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Abstract: We considered the online scheduling problem of simple linear deteriorating job families on
m parallel batch machines to minimize the makespan, where the batch capacity is unbounded. In this
paper, simple linear deteriorating jobs mean that the actual processing time pj of job Jj is assumed
to be a linear function of its starting time sj, i.e., pj = αjsj, where αj > 0 is the deterioration rate.
Job families mean that one job must belong to some job family, and jobs of different families cannot
be processed in the same batch. When m = 1, we provide the best possible online algorithm with
the competitive ratio of (1 + αmax) f , where f is the number of job families and αmax is the maximum
deterioration rate of all jobs. When m ≥ 1 and m = f , we provide the best possible online algorithm
with the competitive ratio of 1 + αmax.
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1. Introduction

1.1. Background

In this paper, all jobs arrive over time, i.e., each job has an arrival time. Before the jobs arrive,
we do not know any information, including arrival time, processing time, deterioration rate, etc.
Due to the unknown information of the jobs, the online algorithm is not guaranteed to be optimal.
Borodin and El-Yaniv [1] used the competitive ratio to measure the quality of an online algorithm.
For a minimization scheduling problem, we define the competitive ratio of the online algorithm A as:

ρ = sup{A(I)/OPT(I) : I is any instance such that OPT(I) > 0 }.

where I is any job instance and A(I) and OPT(I) are the objective values obtained from the algorithm
A and an optimal offline scheduling OPT, respectively. In this study, the objective was to minimize the
makespan. An online algorithm A is called the best possible if no other online algorithms A∗ produce
a smaller competitive ratio.

Parallel-batch means that one batch processing machine can process b jobs simultaneously as a
batch. The processing time of a batch is the maximum processing time of all jobs in this batch. All jobs
in a batch have the same starting time, processing time, and completion time. According to the number
of jobs contained in a batch, Brucker et al. [2] divided the model into two cases: the unbounded model
(b = ∞) and the bounded model (b < ∞).

Job families mean that one job must belong to some job family, and jobs of different families
cannot be processed in the same batch. Online scheduling problems on parallel batch machines with
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incompatible job families have been studied extensively. Fu et al. [3] studied the online algorithm on a
single machine to minimize the makespan. Li et al. [4] examined the online scheduling of incompatible
unit-length job families with lookahead on a single machine. Tian et al. [5] analyzed the problem
on m parallel machines. However, research is lacking on the parallel-batch online scheduling with
incompatible deteriorating job families.

Traditional scheduling problems assume that the processing time of a job is fixed. However,
in real life, one job will take longer when it has a later starting time. For example, in steel production
and financial management [6,7], the processing time is longer when it starts later. In the steel-making
process, strict requirements are placed on temperature. If the waiting time is too long, the temperature
of molten steel will drop. So, it will take time to heat up again before further processing. Other examples
are provided in cleaning and fire fighting. The scheduling problem of deteriorating jobs was first
introduced by Browne and Yechiali [8] and Gupta and Gupta [9], independently. Both considered
minimizing makespan on a single machine. Since then, this topic has attracted considerable attentions.
Gawiejnowicz and Kononov [10] considered the general properties of scheduling with fixed job
processing time and scheduling with job processing time as proportional linear functions of the job
starting time. The relevant research includes [11–18], among many others. Recently, some works have
been published about online algorithms for linear deteriorating jobs [19–23].

To minimize the makespan of the online scheduling problem on m parallel machines with linear
deteriorating jobs, Cheng et al. [19] constructed an algorithm and proved that the bound of the
competitive ratio of the algorithm is tight, where m = 2 and the largest deterioration rate of jobs
is known in advance. Yu et al. [22] proved that no deterministic online algorithm is better than
(1 + αmax)-competitive when m = 2, where αmax is the maximum deterioration rate of all jobs.

1.2. Research Problem

Our contribution is to extend the online scheduling problem on m parallel batch machines with
simple linear deteriorating job families to minimize the makespan. Here, batch capacity is unbounded,
i.e., b = ∞. We use f-family to denote there are f job families. We constructed the best possible online
algorithm with the competitive ratio of (1 + αmax) f when m = 1, where f is the number of job families
and αmax is the maximum deterioration rate of all jobs. When m ≥ 1 and m = f , we created the best
possible online algorithm with the competitive ratio of 1 + αmax.

