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Abstract: Our aim in this article is to suggest an extended local convergence study for a class of
multi-step solvers for nonlinear equations valued in a Banach space. In comparison to previous
studies, where they adopt hypotheses up to 7th Fŕechet-derivative, we restrict the hypotheses to
only first-order derivative of considered operators and Lipschitz constants. Hence, we enlarge the
suitability region of these solvers along with computable radii of convergence. In the end of this
study, we choose a variety of numerical problems which illustrate that our works are applicable but
not earlier to solve nonlinear problems.
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1. Introduction

Finding the approximate solution µ of

F(x) = 0, (1)

is one of the top priorities in the field of Numerical analysis. We assume that F : A ⊂ E1 → E2

is a Fréchet-differentiable operator, E1,E2 are Banach spaces and A is a convex subset of E1. The
`B(E1, E2) is known as the set of bounded linear operators.

The problem of finding an approximate unique solution µ is very important, since many problems
can be written as Equation (1) in References [1–8]. However, it is not always possible to access the
solution µ in an explicit form. Hence, most of the solvers are iterative in nature. The analysis of solvers
involves local convergence that stands on the knowledge around µ. It also ensures the convergence of
iteration procedures. One of the most significant tasks in the analysis of iterative procedures is to yield
the convergence region. Hence, it is essential to suggest the radius of convergence.
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We redefine the iterative solver suggested in Reference [7], for all σ = 0, 1 2, . . . as

yσ = xσ − F′(xσ)
−1F(xσ),

zσ = φ1(xσ, yσ)

z(1)σ = zσ − φ(xσ, yσ)F(zσ),
...
...

z(m−1)
σ = z(m−2)

σ − φ(xσ, yσ)F(zm−2
σ ),

xσ+1 = z(m−1)
σ − φ(xσ, yσ)F(zm−1

σ ),

(2)

where x0 ∈ A is a starting guess, zσ = φ1(xσ, yσ) is a λ-order iteration function solver (for λ ≥ 1) and

φ(s, ζ) =
1
3

{
4[3F′(ζ)− F′(s)]−1 − F′(s)−1

}
. (3)

F′ stands for the first-order Fŕechet-derivative of F. The study of these methods is important for
various reasons already stated in Reference [7]. For brevity we refer the reader to Reference [7] and the
references therein. On top of those reasons, we also mention that method (2) generalizes the existing
widely used Newton’s type methods such as Newton’s, Traub’s and other methods. So, it is important
to study these methods under the same set of convergence criteria. Keeping the linear operator frozen
is also a very cheap and efficient way of increasing the order of convergence. The convergence order of
(2) was given in Reference [7] but using hypotheses up to the 7th-order derivative of function F. Only
the 1st-order derivative emerges in scheme (2). Such conditions hamper the suitability of solver (2).
Consider function F with E1 = E2 = R on A = [− 1

2 , 3
2 ] by

Θ(κ) =

{
κ3 ln κ2 + κ5 − κ4, κ 6= 0
0, κ = 0

.

Using this definition, we get

Θ′(κ) = 3κ2 ln κ2 + 5κ4 − 4κ3 + 2κ2,

Θ′′(κ) = 6κ ln κ2 + 20κ3 − 12κ2 + 10κ

and
Θ′′′(κ) = 6 ln κ2 + 60κ2 − 24κ + 22.

It is clear from the above that the 3rd-order derivative of F(x) is unbounded in A. We have plenty of
research articles on iterative solvers [1–26]. The local convergence analysis of these solvers traditionally
requires the usage of Taylor expansions and the operator involved must be sufficiently many times
differentiable in a neighborhood of the solution µ. This way, the convergence order is established
but derivatives of an order higher than one do not appear in these solvers, as we saw previously
with the motivational example restricting the applicability of solvers. Another problem is that this
approach does not provide error estimates on ‖xn − µ‖ that can be used to predetermine the number
of steps required to attain a prescribed error tolerance. The uniqueness of the solution µ also cannot
be established in any set containing it. Moreover, the starting guess is a shot in the dark. Therefore,
it is important to find a technique other than the preceding. This is what we offer in this article.
Furthermore, (COC) and (ACOC) [27] are used to compute the convergence order (to be explained in
Remark 1 (d)).

