4 4.85·10−4 4.85·10−4 4.88·10−4

EL 1 W 2.16·10−1 4.85·10−4 4.85·10−4 5.61·10−1 7.78·10−2 1.24·10−3

M 1.57·10−1 4.85·10−4 4.85·10−4 6.78·10−2 3.90·10−3 6.41·10−4

SD 3.65·10−2 1.63·10−19 1.63·10−19 1.42·10−1 1.45·10−2 1.53·10−4

1 LA-Langevin, GR-Grompertz, HY-Hyptan, AL-Algebraic, LO-Logistic, SI-Sigmoid, EL-Elliot.

Table 4. Parameters of expressions for the results (best OF) from Table 2 for SML.

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

P1 1.31 1.26 1.26 1.26 1.26 1.26
LA 1 P2 192.7 180.3 180.3 180.3 180.3 179.0

P3 424.8 436.8 436.8 436.8 436.8 433.9
P4 49.46 61.21 61.21 61.21 61.21 61.42
P5 3.61·10−3

−3.55·10−3
−3.55·10−3

−3.55·10−3
−3.55·10−3

−1.54·10−3

P1 1.05 1.03 1.03 1.03 7.09·10−1 7.14·10−1

GR 1 P2 13.82 2.92·10−3 2.92·10−3 2.92·10−3 13.35 5.97
P3 5.34·103 1.70 1.70 1.70 5.31·103 2.37·103

P4 49.49 99.19 99.19 99.19 186.4 186.3
P5 3.94·10−1 6.15·10−2 6.15·10−2 6.15·10−2 1.33 6.48·10−2

P1 1.25 1.05 1.05 1.05 1.05 1.05
HY 1 P2 1.40·10−3 1.97·10−3 1.97·10−3 1.97·10−3 1.97·10−3 1.97·10−3

P3 428.6 441.6 441.6 441.6 441.6 441.4
P4 36.70 93.84 93.84 93.84 93.84 95.05
P5 1.81·10−2

−7.25·10−3
−7.25·10−3

−7.25·10−3
−7.25·10−3

−7.18·10−3

P1 18.56 22.16 22.78 22.81 22.65 22.71
AL 1 P2 16.04 −19.42 −19.96 19.99 19.84 20.00

P3 415.6 437.9 437.9 437.9 437.9 437.2
P4 6922·104 9633·104 1018·105 1021·105 1006·104 1004·104

P5 70.91 −4.45·10−3
−4.45·10−3

−4.45·10−3 75.49 77.31
P6 5.40·10−3

−4.45·10−3
−4.45·10−3

−4.45·10−3
−4.45·10−3

−3.46·10−3

P1 6.01 2.75 2.52 2.98 2.31 3.00
LO 1 P2 −2.48·10−1 7.35·10−3 −20.00 5.46 −7.71 9.34·10−3

P3 −689.5 −258.5 −433.1 −408.7 −405.6 −229.5
P4 −41.91 3.83 −5.00 4.21 −3.31 4.85
P5 351.1 2.05 3.00 2.27 189.9 223.1
P6 5.97 2.05 3.00 2.27 3.00 2.41

P1 8.03·10−1 2.05 2.63 1.70 2.03 2.12
SI 1 P2 1.74·10−1 2.75·10−2 3.08·10−2 1.34·10−2 4.42·10−3 3.90·10−3

P3 −76.53 631.0 215.8 423.7 727.9 609.8
P4 2.31 7.26·10−2 4.55·10−2 3.83 3.86 1.92
P5 199.9 −1.18 −1.21 −8.24·10−1 97.75 92.15
P6 7.45·10−3

−2.61·10−1
−4.05·10−1 1.06 −1.05 −1.08
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Table 4. Cont.

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

P1 8.23·10−1 19.63 19.63 19.63 19.63 13.87
EL 1 P2 1.05 12.73 12.73 12.73 12.73 9.13

P3 385.3 429.1 429.1 429.1 429.1 430.3
P4 15.08 5705 5705 5705 5705 3953
P5 165.8 21.13 21.13 21.13 21.13 24.36
P6 2.80·10−2 1.59·10−3 1.59·10−3 1.59·10−3 1.59·10−3

−3.79·10−4

1 LA-Langevin, GR-Grompertz, HY-Hyptan, AL-Algebraic, LO-Logistic, SI-Sigmoid, EL-Elliot.

Table 5. Parameters of expressions for the results (best OF) from Table 3 for AML.

Expression Method

GA DE/Rand/ DE/Rand/ DE/Best/ TLBO ABC
1/Exp 2/Exp 1/Bin

P1 1.42 1.55 1.55 1.55 1.55 1.55
LA 1 P2 1138 1501 1501 1501 1501 1501

P3 47537 48339 48339 48339 48339 48339
P4 2.75 2.65 2.65 2.6 2.65 2.65
P5 1.63·10−3

−1.76·10−1
−1.76·10−1

−1.76·10−1
−1.76·10−1

−1.76·10−1

P1 1.19 1.43 1.43 1.24 1.24 1.22
GR 1 P2 1.10 2.90·10−4 2.90·10−4 1.22 1.24 1.20

P3 53233 14.39 14.39 59112 60000 58138
P4 6.01 3.29 3.29 5.20 5.25 5.74
P5 5.54·10−1 4.80·10−2 4.80·10−2 5.18·10−1 5.26·10−1 5.47·10−1