We examined the online batch scheduling of simple linear deteriorating job families. The actual
processing time pj of job Jj is assumed to be a linear function of its starting time sj, i.e., pj = αjsj,
where αj > 0 is the deterioration rate, which is unknown until it arrives. The objective was to minimize
makespan. Assume that the arrival time of all jobs is greater than or equal to t0 > 0; otherwise,
jobs arriving at time 0 can be completed at time 0. We used the three-field notation α|β|γ [24] to
represent one scheduling problem.

This paper is organized as follows. In Section 2, we consider the problem 1|online,rj,p-batch, b =

∞,f-family, pj = αjt|Cmax, where f is the number of job families. We prove the lower bound and
provide the best possible online algorithm with the competitive ratio of (1 + αmax) f . In Section 3,
we consider the problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, where m is the number
of machines. We prove the lower bound and provide the best possible online algorithm with the
competitive ratio of 1 + αmax, where αmax is the maximum deterioration rate of all jobs.

Throughout this paper, we use σ and π to denote the schedules obtained from an online algorithm
and an optimal offline schedule, respectively. Let Cmax(σ) and Cmax(π) be the objective values of σ

and π, respectively, and αmax be the maximum deterioration rate of all jobs. Let ε be an arbitrary small
positive number.

2. Single Batch Machine (m = 1)

In this section, we consider the online scheduling on an unbounded batch machine and the jobs
belong to f incompatible deteriorating job families. The number of job families, f , is known in advance.
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We prove the lower bound and provide the best possible online algorithm with the competitive ratio
of (1 + αmax) f .

Theorem 1. For problem 1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax, the competitive ratio of any
online algorithm is not less than (1 + αmax) f .

Proof. Let H be any online algorithm and I be a job instance provided by the adversary. In instance I,
all the jobs have the same deterioration rate of α.

At time t0, f jobs from the f different job families arrive by the adversary. If a job is scheduled
by H to process at time t and t is in the time interval [t0, (1 + α) f t0), then at time t + ε, the adversary
releases a copy of this job, which belongs to the same job family. Let s be the starting time of the first
job whose completion time is at least (1 + α) f t0. (1 + α)s ≥ (1 + α) f t0. so,

s ≥ (1 + α) f−1t0. (1)

Case 1 (1 + α) f−1t0 ≤ s < (1 + α) f t0.

In this case, there are still f jobs from f distinct job families that are not processed at time
(1 + α)s. So,

Cmax(σ) ≥ (1 + α) f (1 + α)s = (1 + α) f+1s. (2)

We assume that the jobs processed in the time interval [t0, (1+ α)s) belong to k distinct job families,
say, F1,F2, · · · ,Fk, where 1 ≤ k ≤ f . The other f − k job families are defined by Fk+1,Fk+2, · · · ,F f .
Let si be the last starting time of the jobs in Fi that start before or at time s for 1 ≤ i ≤ k, and satisfy
s1 < s2 < · · · < sk. Clearly, sk = s. From the construction of instance I, we know that the last arrival
time of the jobs in Fi (1 ≤ i ≤ k) is si + ε and the arrival time of the jobs in Fi (k + 1 ≤ i ≤ f ) is t0.

Construct a schedule π′ below: the jobs in Fi (1 ≤ i ≤ f ) form a batch starting at time si
′, where:

si
′ =

{
(1 + α)i−(k+1)t0, k + 1 ≤ i ≤ f
max{si + ε, (1 + α)( f+i)−(k+1)t0}, 1 ≤ i ≤ k.

We can see that π′ is feasible, and the maximum completion time of the jobs in π′ is the completion
time of the jobs in Fk. So,

Cmax(π
′) = (1 + α)max{sk + ε, (1 + α) f−1t0}. (3)

Since sk = s, we have Cmax(π′) = max{(1 + α)(s + ε), (1 + α) f t0}. and Cmax(π) ≤ Cmax(π′).
If Cmax(π′) = (1 + α)(s + ε), then by Equation (2) we know that:

Cmax(σ)

Cmax(π)
≥ (1 + α) f+1s

(1 + α)(s + ε)
→ (1 + α) f = (1 + αmax)

f , ε→ 0.