These formulas do not require higher than one derivative, and in the case of ACOC, knowledge
of µ is not needed. It is worth noting that the iterates are obtained by using (2), which involves the first



Mathematics 2020, 8, 179 3 of 14

derivative. Hence, these iterates also depend on the first derivative (see Remark 1 (d)). Our techniques
can be used on other solvers to extend their applicability in a similar fashion.

2. Local Convergence

Here, we present a study of local convergence for solver (2). For this, we consider a function
ϕ0 : [0, ∞)→ [0, ∞) which is nondecreasing and continuous such that ϕ0(0) = 0. We assume

ϕ0(ζ) = 1 (4)

has a minimal positive solution r0.
Define functions g1, g2, h1 and h2 on the interval [0, r0) by

g1(ζ) =

∫ 1
0 ϕ
(
(1− θ)ζ

)
dθ

1− ϕ0(ζ)
,

g2(ζ) = ψ(ζ, g1(ζ)ζ)ζ
λ−1,

h1(ζ) = g1(ζ)− 1.

and

h2(ζ) = g2(ζ)− 1,

where v, ϕ : [0, r0) → [0, ∞) and functions ψ : [0, r0)× [0, r0) → [0, ∞) are also nondecreasing
and continuous, satisfying ϕ(0) = 0. We have that h1(0) = h2(0) = −1 and h1(ζ) → ∞, h2(ζ) → ∞
as ζ → r−0 . Then, by the intermediate value theorem, we notice that the functions h1 and h2 have
solutions in the interval (0, r0). Call as r1 and r2 the smallest such solutions in (0, r0) of the functions
h1 and h2, respectively. Assume p(t) = 1 has minimal positive solution rp. Consider functions

p(ζ) =
1
2

[
3ϕ0

(
g1(ζ)ζ

)
+ ϕ0(ζ)

]
,

hp(ζ) = p(ζ)− 1.

These functions are defined in the interval [0, r̄), where r̄ = min{r0, rp}. Consider functions
g(i), h(i), i = 1, 2, . . . , m on [0, r̄) as

g(i)(ζ) =
(

1 + q(ζ)
∫ 1

0
v(θg(i−1)(ζ)ζ)dθ

)i−1

g2(ζ), g(−1)(ζ) = g2(ζ),

and

h(i)(ζ) = g(i)(ζ)− 1,

where

q(ζ) =
1
2

 ϕ0(ζ) + ϕ0

(
g1(ζ)ζ

)
1− p(ζ)

 .

Then, h(i)(0) = −1 and h(i)(ζ) → ∞ as ζ → r̄−. Defined by r(i) be the minimal solutions of
corresponding to functions h(i) in (0, r̄).

Set r as
r = min{r1, r2, r(i)}. (5)

Then, it follows
0 < r < r0 (6)
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and for all t ∈ [0, r)
0 ≤ g1(ζ) < 1, (7)

0 ≤ g2(ζ) < 1, (8)

0 ≤ p(ζ) < 1, (9)

0 ≤ q(ζ) (10)

and
0 ≤ g(i)(ζ) < 1. (11)

Let U(ξ, ρ), Ū(ξ, ρ) be, respectively, open and closed balls in E1 centered at ξ ∈ E1 and of radius
ρ > 0. Next, the local convergence analysis of solver (2) follows.