P1 1.22 1.42 1.42 1.42 1.42 1.42
HY 1 P2 1.12·10−2 2.05·10−4 4.05·10−4 2.05·10−4 2.05·10−4 2.05·10−4

P3 47990 48282 48282 48282 48282 48282
P4 4.07 3.42 3.42 3.42 3.42 3.42
P5 2.26·10−3

−1.68·10−1
−1.68·10−1

−1.68·10−1
−1.68·10−1

−1.68·10−1

P1 24.30 27.43 28.48 28.50 27.48 21.83
AL 1 P2 −16.18 −18.69 19.41 19.43 −18.73 14.88

P3 47439 48311 48311 48311 48311 48313
P4 6192·10 6 7155·10 6 7716·10 6 7728·10 6 7183·10 6 4541·10 6

P5 1.51 −1.72·10−1
−1.72·10−1

−1.72·10−1
−1.72·10−1 3.11

P6 5.22·10−5
−1.72·10−1

−1.72·10−1
−1.72·10−1

−1.72·10−1
−1.72·10−1

P1 5.43 2.77 2.77 5.48·10−1 1.95 4.58
LO 1 P2 1.23·10−1 −20 −20 19.99 −20 4.16·10−4

P3 −48611 −49233 −49233 −48500 −48485 −45473
P4 4.30 −5.00 −5.00 4.43·10−3 −1.58 3.23
P5 4.89 3.00 3.00 −8.81·10−1 5.26 3.49
P6 3.99 3.00 3.00 −8.81·10−1 3.00 3.00

P1 9.36 3.01 3.00 2.85 2.86 2.76
SI 1 P2 −6.82·10−5 2.49·10−4 1.65·10−4 4.10·10−4 3.99·10−4 2.50·10−4

P3 999.8 225.7 400.0 368.2 400.0 625.6
P4 −10.00 6.20·10−6 5.61·10−4 0.0 0.0 6.80·10−6

P5 10.26 −1.51 −1.41 −1.39 3.34 4.20
P6 1.09 −1.52 −1.17 −1.39 −1.49 −1.30

P1 13.38 20.83 20.83 20.83 20.83 19.82
EL 1 P2 10.59 12.64 12.64 12.64 12.64 11.99

P3 47423 48378 48378 48378 48378 48382
P4 11.38 35799 35799 35799 35799 34509
P5 3.53 2.11 2.11 2.11 2.11 2.08
P6 2.63·10−3

−1.82·10−1
−1.82·10−1

−1.82·10−1
−1.82·10−1

−1.82·10−1

1 LA-Langevin, GR-Grompertz, HY-Hyptan, AL-Algebraic, LO-Logistic, SI-Sigmoid, EL-Elliot.

The aim of the results presented in Tables 2–5 is also to find out if different algorithms lead to
different parameters. For Langevin, Grompertz, Hyptan and Elliot, it can be seen that, with methods
that reached the same best OF, the calculated parameters are also the same. If the best OF is only a little
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different, the parameters are also just slightly different. In the case of algebraic, the parameters are
different, although the best OF is the same. In the case of logistic and Sigmoid, the obtained best OF is
different for almost every algorithm, and, consequently, the calculated parameters are also different.
Although the same best OF is obtained using different methods, mean OF can be very different, which
means that some methods occasionally give poor results on this problem, which is not desirable.

A comparison of different expressions is presented graphically in Figure 4 for SML and in Figure 5
for AML. Parameters used were obtained from the calculation with the best OF.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 26 
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From Table 2 it can be seen that the best results were obtained using the Elliot expression and
methods DE/rand/1/exp, DE/rand/2/exp and TLBO. The second-best result was obtained using Langevin
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and methods DE/rand/1/exp, DE/rand/2/exp and TLBO. On the other hand, based on Table 3, it can
be observed that the best results were obtained using Langevin and methods DE/rand/1/exp and
DE/rand/2/exp. The second-best result was obtained using Elliot and methods DE/rand/1/exp and
DE/rand/2/exp. We can conclude that the best results were obtained using the Elliot and Langevin
expressions and DE/rand/1/exp and DE/rand/2/exp solving methods. To select the best, additional tests
were made based on all curves of the material 9S20 (SML, SMR, SD1–SD4, SI1–SI4) and Alnico (AML,
AMR, AD1–AD3, AI1–AI3), presented in Figure 2.

In Table 6, the results of 30 independent runs are presented for all 9S20 curves from Figure 2
using DE/rand/1/exp and DE/rand/2/exp for the Elliot and Langevin expressions. In Table 7, the results
of 30 independent runs are presented for all Alnico curves from Figure 2 using DE/rand/1/exp and
DE/rand/2/exp for the Elliot and Langevin expressions.

Table 6. B, W, M and SD for 30 independent runs for all 9S20 curves using DE/rand/1/exp and
DE/rand/2/exp for the Elliot and Langevin expressions.

Curve Method

DE/Rand/1/Exp DE/Rand/2/Exp DE/Rand/1/Exp DE/Rand/2/Exp
Elliot Elliot Langevin Langevin