If Cmax(π′) = (1 + α) f t0, then by Equations (1) and (2), we know that:

Cmax(σ)

Cmax(π)
≥ (1 + α) f+1s

(1 + α) f t0
=

(1 + α)s
t0

≥ (1 + α) f = (1 + αmax)
f .

Case 2 s ≥ (1 + α) f t0.

According to the constructing of I, sk is the last starting time of the jobs in time interval
[t0, (1 + α) f t0), and sk + ε is the last arrival time of all jobs.
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Since s is the starting time of the first job whose completion time is at least (1 + α) f t0, we obtain
(1 + α)sk < (1 + α) f t0, i.e., sk < (1 + α) f−1t0. From Equation (3), we have:

Cmax(π
′) = max{(1 + α)(sk + ε), (1 + α) f t0}
→ max{(1 + α)sk, (1 + α) f t0}
= (1 + α) f t0,

as ε→ 0.
By the definition of s, f jobs from f distinct job families have not been processed at time s. So,

Cmax(σ) ≥ (1 + α) f s.

Thus,

Cmax(σ)

Cmax(π)
≥ (1 + α) f s

(1 + α) f t0
=

s
t0
≥ (1 + α) f = (1 + αmax)

f .

The result follows.

Before introducing the online algorithm, given a batch B, we define some notations in
the following:

J(B): the last job with maximum deterioration rate in B.
r(B): the arrival time of J(B).
s(B): the starting time of J(B) in σ.
α(B): the deterioration rate of J(B).
U(t): the set of the unprocessed jobs at time t.
Bi(t): the set of the unprocessed jobs of the same family at time t, 1 ≤ i ≤ f , which is a waiting

batch at time t if Bi(t) 6= ∅.
B(t): the set of the waiting batches at time t.
|B(t)|: the number of all waiting batches at time t.
r(B(t)) = min{r(B) : B ∈ B(t)}.
The online algorithm, called A1 (Algorithm 1), can be stated as follows. Without causing

confusion, assume that Bi(t) = Bi in the following.

Algorithm 1: A1

Input: Job instance I. do
Step 0: Set t = t0.
Step 1: If B(t) = ∅, then go to Step 5.
Step 2: Let B(t) = {B1, B2, · · · , Bk} such that α(B1) ≥ α(B2) ≥ · · · ≥ α(Bk), where k ≤ f .
Step 3: If t ≥ (1 + α(B1))

kt0, then process the batch B1 at time t. Reset t = (1 + α(B1))t. Return
to Step 1.

Step 4: If t < (1 + α(B1))
kt0, then reset t = min{(1 + α(B1))

kt0, t∗}, where t∗ is the arrival time
of the next job. Go to Step 2.

Step 5: If new jobs arrive after t, then reset t as the arrival time of the first new job. Go to Step 1.
Output: Job schedule σ.

Example 1. To make the algorithm more intuitive, we present an instance I1 in Table 1, where F1 and F2 are
two different families. As shown in Figure 1, σ is the schedule generated by A1 and π is an optimal offline
schedule for I1, where B1 = {J1, J3} and B2 = {J2}.

We have Cmax(σ) = 81 and Cmax(π) = 9.
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Table 1. Instance I1.

Job Arrival Time Deterioration Rate

J1 ∈ F1 r1 = t0 = 1 2
J2 ∈ F2 r2 = t0 = 1 2
J3 ∈ F1 r3 = 2 1

B1 B2

1 9 27 81

B2 B1

1 3 9

σ

π

Figure 1. Schedule for Instance I1.

Suppose that rl is the last arrival time. Let s ≥ rl be the minimum time, such that s is the starting
time of some batch and there is no idle time between s and Cmax(σ) in σ. Let B be the set of the
batches that process between s and Cmax(σ) in σ and s(B) be the start time of B. Since s(B) = s ≥ rl ,
each batch in B is from a different family and B = B(s). From Algorithm 1, B = {B1, B2, · · · , Bk} with
α(B1) ≥ α(B2) ≥ · · · ≥ α(Bk), where k ≤ f . Then,

Cmax(σ) =
k

∏
i=1

(1 + α(Bi))s(B). (4)

The following two lemmas are the competition ratio analyses of Algorithm 1.