Theorem 1. Let F : A ⊆ E1 → E2 be a differentiable operator. Let v, ϕ0, ϕ : [0, ∞) → [0, ∞) and
ψ : [0, ∞)× [0, ∞) → [0, ∞) be a nondecreasing continuous function such that ϕ0(0) = ϕ(0) = 0. The
parameter r0 be defined by (4). Suppose that there exists µ ∈ A such that

F(µ) = 0, F′(µ)−1 ∈ `B(E2, E1) (12)

and
‖F′(µ)−1(F′(x)− F′(µ)‖ ≤ ϕ0(‖x− µ‖), for all x ∈ A. (13)

Moreover, suppose that for all x, y ∈ A0 = A∩U(µ, r0)

‖F′(µ)−1(F′(x)− F′(y)
)
‖ ≤ ϕ(‖x− y‖), (14)

‖F′(µ)−1F′(x)‖ ≤ v(‖x− µ‖), (15)

‖φ1(x, y)− µ‖ ≤ ψ(‖x− µ‖, ‖y− µ‖)‖x− µ‖λ (16)

and
Ū(µ, r) ⊆ A. (17)

Then, {xσ} generated for x0 ∈ U(µ, r) − {x∗} by solver (2) is well defined, remains in U(µ, r) for all
σ = 0, 1, 2, 3, 4, . . . and converges to µ, so that

‖yσ − µ‖ ≤ g1(‖xσ − µ‖)‖xσ − µ‖ ≤ ‖xσ − µ‖ < r, (18)

‖zσ − µ‖ ≤ g2(‖xσ − µ‖)‖xσ − µ‖ ≤ ‖xσ − µ‖, (19)

‖z(i)σ − µ‖ ≤ g(i)(‖xσ − µ‖)‖xσ − µ‖ ≤ ‖xσ − µ‖, i = 1, 2, . . . , m− 1 (20)

and
‖xσ+1 − µ‖ ≤ g(m)(‖xσ − µ‖)‖xσ − µ‖ ≤ ‖xσ − µ‖. (21)

Further, if ∫ 1

0
ϕ0(θR)dθ < 1 for R ≥ r, (22)

then, µ is the only solution of equation F(x) = 0 in A1 := A∩ Ū(µ, R).

Proof. We select mathematical induction to show that expressions (18)–(21) are satisfied.
Using hypotheses x0 ∈ U(µ, r)− {x∗}, (4), (5) and (13), we yield

‖F′(µ)−1(F′(x0)− F′(µ))‖ ≤ ϕ0(‖x0 − µ‖) < ϕ0(r) < 1. (23)
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Therefore, F′(x0)
−1 ∈ `B(E2, E2), y0, z0 are well defined, and

‖F′(x0)
−1F′(µ)‖ ≤ 1

1− ϕ0(‖x0 − µ‖) . (24)

By adopting (2), (5), (7), (14) and (24), we have

‖y0 − µ‖ = ‖x0 − µ− F′(x0)
−1F(x0)‖

≤ ‖F′(x0)
−1F′(µ)‖

∥∥∥∥∫ 1

0
F′(µ)−1 (F′(µ + θ(x0 − µ))− F′(x0)

)
(x0 − µ)dθ

∥∥∥∥
≤

∫ 1
0 w
(
(1− θ)‖x0 − µ‖

)
dθ‖x0 − µ‖

1− ϕ0(‖x0 − µ‖)
= g1(‖x0 − µ‖)‖x0 − µ‖ ≤ ‖x0 − µ‖ < r,

(25)

showing (18) for σ = 0 and y0 ∈ U(µ, r).
By (2), (5), (8), (16) and (25), we yield

‖z0 − µ‖ = ‖φ1(x0, y0)− µ‖

≤ ψ
(
‖x0 − µ‖, ‖y0 − µ‖

)
‖x0 − µ‖λ

≤ ψ
(
‖x0 − µ‖, g1(‖x0 − µ‖)‖x0 − µ‖

)
‖x0 − µ‖λ

= g2(‖x0 − µ‖)‖x0 − µ‖ ≤ ‖x0 − µ‖ < r,

(26)

showing (19) (for σ = 0) and z0 ∈ U(µ, r). We can write by (12)

F(z0) = F(z0)− F(µ) =
∫ 1

0
F′
(

µ + θ(z0 − µ)
)

dθ(z0 − µ). (27)

Then, from (15), (26) and (27), we obtain

‖F′(µ)−1F(z0)‖ ≤
∫ 1

0
v(θ‖z0 − µ‖)‖z0 − µ‖dθ

≤
∫ 1

0
v(θg1(‖x0 − µ‖)‖x0 − µ‖)dθg1(‖x0 − µ‖)‖x0 − µ‖.