B 6.34·10−4 6.34·10−4 9.75·10−4 9.75·10−4

SML W 6.34·10−4 6.34·10−4 9.75·10−4 9.75·10−4

M 6.34·10−4 6.34·10−4 9.75·10−4 9.75·10−4

SD 4.34·10−19 1.80·10−13 3.25·10−19 3.25·10−19

B 7.19·10−4 7.19·10−4 1.11·10−3 1.11·10−3

SMR W 7.19·10−4 7.19·10−4 1.11·10−3 1.11·10−3

M 7.19·10−4 7.19·10−4 1.11·10−3 1.11·10−3

SD 3.25·10−19 3.25·10−19 4.34·10−19 4.34·10−19

B 6.51·10−5 6.51·10−5 1.41·10−4 1.47·10−4

SD1 W 7.59·10−4 8.08·10−3 6.50·10−3 6.60·10−3

M 4.10·10−4 2.41·10−3 5.39·10−4 7.21·10−4

SD 3.23·10−4 2.18·10−3 1.47·10−3 1.49·10−3

B 3.25·10−4 3.25·10−4 6.12·10−4 6.12·10−4

SD2 W 8.19·10−3 1.17·10−2 6.12·10−4 6.27·10−4

M 2.69·10−3 7.27·10−3 6.12·10−4 6.12·10−4

SD 3.60·10−3 3.16·10−3 2.17·10−19 2.71·10−6

B 3.80·10−4 3.80·10−4 6.02·10−4 6.02·10−4

SD3 W 3.80·10−4 3.97·10−2 6.02·10−4 6.02·10−4

M 3.80·10−4 5.55·10−3 6.02·10−4 6.02·10−4

SD 1.63·10−19 1.32·10−2 3.25·10−19 3.25·10−19

B 7.44·10−4 7.44·10−4 5.67·10−4 5.67·10−4

SD4 W 7.44·10−4 7.44·10−4 5.67·10−4 5.67·10−4

M 7.44·10−4 7.44·10−4 5.67·10−4 5.67·10−4

SD 2.17·10−19 2.49·10−13 2.17·10−19 2.17·10−19

B 6.51·10−5 6.51·10−5 1.47·10−4 1.47·10−4

SI1 W 7.09·10−4 7.12·10−3 1.13·10−2 1.04·10−2

M 3.66·10−4 3.29·10−3 8.93·10−4 1.14·10−3

SD 3.21·10−4 2.45·10−3 2.79·10−3 2.70·10−3

B 3.25·10−4 3.25·10−4 6.12·10−4 6.12·10−4

SI2 W 8.19·10−3 9.00·10−3 6.12·10−4 6.12·10−4

M 3.73·10−3 6.79·10−3 6.12·10−4 6.12·10−4

SD 3.90·10−3 3.13·10−3 2.17·10−19 2.17·10−19

B 3.80·10−4 3.80·10−4 6.02·10−4 6.02·10−4

SI3 W 3.81·10−2 9.96·10−2 2.21·10−1 6.02·10−4

M 4.14·10−3 4.24·10−3 7.95·10−3 6.02·10−4

SD 1.13·10−2 1.16·10−2 3.96·10−2 3.25·10−19

B 4.54·10−4 4.54·10−4 4.22·10−4 4.22·10−4

SI4 W 4.54·10−4 8.13·10−2 4.22·10−4 4.22·10−4

M 4.54·10−4 3.15·10−3 4.22·10−4 4.22·10−4

SD 1.63·10−19 1.45·10−2 5.42·10−20 5.42·10−20
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Table 7. B, W, M and SD for 30 independent runs for all Alnico curves using DE/rand/1/exp and
DE/rand/2/exp for the Elliot and Langevin expressions.

Curve Method

DE/rand/1/exp DE/Rand/2/Exp DE/Rand/1/Exp DE/Rand/2/Exp
Elliot Elliot Langevin Langevin

B 4.85·10−4 4.85·10−4 4.36·10−4 4.36·10−4

AML W 4.85·10−4 4.85·10−4 4.36·10−4 4.36·10−4

M 4.85·10−4 4.85·10−4 4.36·10−4 4.36·10−4

SD 1.63·10−19 1.63·10−19 2.71·10−19 2.71·10−19

B 3.24·10−4 3.34·10−4 3.95·10−4 3.95·10−4

AMR W 3.24·10−4 3.24·10−4 3.95·10−4 3.95·10−4

M 3.24·10−4 3.24·10−4 3.95·10−4 3.95·10−4

SD 0 0 5.42·10−20 5.42·10−20

B 7.36·10−4 7.36·10−4 7.28·10−4 7.28·10−4

AD1 W 7.36·10−4 7.36·10−4 7.28·10−4 7.28·10−4

M 7.36·10−4 7.36·10−4 7.28·10−4 7.28·10−4

SD 1.08·10−19 1.08·10−19 2.17·10−19 2.17·10−19

B 7.22·10−4 7.22·10−4 2.61·10−4 2.61·10−4

AD2 W 7.22·10−4 7.22·10−4 2.61·10−4 2.61·10−4

M 7.22·10−4 7.22·10−4 2.61·10−4 2.61·10−4

SD 3.25·10−19 3.25·10−19 1.08·10−19 1.08·10−19

B 3.14·10−4 3.14·10−4 2.01·10−4 2.01·10−4

AD3 W 3.14·10−4 3.14·10−4 2.50·10−1 2.01·10−4

M 3.14·10−4 3.14·10−4 8.52·10−3 2.01·10−4

SD 1.63·10−19 1.63·10−19 4.48·10−2 1.08·10−19

B 1.56·10−4 1.56·10−4 8.48·10−4 8.48·10−4

AI1 W 1.56·10−4 1.56·10−4 8.48·10−4 8.48·10−4

M 1.56·10−4 1.56·10−4 8.48·10−4 8.48·10−4

SD 5.42·10−20 2.71·10−20 5.42·10−19 5.42·10−19

B 1.75·10−4 1.75·10−4 2.12·10−4 2.12·10−4

AI2 W 1.75·10−4 1.75·10−4 2.12·10−4 2.12·10−-4

M 1.75·10−4 1.75·10−4 2.12·10−4 2.12·10−4

SD 2.71·10−20 2.71·10−20 5.42·10−20 5.42·10−20

B 2.78·10−4 2.78·10−4 2.83·10−4 2.83·10−4

AI3 W 2.78·10−4 2.78·10−4 2.83·10−4 2.83·10−4

M 2.78·10−4 2.78·10−4 2.83·10−4 2.83·10−4

SD 1.08·10−19 1.08·10−19 1.08·10−19 1.08·10−19

The numbers of best results achieved for the combination of expression and method presented in
Tables 6 and 7 are shown in Table 8.