Lemma 1. Suppose the machine has an idle time immediately before s(B) in σ. Then, Cmax(σ)/Cmax(π) ≤
(1 + αmax) f .

Proof. Since an idle time occurs immediately before s(B) in σ, from Algorithm 1, we have: s(B) =
max{rl , (1 + α(B1))

kt0}.
If s(B) = rl , then for each Bi ∈ B with 1 ≤ i ≤ k, J(Bi) arrives at time rl . From Equation (4),

we know that Cmax(σ) = ∏k
i=1(1 + α(Bi))rl ≤ Cmax(π).

If s(B) = (1 + α(B1))
kt0, then from Equation (4) we have Cmax(σ) = ∏k

i=1(1 + α(Bi))(1 +

α(B1))
kt0. Since Cmax(π) ≥ ∏k

i=1(1 + α(Bi))t0, so Cmax(σ)/Cmax(π) ≤ (1 + α(B1))
k ≤ (1 +

αmax) f .

Lemma 2. Suppose the machine has no idle time immediately before s(B) in σ. Then, Cmax(σ)/Cmax(π) ≤
(1 + αmax) f .

Proof. Since the machine has no idle time immediately before s(B) in σ, s(B) is the completion time
of some batch, say B∗, in σ. We have s(B) = (1 + α(B∗))s(B∗). From the definition of s, we know
s(B∗) < rl .

We suppose that B is divided into two sets, B1 and B2, such that:

B1 = {Bi ∈ B : r(Bi) > s(B∗)},
B2 = {Bj ∈ B : r(Bj) ≤ s(B∗)}.

Since B = B1
⋃B2, s(B) = (1 + α(B∗))s(B∗), then from Equation (4) we have:
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Cmax(σ) =
k

∏
i=1

(1 + α(Bi))s(B)

= ∏
Bi∈B

(1 + α(Bi))s(B)

= ∏
Bi∈B1

(1 + α(Bi)) ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))s(B∗).

From the definition of B1, we know Cmax(π) ≥ ∏Bi∈B1
(1 + α(Bi))s(B∗). Hence,

Cmax(σ) = ∏
Bi∈B1

(1 + α(Bi)) ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))s(B∗)

≤ ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))Cmax(π).

According to the definition of B2 and Algorithm 1, each batch in set B2 and B∗ belongs to the
different family. Then, at most f − 1 batches exist in B2. Hence,

Cmax(σ)/Cmax(π) ≤ ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗)) ≤ (1 + αmax)
f .

By Lemmas 1 and 2, and Theorem 1, we can reach the final conclusion.

Theorem 2. For problem 1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax, Algorithm 1 has a competitive
ratio of (1 + αmax) f and is the best possible.

3. Parallel Batch Machines (m ≥ 1)

In this section, we consider the online scheduling on m parallel batch machines and the jobs
belong to m incompatible deteriorating job families. We prove the lower bound and construct the best
possible online algorithm with a competitive ratio of 1 + αmax.

Theorem 3. For problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, no online algorithm exists
with a competitive ratio less than 1 + αmax.

Proof. Let H be any online algorithm and I be a job instance provided by the adversary. In the
instance I, all the jobs have a deterioration rate of α.

At time t0, m jobs J1, J2, · · · , Jm from different families arrive. Suppose that job Jj starts processing
at time sj in σ, j = 1, 2, · · · , m.

If a job Jk exists such that sk ≥ (1 + α)t0, where 1 ≤ k ≤ m, then the adversary does not release
other jobs. Hence,

Cmax(σ) ≥ (1 + α)sk ≥ (1 + α)2t0 and Cmax(π) = (1 + α)t0.

We have Cmax(σ)/Cmax(π) ≥ 1 + α = 1 + αmax.
If for each job Jj with 1 ≤ j ≤ m, sj < (1 + α)t0, let Jl ∈ {J1, J2, · · · , Jm} is the last starting job.

At time sl + ε, a copy of the job Jj( j = 1, 2, · · · , m) arrives. We have:

Cmax(σ) ≥ (1 + α)2sl and Cmax(π) = (1 + α)(sl + ε).