(28)

We must show that φ(x0, y0) 6= 0. In view of (5), (9), (13) and (25), we get∥∥∥(2F′(µ)
)−1

[
3F′(y0)− F′(µ)− 2F′(µ)

]∥∥∥
≤ 1

2

[
3ϕ0(‖y0 − µ‖) + ϕ0(‖x0 − µ‖)

]
≤ 1

2

[
3ϕ0

(
g1(‖x0 − µ‖)‖x0 − µ‖

)
+ ϕ0(‖x0 − µ‖)

]
= p(‖x0 − µ‖) < p(r) < 1,

(29)

so z0, z(1)0 , . . . z(m−1)
0 , x1 exist∥∥∥[3F′(y0)− F′(µ)

]−1 F′(µ)
∥∥∥ ≤ 1

2(1− p(‖x0 − µ‖)) (30)
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and ∥∥φ(x, y0)F′(µ)
∥∥ ≤ ∥∥∥∥1

3

[
4
(

3F′(y0)− F′(x0)
)−1
− F′(x0)

−1
]

F′(µ)
∥∥∥∥

≤
∥∥∥∥(3F′(y0)− F′(x0)

)−1(
F′(x0)− F′(y0)

)
F′(µ)

∥∥∥∥ .
(31)

Using (2), (5), (8), (9), (11) (for i = 2), (28) and (31), we obtain

‖z(1)0 − µ‖ = ‖z0 − µ‖+ ‖φ(x0, y0)F′(µ)‖‖F′(µ)−1F(z0)‖

≤
(

1 + ‖φ(x0, y0)F′(µ)‖
∫ 1

0
v(θ‖z0 − µ‖)dθ

)
‖z0 − µ‖

≤ g(1)(‖x0 − µ‖)‖x0 − µ‖ ≤ ‖x0 − µ‖ < r,

(32)

so (20) holds for σ = 0, i = 1 and z−1
0 ∈ U(µ, r). In an analogous way, we obtain for i = 2, 3, . . . , m− 1

that

‖z(i−1)
0 − µ‖ = ‖z(i−2)

0 − µ‖+ q(‖x0 − µ‖)
∫ 1

0
v(θ‖z(i−2)

0 − µ‖)dθ‖z0 − µ‖

≤ g(i−1)(‖x0 − µ‖)‖x0 − µ‖ ≤ ‖x0 − µ‖ < r,
(33)

which implies (20) holds for σ = 0, i = 1, 2, . . . , m− 1, and zm
0 ∈ U(µ, r).

In view of solver (2), (5), (11) (for i = m) and the proceeding estimates

‖x1 − µ‖ ≤ ‖z(m−1)
0 − µ‖+ ‖φ(x0, y0)F′(µ)‖‖F′(µ)−1F(z(m−1)

0 )‖

≤
(

1 + q(‖x0 − µ‖)
∫ 1

0
v(θ‖z(m−1)

0 − µ‖)dθ

)
‖z(m−1)

0 − µ‖

= g(m)(‖x0 − µ‖)‖x0 − µ‖ ≤ ‖x0 − µ‖ < r,

(34)

showing (21) (for σ = 0) with x1 ∈ U(µ, r). Now, change x0, y0, z0, z(i)0 (i = 1, 2, . . . , m) and x1 by

xσ, yσ, zσ, z(i)σ and xσ+1 in the preceding estimates. Hence, we attain (18)–(21). By adopting