Table 8. Numbers of lowest B and M achieved using DE/rand/1/exp and DE/rand/2/exp for the Elliot
and Langevin expressions.

Expression and Method Number of the Lowest B Number of the Lowest M

Elliot using DE/rand/1/exp 12 9
Elliot using DE/rand/2/exp 12 6

Langevin using DE/rand/1/exp 6 7
Langevin using DE/rand/2/exp 6 9

Based on Table 8, it can be seen that the best results were obtained using a combination of the
Elliot expression and DE/rand/1/exp for the determination of the parameters. Based on the presented
results, we decided to use the Elliot expression, written in (7), to model the hysteresis curve, and to
use DE/rand/1/exp for determination of the parameters. The meaning of parameters P1, P2 and P3 are
presented in Figure 6, and the meaning of parameters P4, P5 and P6 is presented in Figure 7.
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Parameter P3 moves the curve according to the H axis, P6 according to the B axis, and parameters
P1, P2, P4 and P5 influence the shape and size of the curve.

In the continuation, the use of the Elliot expression is presented for materials 9S20 and Alnico.

2.4. Discussion of Calculated Values with Respect to Measurement Error

Measurements were made on the device for the characterization of semi and hard magnetic
materials. A Magnet-Physic yoke MIR-5 was used for the measurements. A sample of massive material
was made with a circular cross-section (diameter of the sample was 10 mm) was used and it was
80 mm long. A tangential Hall probe HS-TGB5-104005 with basic accuracy 0.25% (to 3T) was used for
measurement of H. The Hall probe was connected with a Magnet-Physic TESLAMETER with basic
accuracy 0.3% (without probe). So that the accuracy of the H measurement, considering the accuracy
of the TESLAMETER and probe, was 0.55%. In the measurements we also have to consider that,
between the probe which was placed fixed near the sample and the sample, a small air gap appears.
The magnetic field in the cross-section of the tested material was not completely homogeneous. The real
accuracy for the measurement of H was around 5%.

B was measured by induction in the measuring coil with 500 turns, coiled around the center of the
sample and connected with a Fluxmeter. A Magnet-Physic Electronic Fluxmeter EF5 was used for the
measurement of B. The basic accuracy of the Fluxmeter was 0.25%. The frequency of the measurement
was 10 mHz. Although the measuring coil was coiled tightly around the sample, there was still some
air between the coil and the sample. For the measurement of B, it should be considered that the
magnetic field in the cross-section of the tested material was not completely homogeneous. Because of
that, the real accuracy for the measurement of B was around 5%.

The measured and calculated values of B in point A (presented in Figure 5) for 9S20 material and
point K (presented in Figure 6) for Alnico, are presented in Table 9.
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Table 9. Measured and calculated values of B at points A and K.

Material: 9S20; Considered Point A (Figure 4); Measured H = 4100 A/m; Measured B = 1.50 T (Measurement
Accuracy Range from 1.43 T to 1.58 T Considering 5% Accuracy of the Measurement)

Expression LA1 GR1 HY1 AL1 LO1 SI1 EL1

Calculated B (T) 1.55 1.60 1.58 1.56 1.58 1.58 1.52

Material: Alnico; Considered Point K (Figure 5); Measured H = 80400 A/m; Measured B = 1.76 T
(Measurement Accuracy Range from 1.67 T to 1.85 T Considering 5% Accuracy of Measurement)

Expression LA1 GR1 HY1 AL1 LO1 SI1 EL1

Calculated B (T) 1.79 1.80 1.81 1.80 1.82 1.81 1.77
1 LA-Langevin, GR-Grompertz, HY-Hyptan, AL-Algebraic, LO-Logistic, SI-Sigmoid, EL-Elliot.

From Table 9 it can be seen that three calculated values at point A were inside of the measurement
accuracy range, three vales were at the border, and one value was outside of the measurement accuracy
range. It can also be seen that all calculated values at point K were inside of the measurement accuracy
range. Points A and K are points where the deviation between the measured value and the calculation
is higher, but they are important for Hysteresis modeling, as will be presented in Sections 3.2 and 4.2.
Taking into account the measurement accuracy and the results presented in Table 9, we can conclude
that it is reasonable to search for expressions and methods to match the measured and calculated
curves best (some calculated values were at the border or outside of the measurement accuracy range).

3. Modeling of the Material 9S20

For better understanding of the hysteresis modeling procedure, modeling is explained briefly in
steps, and, after that, each step is explained in detail in the subsections. The steps are presented in
Figure 8.
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In step 1, presented in Figure 8a, parameters P1 to P6 are determined for the measured curve SML,
based on the measured curve using Elliot’s expression and the DE/rand/1/exp method.

In step 2, presented in Figure 8b, parameters P1 and P6 are adjusted according to the appropriate
points (in the case of SML, points A and B).

In step 3, presented in Figure 8c, all measured curves are replaced with analytical expressions
repeating steps 1 and 2 for each measured curve.

In step 4, presented in Figure 8d, any required curve with respect to magnetization changes, as
shown in Figure 1, can be calculated on the basis of two points, for example, points E1 and B.

3.1. Calculation of the Parameters Using DE/Rand/1/exp

Major hysteresis loop left and right parts (SML and SMR), first-order decreasing reversal curves
(SD1–SD4) and first-order increasing reversal curves (SI1–SI4) were measured in the case of the material
9S20. The first step in the modeling procedure is to determine the Elliot expression parameters using
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DE/rand/1/exp. 30 independent runs were used for each measured curve. The parameters obtained
with the best OF are presented in Tables 10–12. The values of B, W, M and SD were presented previously
in Table 6. In Tables 10–12 parameters obtained with the best OF of the Langevin expression are also
shown, in order to enable the analysis of the results.