Hence, Cmax(σ)/Cmax(π) ≥ (1 + α)sl/(sl + ε)→ 1 + α = 1 + αmax, as ε→ 0.
The result follows.
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Before providing the online algorithm, we define some notations used in the following:
U(t): the set of the unprocessed jobs at time t.
αmax(t): the maximum deterioration rate of the jobs arrived at t or before t.
m(t): the number of the idle machines at time t.
f (t): the number of job families in U(t) at time t.
Bi(t): the nonempty set of the unprocessed jobs of the same family at time t, where 1 ≤ i ≤ f (t).
Ji(t): the job with the maximum deterioration rate in Bi(t), where 1 ≤ i ≤ f (t).
αi(t): the deterioration rate of the job Ji(t), where 1 ≤ i ≤ f (t).
Without loss of generality, assume that α1(t) ≥ α2(t) ≥ · · · ≥ α f (t)(t). The online algorithm,

called A2 (Algorithm 2), can be stated as follows.

Algorithm 2: A2

Input: Job instance I. do
Step 0: Set t = t0.
Step 1: If U(t) = ∅, then go to Step 6.
Step 2: If m(t) = m, and t ≥ (1 + αmax(t))t0, then at time t, start Bi(t) as a single batch on the
idle machine for any i = 1, 2, · · · , f (t). Reset t = (1 + α f (t)(t))t. Go to Step 1.

Step 3: If m(t) = m, and t < (1 + αmax(t))t0, then reset t = t∗, such that t∗ is either the arrival
time of the next job or (1 + αmax(t))t0. Go to Step 1.

Step 4: If m(t) < m, and t ≥ (1 + αmax(t))(1 + α1(t))t0, then at time t, start Bi(t) as a single
batch on the idle machine for any i = 1, 2, · · · , min{m(t), f (t)}. Reset t = t∗, such that t∗ is
either the arrival time of the next job or (1 + αmin{m(t), f (t)}(t))t. Go to Step 1.

STEP 5: If m(t) < m, and t < (1 + αmax(t))(1 + α1(t))t0, then reset t = t∗, such that either t∗ is
the arrival time of the next job or m(t∗) > m(t), or t∗ = (1 + αmax(t))(1 + α1(t))t0.

Step 6: If new jobs arrive after t, then reset t as the arrival time of the first new job. Go to Step 1.
Output: Job schedule σ.

Example 2. To make the algorithm more intuitive, we present an instance I2 in Table 2. Figure 2 depicts the
schedule generated by Algorithm 2 and Figure 3 is an optimal offline schedule for I2.

We have Cmax(σ) = 12 and Cmax(π) = 8.

Table 2. Instance I2.

Job Arrival Time Deterioration Rate

J1 ∈ F1 r1 = t0 = 1 2
J2 ∈ F2 r2 = t0 = 1 1
J3 ∈ F3 r3 = t0 = 1 1
J4 ∈ F1 r4 = 4 1

M1

M2

M3

J1

J2 J4

J3

1 3 6

1 3 6 12

1 3 9

Figure 2. Schedule generated by A2 for Instance I2.
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M1

M2

M3

J1

J2 J4

J3

1 2

1 2 4 8

1 3

Figure 3. Optimal offline schedule for Instance I2.

Suppose that Algorithm 2 generates n batches B1, B2, · · · Bn. For batch Bi, we define some notations
in the following:

Ji: the job with the maximum deterioration rate in Bi.
αi: the deterioration rate of Ji or the deterioration rate of Bi.
ri: the arrival time of Ji.
si: the starting time of Bi in σ, suppose that s1 ≤ s2 ≤ · · · ≤ sn.
The following is the competition ratio analysis of the Algorithm 2.
Let Bl be the first batch in σ assuming the objective value. Bi is a regular batch if si = max{(1 +

αmax(si))t0, ri} or max{(1 + αmax(si))t0, ri} < si ≤ (1 + αmax(si))(1 + α1(si))t0.

Lemma 3. Suppose that only one job Ji exists in batch Bi of σ, i = 1, 2, · · · , n, then the value of
Cmax(σ)/Cmax(π) does not decrease.