‖xσ+1 − µ‖ ≤ c‖xσ − µ‖ < r, c = g(m)(‖x0 − µ‖) ∈ [0, 1), (35)

we have lim
σ→∞

xσ = µ with xσ+1 ∈ U(µ, r). Finally, for the uniqueness of required solution, we assume

that y∗ ∈ A1 satisfying F(y∗) = 0. Set Q =
∫ 1

0 F′(µ + θ(µ− y∗))dθ, so

‖F′(µ)−1(Q− F′(µ))‖ ≤ ‖
∫ 1

0 ϕ0(θ‖y∗ − µ‖)dθ

≤
∫ 1

0 ϕ0(θR)dθ < 1.
(36)

Hence, Q is invertible. Then,

0 = F(µ)− F(y∗) = Q(µ− y∗), (37)

yields y∗ = µ.

Remark 1.

(a) It is clear from (13) that we can drop the hypothesis (15) and choose

v(ζ) = 1 + ϕ0(ζ) or v(ζ) = 1 + ϕ0(r0). (38)
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Indeed, we have

‖F′(µ)−1 [(F′(x)− F′(µ)
)
+ F′(µ)

]
‖ = 1 + ‖F′(µ)−1(F′(x)− F′(µ))‖
≤ 1 + ϕ0(‖x− µ‖)
= 1 + ϕ0(ζ) for ‖x− µ‖ ≤ r0.

(39)

(b) We can set
r0 = ϕ−1

0 (1) (40)

instead (4) provided that function ϕ0 is strictly increasing.
(c) If ϕ0, w, v are constants functions, then

r1 =
2

2ϕ0 + w
(41)

and
r ≤ r1, (42)

where r1 is the radius for Newton’s solver [14].

xσ+1 = xσ − F′(xσ)
−1F(xσ). (43)

Rheinboldt [26] and Traub [6] also provided radius of convergence instead of r1

rTR =
2

3ϕ1
(44)

and by Argyros [1,2]

rA =
2

2ϕ0 + ϕ1
, (45)

where ϕ1 is a constant for (9) on D, so

w ≤ ϕ1, ϕ0 ≤ ϕ1, (46)

so
rTR ≤ rA ≤ r1 (47)

and
rTR
rA
→ 1

3
as

ϕ0

w
→ 0. (48)

(d) By adopting conditions to the 7th-order derivative of operator F, the order of the convergence of solver
(2) was given in Reference [7]. We assume hypotheses only on the 1st-order derivative of operator F. For
obtaining the order of convergence, we adopted

ξ =
ln ‖xσ+2−µ‖
‖xσ+1−µ‖

ln ‖xσ+1−µ‖
‖xσ−µ‖

, for each σ = 0, 1, 2, 3, 4, . . . (49)

or

ξ∗ =
ln ‖xσ+2−xσ+1‖
‖xσ+1−xσ‖

ln ‖xσ+1−xσ‖
‖xσ−xσ−1‖

, for each σ = 1, 2, 3, 4, . . . , (50)

the computational order of convergence COC and the approximate computational order of convergence
ACOC [28,29], respectively. These definitions can also be found in Reference [27]. They do not require
derivatives higher than one. Indeed, notice that to generate iterates xn and therefore compute ξ and ξ∗, we
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need to use the formula (2) using only the first derivatives. It is vital to note that ACOC does not need the
prior information of exact root µ.

(e) Consider F satisfying the autonomous differential equation [1,2] of

F′(x) = P(F(x)) (51)

where P is a given and continuous operator. Then, F′(x∗) = P(F(x∗)) = P(0), our results apply but
without knowledge of x∗ and choose F(x) = ex − 1. Hence, we select P(x) = x + 1.