Table 10. Calculated parameters of the 9S20 major hysteresis loop.

Parameter Elliot Langevin

SML SMR SML SMR

P1 19.63 22.70 1.26 1.27
P2 12.73 14.46 180.3 188.1
P3 429.1 −436.0 436.8 −443.7
P4 5704 6856 61.21 59.61
P5 21.13 17.52 −3.55·10−3 9.53·10−4

P6 1.59·10−3
−4.06·10−3

Table 11. Calculated parameters of the 9S20 decreasing first-order reversal curves.

Parameter Elliot Langevin

SD1 SD2 SD3 SD4 SD1 SD2 SD3 SD4

P1 15.23 13.29 17.86 23.82 4.91·10−1 5.66·10−1 7.96·10−1 1.09
P2 17.55 18.44 19.06 18.27 335.0 128.5 104.9 139.9
P3 369.0 322.8 339.6 408.6 391.4 338.3 346.4 412.0
P4 22721 6437 4716 6094 81.83 115.0 116.9 92.03
P5 38.90 90.53 92.49 54.64 −6.83·10−1

−4.51·10−1
−2.23·10−1

−5.08·10−3

P6 −6.73·10−1
−4.36·10−1

−2.15·10−1
−5.04·10−3

Table 12. Calculated parameters of the 9S20 increasing first-order reversal curves.

Parameter Elliot Langevin

SI1 SI2 SI3 SI4 SI1 SI2 SI3 SI4

P1 13.27 12.43 17.66 19.26 4.91·10−1 5.66·10−1 7.96·10−1 9.83·10−1

P2 15.28 17.25 18.86 16.67 335.0 128.5 104.9 121.5
P3 −369.0 −322.8 −339.9 −377.9 −391.4 −338.3 −346.4 −382.1
P4 19784 6021 4665 4705 81.83 115.0 116.9 103.0
P5 38.90 90.53 92.49 72.88 6.83·10−1 4.51·10−1 2.23·10−1 1.02·10−1

P6 6.73·10−1 4.36·10−1 2.15·10−1 9.90·10−2

3.2. Adjusted Parameters P1 and P6 for 9S20

From Figure 4 it can be seen that the calculated curve SML does not flow through the hysteresis
final points A and B. To adjust the calculated curve to points A and B only parameters P1 and P6 should
be adjusted, using the system of two equations written in (11) and (12).

BA =
P1(HA + P3)

P4 + P2|HA + P3|
+ P5µ0(HA + P3) + P6 (11)

BB =
P1(HB + P3)

P4 + P2|HB + P3|
+ P5µ0(HB + P3) + P6. (12)

The calculated SMR first-order decreasing and increasing reversal curves also do not flow through
the final points, and parameters P1 and P6 were adjusted as a result. The values of adjusted parameters
are presented in Tables 13–15, where the points used for adjustment are also presented (points are
shown in Figures 9 and 10).
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Table 13. P1 and P6 for SML and the right part of the measured major hysteresis loop (SMR).

Points and Parameters Curve

SML SMR

Points A, B A, B
P1 19.67 22.77
P6 −2.66·10−2 2.47·10−2

Table 14. P1 and P6 for the 9S20 decreasing first-order reversal curves.

Points and Parameters Curve

SD1 SD2 SD3 SD4

Points B, C B, D B, E B, F
P1 14.72 12.45 17.04 23.22
P6 −6.96·10−1

−4.55·10−1
−2.27·10−1

−8.24·10−2

Table 15. P1 and P6 for the 9S20 increasing first-order reversal curves.

Points and Parameters Curve

SI1 SI2 SI3 SI4

Points A, G A, H A, I A, J
P1 12.79 11.61 16.83 18.65
P6 6.96·10−1 4.53·10−1 2.25·10−1 1.19·10−1

The parameters of each of the curves (decreasing and increasing), written in Tables 11, 12, 14
and 15, were obtained using a measured curve, and, with that, they were adjusted to the form of
the curve. In this way, no special adjustment is required with respect to increasing and decreasing
curves. Comparing similar increasing and decreasing curves (for example SI2 and SD2, shown in
Figure 2), it can be seen that parameters P1, P2, P4 and P5, which influence the shape and size, are
similar. Parameter P3, which moves the curve according to the H axis, is different, and also parameter
P6, which moves the curve according to the B axis, is different.

The calculated and measured major hysteresis loop and first-order decreasing reversal curves are
presented in Figure 9, and the first-order increasing reversal curves are presented in Figure 10.
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reversal curves (SI1–SI4).

3.3. Calculation of Curves in the Area between the Measured Curves for 9S20

The main purpose of the presented model is to calculate the magnetization in the area between
the measured curves simply. To calculate magnetization, only points where the excitation starts to
decrease after increasing (for example point C marked in Figure 9 and point B marked in Figure 9)
are needed to calculate the decreasing magnetization. The parameters of the nearest curve are used,
obtained based on the measured curve, and parameters P1 and P6 are adjusted using a system of two
equations, such as written in (11) and (12), to get the appropriate magnetization. Calculated curves are
presented in Figure 11 and marked with SE1–SE5. For example, curve SE1 is calculated based on the
nearest curve obtained based on measurements, which is SD4. Point E1, where the excitation starts to
decrease, and point B, are used to calculate parameters P1 and P6, and parameters P2 to P5 are the
same as used for the curve SD4.
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Parameters of the calculated curves SE1–SE5, together with used points and the nearest curve
obtained based on the measured curve, which is the basis for the curve calculation, are presented
in Table 16.