Proof. From Algorithm 2, the start time of batch Bi is only related to the maximum deterioration
rate of the jobs in this batch and the maximum deterioration rate of all jobs that have arrived. So,
the value of Cmax(σ) does not change when we assume each batch Bi has only one job Ji. The reduction
in the number of jobs may decrease the value of Cmax(π), so the value of Cmax(σ)/Cmax(π) does
not decrease.

In the following, we assume that only one job Ji exists in batch Bi of σ, i = 1, 2, · · · , n. Per Lemma
3, this does not influence the competition ratio analysis of Algorithm 2.

Lemma 4. αl = α1(sl).

Proof. Obviously, αl ≤ α1(sl). If αl < α1(sl), since J1(sl) ∈ U(sl), then

Cmax(σ) ≥ (1 + α1(sl))sl > (1 + αl)sl .

This contradicts the completion time of Bl being the maximum completion time. Hence, αl =

α1(sl).

Lemma 5. If the batch Bl is a regular batch, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since Bl is a regular batch, then

sl = max{(1 + αmax(sl))t0, rl},

or
max{(1 + αmax(sl))t0, rl} < sl ≤ (1 + αmax(sl))(1 + α1(sl))t0.

Case 1 sl = max{(1 + αmax(sl))t0, rl}.
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Then

Cmax(σ) = (1 + αl)sl

= max{(1 + αl)(1 + αmax(sl))t0, (1 + αl)rl}
≤ (1 + αmax)max{(1 + αl)t0, rl}
≤ (1 + αmax)Cmax(π).

Case 2 max{(1 + αmax(sl))t0, rl} < sl ≤ (1 + αmax(sl))(1 + α1(sl))t0.

In this case, at time sl , some batches must have a start time less than sl being processed. Let Ba be
the last such batch to start, then sa < sl ≤ (1 + αa)sa. Hence,

Cmax(σ) = (1 + αl)sl ≤ (1 + αl)(1 + αa)sa. (5)

Suppose that rl ≤ sa. Since sl > sa, the batch with a larger deterioration rate has higher priority
in σ, then αl ≤ αa ≤ α1(sa) per Algorithm 2. At time sa, Jl does not start processing. This indicates that
there is no machine that can process Jl at time sa, i.e., m(sa) < f (sa) ≤ m. From Algorithm 2, we know
that sa ≥ (1 + αmax(sa))(1 + α1(sa))t0. By Lemma 4, we have αl = α1(sl). Hence,

α1(sa) ≥ αa ≥ αl = α1(sl).

By the definition of Ba, we have αmax(sa) = αmax(sl), so

sa ≥ (1 + αmax(sa))(1 + α1(sa))t0 ≥ (1 + αmax(sl))(1 + α1(sl))t0 ≥ sl .

This contradicts sa < sl . Hence rl > sa.
Thus, Cmax(π) ≥ (1 + αl)rl > (1 + αl)sa. From Equation (5), we have

Cmax(σ)/Cmax(π) < 1 + αa ≤ 1 + αmax.

In the following, we discuss the case where Bl is not a regular batch. This implies that no machine
is idle immediately before time sl , where sl > max{(1 + αmax(sl))(1 + α1(sl)t0, rl}. Renumber the m
last batches starting on the m machines before time sl to Bl,1, Bl,2, · · · , Bl,m, such that sl,1 ≤ sl,2 ≤ · · · ≤
sl,m. By Lemma 4, we have αl = α1(sl). So,

Cmax(σ) = (1 + αl)sl ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j}. (6)

If sl,1 = sl,2 = · · · = sl,k = · · · = sl,m < sl , then Jl,1, Jl,2, · · · , Jl,m belong to m different job families
and one of them belongs to the same family with Jl . Then rl > sl,1 and Cmax(π) ≥ (1 + αl)rl >

(1 + αl)sl,1. From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,1} < min
1≤j≤m

(1 + αl,j) ≤ 1 + αm.

In the following, we suppose that sl,i < sl,i+1 for some i ∈ {1, 2, · · · , m− 1}. Let k be the index
that satisfies sl,1 = sl,2 = · · · = sl,k < sl,k+1 ≤ · · · ≤ sl,m < sl , then αl,1 ≥ αl,2 ≥ · · · ≥ αl,k and
Jl,1 = J1(sl,1). If k ≥ 2, then we observe that any two jobs from {Jl,1, Jl,2, · · · , Jl,k} belong to different job
families. Define

I1 = {Jl,1, Jl,2, · · · , Jl,k} and I2 = {Jl,k+1, · · · , Jl,m}.