3. Concrete Applications

Here, we illustrate the theoretical consequences suggested in Section 2. We choose λ = 1 and
ϕ1(xσ, yσ) = yσ − F′(yσ)−1F(yσ), in all examples. Next, we provide numerical examples given
as follows:

Example 1. Choose E1 = E2 = A, where A = C[0, 1]. We study the mixed Hammerstein-like equation [4,18],
defined as follows:

x(s) = 1 +
∫ 1

0
H(s, ζ)

(
x(ζ)

3
2 +

x(ζ)2

2

)
dζ, (52)

where

H(s, ζ) =

{
(1− s)ζ, ζ ≤ s,

s(1− ζ), s ≤ ζ,
(53)

defined in [0, 1]× [0, 1]. The solution µ(s) = 0 is the same as zero of (1), where F : A→ A, given as:

F(x)(s) = x(s)−
∫ ζ

0
H(s, ζ)

(
x(ζ)

3
2 +

x(ζ)2

2

)
dζ. (54)

But ∥∥∥∥∫ ζ

0
H(s, ζ)dζ

∥∥∥∥ ≤ 1
8

, (55)

and

F′(x)y(s) = y(s)−
∫ ζ

0
G(s, ζ)

(
3
2

x(ζ)
1
2 + x(ζ)

)
dζ,

so since F′(µ(s)) = I, ∥∥∥F′(µ)−1(F′(x)− F′(y)
)∥∥∥ ≤ 1

8

(
3
2
‖x− y‖

1
2 + ‖x− y‖

)
. (56)

Then, we consider

ϕ0(ζ) = ϕ(ζ) =
1
8

(
3
2

ζ
1
2 + ζ

)
and

v(ζ) = 1 + ϕ0(ζ),

by Remark 1. But F′ is not Lipschitz, so earlier studies [4,7] are not applicable to solving this problem. On the
other hand, our technique does not exhibit this kind of behavior. The different radii of convergence mentioned in
Table 1.
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Table 1. Distinct radii of convergence.

i r1 r2 r(i) r

1 2.6303 0.816299 0.816299 0.816299
2 2.6303 0.816299 0.677029 0.677029

We notice that the radius of convergence decreases as “i” increases as expected, since we trade higher order
convergence, with a smaller domain of convergence of initial points.

Example 2. Describing the movement of a particle in 3-D by the following system of differential equations

f ′1(x)− f1(x)− 1 = 0

f ′2(y)− (e− 1)y− 1 = 0

f ′3(z)− 1 = 0

(57)

with x, y, z ∈ A for f1(0) = f2(0) = f3(0) = 0. Define v = (x, y, z)T by function F := ( f1, f2, f3) :
A→ R3 given as follows:

F(v) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
. (58)

So, we obtain

F′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .

Then, we have for µ = (0, 0, 0)T that ϕ0(ζ) = (e− 1)ζ, ϕ(ζ) = e
1

e−1 ζ, and v(ζ) = e
1

e−1 . The different
radii of convergence mentioned in Table 2.

Table 2. Distinct radii of convergence.

i r1 r2 r(i) r

1 0.377542 0.416275 0.416275 0.416275
2 0.377542 0.416275 0.272799 0.272799
3 0.377542 0.416275 0.227777 0.227777
4 0.377542 0.416275 0.198038 0.198038

We notice that the radius of convergence decreases as “i” increases as expected, since we trade higher order
convergence, with a smaller domain of convergence of initial points.

Example 3. Let us choose E1 = E2 = S, facilitated by the max norm. Set A = Ū(0, 1) and choose a function
F on A

F(Γ)(x) = φ(x)− 5
∫ 1

0
xθΓ(θ)3dθ. (59)

We have that

F′(Γ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθΓ(θ)2ξ(θ)dθ, for each ξ ∈ A. (60)

Then, we have that ϕ0(ζ) = 15ζ, ϕ(ζ) = 30ζ and v(ζ) = 2. So, we yield the Table 3, where we calculated
distinct radii of convergence.