Table 16. Parameters of the calculated curves SE1–SE5.

Basis curve, Points and Parameters Curve

SE1 SE2 SE3 SE4 SE5

Basis SD4 SD4 SD3 SD3 SD2
Points E1, B E2, B E3, B E4, B E5, B

P1 22.54 21.77 18.24 15.52 13.53
P2 18.27 18.27 19.06 19.06 18.44
P3 408.6 408.6 339.6 339.6 322.8
P4 6094 6094 4716 4716 6437
P5 54.64 54.64 92.49 92.49 90.53
P6 −1.17·10−1

−1.55·10−1
−1.67·10−1

−3.01·10−1
−4.01·10−1

The same procedure can be used for increasing magnetization. The values of B and H in the points
presented in Figures 9–11 are determined in Table 17.

Table 17. B and H in the points presented in Figures 9–11.

Point H(A/m) B(T) Point H(A/m) B(T)

A 4104 1.50 I −790 −6.39·10−1

B −4082 −1.50 J −1297 −9.92·10−1

C 290 −3.81·10−1 E1 1170 1.01
D 466 1.03·10−1 E2 1030 9.11·10−1

E 795 6.39·10−1 E3 880 7.70·10−1

F 1849 1.18 E4 590 4.50·10−1

G −290 3.81·10−1 E5 490 2.05·10−1

H −466 −1.03·10−1

The calculated and measured major hysteresis loop, decreasing and increasing curves are presented
in Figure 12.
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4. Modeling of the Material Alnico

The calculation steps of the Alnico hysteresis model are the same as presented briefly in Section 3.

4.1. Calculation of the Parameters Using DE/Rand/1/exp

A major hysteresis loop’s left and right parts (AML and AMR), decreasing curves (AD1–AD3) and
increasing curves (AI1–AI3) were measured in the case of the material Alnico (presented in Figure 2).
The Elliot expression parameters were determined using DE/rand/1/exp. 30 independent runs were
used for each measured curve. The parameters obtained with the best OF are presented in Tables 18–20.
The values of B, W, M and SD were presented previously in Table 7. In Tables 18–20 parameters
obtained with the best OF of the Langevin expression are also shown in order to enable an analysis of
the results.

Table 18. Calculated parameters of the Alnico major hysteresis loop.

Parameter Elliot Langevin

AML AMR AML AMR

P1 20.83 30.24 1.55 1.55
P2 12.64 18.46 1500 1469
P3 48,378 −47,725 48,339 −47,729
P4 35,799 50,282 2.65 2.68
P5 2.11 2.16 −1.76·10−1 1.82·10−1

P6 −1.82·10−1 1.86·10−1

Table 19. Calculated parameters of the Alnico decreasing curves.

Parameter Elliot Langevin

AD1 AD2 AD3 AD1 AD2 AD3

P1 14.96 16.95 23.37 1.13 1.30 1.40
P2 11.61 11.75 15.44 2000 2000 1570
P3 46,672 46,162 46,395 46,664 46,064 46,368
P4 53,560 49,604 47,693 4.38 3.66 3.35
P5 3.21 2.62 2.54 −5.43·10−1

−4.04·10−1 −2.93
P6 −5.46·10−1

−4.08·10−1
−2.95·10−1

Table 20. Calculated parameters of the Alnico increasing curves.

Parameter Elliot Langevin

AI1 AI2 AI3 AI1 AI2 AI3

P1 8.23 13.96 16.07 7.78·10−1 1.10 1.37
P2 8.12 11.56 11.00 2000 1982 1477
P3 −44,120 −45,114 −46,485 −44,362 −45,089 −46,491
P4 54,719 45,731 30,288 5.50 4.19 3.43
P5 3.52 3.38 2.75 7.78·10−1 5.47·10−1 3.10·10−1

P6 7.73·10−1 5.49·10−1 3.11·10−1

4.2. Adjusted Parameters P1 and P6 for Alnico

To adjust curves to the start and end points, parameters P1 and P6 were corrected using the
system of two equations, such as in (11) and (12). The values of adjusted parameters are presented in
Tables 21–23, where the points used for adjustment are also presented.
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Table 21. P1 and P6 for AML and AMR.

Points and Parameters Curve

AML AMR

Points K,L K,L
P1 20.57 29.90
P6 −1.74·10−1 1.76·10−1

Table 22. P1 and P6 for the Alnico decreasing curves.

Points and Parameters Curve

AD1 AD2 AD3

Points L, M L, N L, O
P1 14.57 16.68 23.06
P6 −5.13·10−1

−3.77·10−1
−2.77·10−1

Table 23. P1 and P6 for the Alnico increasing curves.

Points and Parameters Curve

AI1 AI2 AI3

Points K, P K, R K, S
P1 8.12 13.75 15.95
P6 7.56·10−1 5.41·10−1 3.01·10−1

4.3. Calculation of Curves in the Area between the Measured Curves for Alnico

For Alnico, the curves in the areas between the calculated curves, based on measured curves,
were determined using the point where the calculation started to decrease after increasing, and the
point in the lower left part of the hysteresis. Calculated curves AC1–AC5 are presented in Figure 13.
For example, curve AC1 was calculated based on the nearest curve obtained based on the measurement,
which is AD3. Point C1, where the excitation started to decrease, and point L, were used to calculate
parameters P1 and P6, using the system of two equations, such as in (11) and (12). Parameters P2 to P5

are the same as used for the curve AD3. The new magnetization curve was calculated simply, based on
only two points.
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The parameters of the calculated curves AC1–AC5, together with used points and the nearest curve
obtained based on the measured curve, which was the basis for the curve calculation, are presented in
Table 24.