Lemma 6. For any job Jl,j ∈ I2, we have sl,j ≥ (1 + αmax(sl,j))(1 + αl,j)t0.
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Proof. Since sl,1 = sl,2 = · · · = sl,k < sl,k+1 ≤ · · · ≤ sl,m < sl , there is no idle machine immediately
before time sl , and Bl,1, Bl,2, · · · , Bl,m is the m last batches starting on the m machines before time sl ,
then m(t) < m for any time t ∈ [sl,k+1, sl,m]. From Algorithm 2, we have: sl,j ≥ (1 + αmax(sl,j))(1 +

αl,j)t0 for any job Jl,j ∈ I2.

Lemma 7. If rl > sl,k+1, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since rl > sl,k+1, then Cmax(π) ≥ (1 + αl)rl > (1 + αl)sl,k+1. From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k+1)sl,k+1.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k+1 ≤ 1 + αmax.

Lemma 8. If rl ≤ sl,k+1, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since rl ≤ sl,k+1, from Algorithm 2, we have:

αl ≤ min{αl,j|Jl,j ∈ I2}. (7)

If a job Jl,h ∈ I2\{Jl,k+1} exists such that rl,h > sl,k+1, then from Equation (7), we obtain:

Cmax(π) ≥ (1 + αl,h)rl,h > (1 + αl,h)sl,k+1 ≥ (1 + αl)sl,k+1.

From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k+1)sl,k+1.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k+1 ≤ 1 + αmax.

Suppose that, for any job Jl,h ∈ I2\{Jl,k+1}, rl,h ≤ sl,k+1. Since rl,k+1 ≤ sl,k+1 and rl ≤ sl,k+1,
then the arrival time of all jobs from I2

⋃{Jl} is less than sl,k+1. Thus, any two jobs from I2
⋃{Jl}

belong to distinct job families.

Claim At least one job in I2
⋃{Jl} has an arrival time greater than sl,k.

Otherwise, if the arrival time of all jobs is less than or equal to sl,k, then all jobs in I1
⋃

I2
⋃{Jl} are

available at time sl,1, and each job independently forms a batch in σ. We obtain that every two jobs
from I1

⋃
I2

⋃{Jl} belong to distinct job families. Since I1
⋃

I2
⋃{Jl} = {Jl,1, Jl,2, · · · , Jl,m}

⋃{Jl}, then
f (sl,1) = m + 1 > m. This contradicts f (sl,1) ≤ m. The claim follows.

Since at least one job from I2
⋃{Jl} arrives after sl,k, from Equation (7), we have:

Cmax(π) > (1 + αl)sl,k.

From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k)sl,k.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k ≤ 1 + αmax.
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From Lemmas 5, 7 and 8, and Theorem 3, we obtain the following theorem.

Theorem 4. For problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, Algorithm 2 has a
competitive ratio of 1 + αmax and is the best possible.

4. Conclusions and Future Research

In this paper, we outlined two best possible online algorithms. The first algorithm for problem
1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax is a simple delay algorithm. We obtained the delay
time by analyzing the properties of the unprocessed jobs, providing the best possible online algorithm
with the competitive ratio of (1 + αmax) f . The second algorithm for problem Pm|online,rj,p-batch, b =

∞,m-family, pj = αjt|Cmax is a more complex delay algorithm. We obtained the different delay times
depending on the number of idle machines and provide the best possible online algorithm with the
competitive ratio of 1 + αmax. The results are shown in Table 3.

Table 3. Summary of results.

Parallel Machine Number of Families Optimum Rate

m = 1 f (1 + αmax) f ; best possible
m ≥ 1 f = m 1 + αmax; best possible

In future research, the general linear deterioration effect, such as pj = αjsj + β j, is worthy
of research. In additional, for the online scheduling problem on m parallel machines with linear
deteriorating jobs to minimize the makespan, Yu et al. [22] only proved that no deterministic online
algorithm is better than (1+ αmax)-competitive when m = 2, where αmax is the maximum deterioration
rate of all jobs. However, no best possible online algorithm has been reported. This is also a topic for
further study.
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