Mathematics 2020, 8, 179 10 of 14

Table 3. Distinct radii of convergence.

i r1 r2 r(i) r

1 0.0333333 0.0625 0.0625 0.0625
2 0.0333333 0.0625 0.0324524 0.0324524
3 0.0333333 0.0625 0.0296809 0.0296809
4 0.0333333 0.0625 0.0270781 0.0270781

We notice that the radius of convergence decreases as “i” increases as expected, since we trade a higher order
convergence with a smaller domain of convergence of initial points.

Example 4. By the academic problem that we considered in the introduction, we yield ϕ0(ζ) = ϕ(ζ) =

96.662907t and v(ζ) = 2. So, we have the different radii of convergence depicted in Table 4.

Table 4. Distinct radii of convergence.

i r1 r2 r(i) r

1 0.00689682 0.0102917 0.0102917 0.0102917
2 0.00689682 0.0102917 0.00623774 0.00623774
3 0.00689682 0.0102917 0.00599906 0.00599906
4 0.00689682 0.0102917 0.00565863 0.00565863

We notice that the radius of convergence decreases as “i” increases as expected, since we trade a higher order
convergence with a smaller domain of convergence of initial points.

4. Application of Our Scheme on Large System of Nonlinear Equations

We cited the (j), (‖F(xj)‖), ‖xj+1− xj‖ and ξ∗ ≈ log
[
‖xj+1−xj‖/‖xj−xj−1‖

]
log
[
‖xj−xj−1‖/‖xj−1−xj−2‖

] as the index of number

of iteration, absolute residual errors, errors among two iterations and computational convergence
order, respectively, in Tables 5–7.

The whole calculation is performed in the Mathematica software (Version-9, Wolfram Research,
Champaign, IL, USA). We consider at least 1000 digits of mantissa in order to minimize the round-off
errors. The notation a1 (±a2) employs a1 × 10(±a2).

Example 5. We assume here a boundary value problem [30], which is given by

v′′ =
1
2

v3 + 3v′ − 3
2− x

+
1
2

, v(0) = 0, v(1) = 1. (61)

Further, we chosen a σ-point partition of [0, 1] in the following way:

x0 = 0 < x1 < x2 < x3 < · · · < xσ, where xi+1 = xi + k, k =
1
σ

.

Furthermore, we assume that v0 = v(x0) = 0, v1 = v(x1), . . . , vσ−1 = v(xσ−1), vσ = v(xσ) = 1.
By adopting the following technique for removing derivatives for problem (61)

v′j =
vj+1 − vj−1

2k
, v′′j =

vj−1 − 2vj + vj+1

k2 , j = 1, 2, . . . , σ− 1.

We have

vj+1 − 2vj + vj−1 −
k2

2
v3

j −
3

2− xj
k2 − 1

k2 = 0, j = 1, 2, . . . , σ− 1.
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a system of nonlinear equations (SNE) of order (σ − 1) × (σ − 1). We choose the starting approximation
y(0)h = (1.5, 1.5, 1.5, 1.5, 1.5, 1.5)T . We solved the problem for a 6× 6 SNE by choosing σ = 7. We obtained
the following solution

µ =
(
0.0765439 . . . , 0.165874 . . . , 0.271521 . . . , 0.398454 . . . , 0.553886 . . . , 0.748688 . . .

)T .

We depicted the numerical out comes in Table 5.

Table 5. Computational results on a boundary value problem 5.

Cases of (2) j ‖F(xj)‖ ‖xj+1− xj‖ ξ∗

i = 1

0 1.9 2.8
1 8.5 (−6) 2.2 (−5)
2 9.0 (−38) 1.7 (−37)
3 9.6 (−231) 1.5 (−230) 6.0097

i = 2

0 1.9 2.8
1 6.8 (−8) 2.9 (−7)
2 6.0 (−66) 6.5 (−66)
3 2.0 (−534) 5.0 (−534) 7.9819

We have computed ACOC and observed that as we increases “i” so does the ACOC.