Table 24. Parameters of the calculated curves AC1–AC5.

Basis Curve Points and Parameters
Curve

AC1 AC2 AC3 AC4 AC5

Basis AD3 AD3 AD2 AD1 AD1
Points C1, L C2, L C3, L C4, L C5, L

P1 23.33 22.31 15.79 13.62 12.34
P2 15.44 15.44 11.75 11.61 11.61
P3 46,395 46,395 46,162 46,672 46,672
P4 47,693 47,693 49,604 53,560 53,560
P5 2.54 2.54 2.62 3.21 3.21
P6 −2.60·10−1

−3.21·10−1
−4.45·10−1

−5.86·10−1
−6.83·10−1

The same procedure can be used for increasing magnetization. The values of B and H in the points
presented in Figures 12 and 13 are determined in Table 25.

Table 25. B and H in the points presented in Figures 12 and 13.

Point H(A/m) B(T) Point H(A/m) B(T)

K 80,411 1.76 S −54,567 −1.46
L −81,255 −1.76 C1 60,600 1.55
M 46,922 1.06 C2 53,600 1.40
N 50,178 1.30 C3 47,800 1.15
O 55,967 1.50 C4 45,000 9.01·10−1

P −46,900 −5.78·10−1 C5 43,600 6.92·10−1

R −48,867 −1.00

5. Limits of the Parameters Used by Evolutionary Methods

When an evolutionary method is used, appropriate limits of the parameters should be set. Our
test cases, 9S20 and Alnico, are materials with very different coercive magnetic field strength. Because
of that, the limits of the parameters must contain a wide range of different values. We set limits in a
way that they were appropriate for a wide range of different materials. The limits used are presented
in Table 26.

Table 26. Parameters’ limits used in the case of evolutionary calculations.

Parameter Lower Limit Upper Limit

P1 0 50
P2 −20 20
P3 −60,000 60,000
P4 −5 60,000
P5 0 200
P6 −3 3

Although the limits were set wide, evolutionary methods were able to calculate parameters.

6. The Use of the Hysteresis Model

The hysteresis model is intended to be used for the transient magnetic field calculation.
The algorithm presenting the use of the hysteresis model is shown in Figure 14. The curves of
Alnico, presented in Figure 2, are used in the algorithm for better understanding. The basis for the
model is the mathematical description of each measured curve.



Mathematics 2020, 8, 201 23 of 27

Mathematics 2020, 8, x FOR PEER REVIEW 22 of 26 

 

When an evolutionary method is used, appropriate limits of the parameters should be set. Our 
test cases, 9S20 and Alnico, are materials with very different coercive magnetic field strength. Because 
of that, the limits of the parameters must contain a wide range of different values. We set limits in a 
way that they were appropriate for a wide range of different materials. The limits used are presented 
in Table 26. 

Table 26. Parameters’ limits used in the case of evolutionary calculations. 

Parameter Lower Limit Upper Limit 
P1 0 50 
P2 −20 20 
P3 −60,000 60,000 
P4 −5 60,000 
P5 0 200 
P6 −3 3 

Although the limits were set wide, evolutionary methods were able to calculate parameters. 

6. The Use of the Hysteresis Model 

The hysteresis model is intended to be used for the transient magnetic field calculation. The 
algorithm presenting the use of the hysteresis model is shown in Figure 14. The curves of Alnico, 
presented in Figure 2, are used in the algorithm for better understanding. The basis for the model is 
the mathematical description of each measured curve. 

 
Figure 14. Algorithm presenting the use of the hysteresis model based on Alnico curves. 

Different colors are used in Figure 14 to make the algorithm more transparent. The parts of the 
algorithm when a new magnetization curve must be calculated are marked with red. The parts of the 
algorithm when the magnetization curve remains unchanged due to the previous step or an original 
magnetization curve is used are marked with green. The calculation depends on the excitation 
change, and on the calculated values of H and B from the previous step, and these data must be 
memorized (marked with blue color). 

Figure 14. Algorithm presenting the use of the hysteresis model based on Alnico curves.

Different colors are used in Figure 14 to make the algorithm more transparent. The parts of the
algorithm when a new magnetization curve must be calculated are marked with red. The parts of the
algorithm when the magnetization curve remains unchanged due to the previous step or an original
magnetization curve is used are marked with green. The calculation depends on the excitation change,
and on the calculated values of H and B from the previous step, and these data must be memorized
(marked with blue color).

7. Conclusions

Precise magnetic material hysteresis modeling is important for accurate dimensioning of
electromagnetic devices using FEM. The aim of the paper was to find a mathematical expression that
describes a wide range of different hystereses authentically. Seven different mathematical expressions
were modified appropriately with added parts, and tested on two same test examples. The results
presented in Tables 6–8 show that the combination of the Elliot expression and DE/rand/1/exp method
for the determination of the parameters is the best between the tested expressions and methods. Both
the highest number of the lowest best OF and the highest number of the lowest mean OF were obtained
using the Elliot expression combined with DE/rand/1/exp.

The idea of the model is that both major and first-order reversal measured curves could be
modeled using the Elliot expression. For each measured curve, parameters were determined using
DE/rand/1/exp, and, with that, the best match was achieved between measured and calculated curves.
After that, a simple procedure is presented for the calculation of the curves in the area between the
measured curves. Therefore, DE/rand/1/exp offers a reliable procedure for the precise determination of
the parameters.

A large number of measured first-order reversal curves allow the model to function well.
To simulate hysteresis, the closest curve should be selected, along with its set of six parameters.
Therefore, it is impossible to simulate a curve if a similar experimental curve was not fitted previously.
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The model is, therefore, a fit of experimental data, and, consequently, it has no predictive ability,
which is the limitation of the model.