Example 6. We choose a prominent 2D Bratu problem [31,32], which is given by

uxx + utt + Ceu = 0, on

A : (x, t) ∈ 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

along boundary hypothesis u = 0 on A.

(62)

Let us assume that Θi,j = u(xi, tj) is a numerical result over the grid points of the mesh. In addition, we consider
that τ1 and τ2 are the number of steps in the direction of x and t, respectively. Moreover, we choose that h and k
are the respective step sizes in the direction of x and y, respectively. In order to find the solution of PDE (62),
we adopt the following approach

uxx(xi, tj) =
Θi+1,j − 2Θi,j + Θi−1,j

h2 , C = 0.1, t ∈ [0, 1], (63)

which further yields the succeeding SNE

Θi,j+1 + Θi,j−1 −Θi,j + Θi+1,j + Θi−1,j + h2C exp
(

Θi,j

)
i = 1, 2, 3, . . . , τ1, j = 1, 2, 3, . . . , τ2. (64)

By choosing τ1 = τ2 = 11, h = 1
11 , and C = 0.1, we get a large SNE of order 100× 100. The starting point is

x0 = 0.1(sin(πh) sin(πk), sin(2πh) sin(2πk), . . . , sin(10πh) sin(10πk))T

and results are depicted in Table 6.
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Table 6. Computational results of 2D Bratu problem in Example 6.

Cases of (2) j ‖F(xj)‖ ‖xj+1− xj‖ ξ∗

i = 1

0 8.1 (−2) 5.0 (−1)
1 1.2 (−21) 4.9 (−21)
2 3.3 (−141) 5.7 (−141)
3 4.3 (−860) 1.6 (−569) 5.9911

i = 2

0 8.1 (−2) 5.0 (−1)
1 9.6 (−30) 1.2 (−29)
2 1.3 (−256) 6.4 (−256)
3 2.0 (−2068) 2.4 (−2068) 8.0096

We have computed ACOC and observed that, as “i” increases, so does the ACOC.

Example 7. Finally, we deal with succeeding SNE

F(X) =

{
− 1 + x2

j xj+1 = 0, 1 ≤ j ≤ σ− 1,

− 1 + x2
σx1 = 0.

(65)

In order to access a giant system of nonlinear equations of order 200× 200, we pick σ = 200. In addition, we
consider the following starting approximation for this problem:

x(0) =
(

5
4

,
5
4

,
5
4

,
5
4

, · · · ,
5
4
(200 times)

)T
,

and converges to µ = (1, 1, 1, 1, · · · , 1(200 times))T . The attained computation outcomes are illustrated in
Table 7.

Table 7. Computational results on Example 7.

Cases of (2) j ‖F(xj)‖ ‖xj+1− xj‖ ξ∗

i = 1

0 1.3 (+1) 3.5
1 9.8 (−4) 3.3 (−4)
2 2.0 (−31) 6.6 (−32)
3 2.7 (−225) 9.0 (−226) 7.0000

i = 2

0 1.3 (+1) 3.5
1 1.3 (−5) 4.3 (−6)
2 5.5 (−64) 1.8 (−64)
3 9.5 (−648) 3.2 (−648) 10.000

We have computed ACOC and observed that, as “i” increases, so does the ACOC.

5. Concluding Remarks

Recently, there has been a surge in the development of multi-step solvers for nonlinear equations.
In this article, we present a unifying local convergence of solver (2), relying only on the first derivative.
This way, we expand the applicability of these solvers. Notice that in earlier studies that are special
cases of (2), higher than one derivatives are used, which do not appear in the solver. Moreover, no
bounds on the distances ‖xσ − µ‖ are provided, nor uniqueness theorems. Furthermore, we provide
computable bounds and uniqueness of solutions. This is where the novelty of our article lies. Numerical
and applications are also given to test the convergence conditions. In our application, we solve the
2D-Bratu, BVP problems as well as a system of nonlinear equations of 200× 200.
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