Considering the measurement accuracy (5% for measurement of H and 5% for measurement of B)
and results presented in Table 9, it can be concluded that it is reasonable to search for expressions and
methods to match best the measured and calculated curves.

It can also be concluded that different algorithms lead to the same results. For almost all expressions
in the case of the same calculated OF, calculated parameters are also the same. Although the same
best OF is obtained using different methods, mean OF can be very different, which means that some
methods occasionally give poor results on this problem, which is not desirable. Because of this, we
have identified the method that is best for the presented problem.

The presented model shows the successful use of the evolutionary method for the determination of
a higher number of parameters and simple determination of further magnetization processes. Findings
about the used evolutionary methods, which are presented in the paper, will be used in the future to
get better solutions of the optimization problems in Electromagnetics. The integration of the presented
model into the FEM software will also be one of the future studies.
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6. Janičević, V.; Ilić, V.; Pjevalica, N.; Nikolić, M. An approach to modelling the hysteresis in ferromagnetic by

adaptation of Preisach model. In Proceedings of the 22nd Telecommunications forum TELFOR, Belgrade,
Serbia, 25–27 November 2014; pp. 761–764.

7. Kuczmann, M. Measurement and Simulation of Vector Hysteresis Characteristics. IEEE Trans. Magn. 2009,
45, 5188–5191. [CrossRef]

8. Dlala, E.; Belahcen, A.; Fonteyn, K.A.; Belkasim, M. Improving Loss Properties of the Mayergoyz Vector
Hysteresis Model. IEEE Trans. Magn. 2010, 46, 918–924. [CrossRef]

9. Enokizono, M. Vector Magnetic Property and magnetic Characteristic Analysis by Vector Magneto-Hysteretic
E & S Model. IEEE Trans. Magn. 2009, 45, 1148–1153.

10. Zeng, Z.; Udpa, L.; Udpa, S.S. Finite-Element Model for Simulation of Ferrite-Core Eddy-Current Prob.
IEEE Trans. Magn. 2010, 46, 905–909. [CrossRef]

11. Egea, A.C.; Almandoz, G.; Poza, J.; Ugalde, G.; Escalada, A.J. Axial-Flux-Machine Modeling With the
Combination of FEM-2-D and Analytical Tools. IEEE Trans. Ind. Appl. 2012, 48, 1318–1326. [CrossRef]

http://dx.doi.org/10.1109/20.102891
http://dx.doi.org/10.1063/1.4747915
http://dx.doi.org/10.1109/TPWRD.2007.905809
http://dx.doi.org/10.1109/TMAG.2009.2031072
http://dx.doi.org/10.1109/TMAG.2009.2034846
http://dx.doi.org/10.1109/TMAG.2009.2034651
http://dx.doi.org/10.1109/TIA.2012.2199450


Mathematics 2020, 8, 201 25 of 27

12. Fu, W.N.; Ho, S.L.; Zhou, P. Reduction of Computing Time for Steady-state Solutions of Magnetic Field and
Circuit couple Problems Using Time-Domain Finite-Element Method. IEEE Trans. Magn. 2012, 48, 3363–3366.
[CrossRef]

13. Wang, G.; Wang, S.; Duan, N.; Huangfu, Y.; Zhang, H.; Xu, W.; Qiu, J. Extended Finite-Element Method for
Electric Field Analysis of Insulting Plate With Crack. IEEE Trans. Magn. 2015, 51. [CrossRef]

14. Trlep, M.; Hamler, A.; Jesenik, M.; Štemberger, B. The FEM-BEM Analysis of Complex Grounding Systems.
IEEE Trans. Magn. 2003, 39, 1155–1158. [CrossRef]

15. Brucker, F.; Vogler, C.; Feischer, M.; Praetorius, D.; Bergmair, B.; Hubner, T.; Fuger, M.; Suess, D. 3D
FEM-BEM-coupling method to solve magneto static Maxwell equations. J. Magn. Magn. Mater. 2012, 324,
1862–1866. [CrossRef]

16. Salas, R.A.; Pleite, J.; Olie, E.; Baarado, A. Theoretical-experimental comparison of a modelling procedure for
magnetic components using finite element analysis and a circuit simulator. J. Magn. Magn. Meter. 2008, 320,
1024–1028. [CrossRef]

17. Kursa, H.; Ohtake, M.; Miyagi, D.; Takahashi, N. 3-D FEM analysis of thermal degradation in writing and
reading characteristics of a perpendicular magnetic head. J. Magn. Magn. Mater. 2008, 320, 2917–2920.
[CrossRef]

18. Zona, A.; Ranz, G. Finite element model for nonlinear analysis of steel-concrete composite beams with partial
interaction in combined bending and shear. Finite Elem. Anal. Des. 2011, 47, 98–118. [CrossRef]

19. Melenk, J.; Babuška, I. The partition of unity finite element method: Basic theory and applications.
Comput. Methods Appl. Mech. Eng. 1996, 139, 289–314. [CrossRef]

20. Hansbo, A.; Hansbo, P. A finite element method for the simulation of strong and weak discontinuities in
solid mechanics. Comput. Methods Appl. Mech. Eng. 2004, 193, 3523–3540. [CrossRef]

21. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed.; Addison-Wesley
Longman Publishing Co.: Boston, MA, USA, 1989.

22. Holland, J.H. Adaptation in Natural and Artificial Systems; The MIT Press: London, UK, 1975.
23. Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2004.
24. Cortes, P.; Larranieta, J.; Onieva, L. Genetic algorithm for controllers in elevator groups: analysis and

simulation during lunchpeak traffic. Appl. Soft Comput. 2004, 4, 159–174. [CrossRef]
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