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Abstract: We introduce the notion of a Ck-diffeological statistical model, which allows us to apply the
theory of diffeological spaces to (possibly singular) statistical models. In particular, we introduce a
class of almost 2-integrable Ck-diffeological statistical models that encompasses all known statistical
models for which the Fisher metric is defined. This class contains a statistical model which does not
appear in the Ay–Jost–Lê–Schwachhöfer theory of parametrized measure models. Then, we show
that, for any positive integer k , the class of almost 2-integrable Ck-diffeological statistical models is
preserved under probabilistic mappings. Furthermore, the monotonicity theorem for the Fisher metric
also holds for this class. As a consequence, the Fisher metric on an almost 2-integrable Ck-diffeological
statistical model P ⊂ P(X ) is preserved under any probabilistic mapping T : X ; Y that is sufficient
w.r.t. P. Finally, we extend the Cramér–Rao inequality to the class of 2-integrable Ck-diffeological
statistical models.

Keywords: statistical model; diffeology; the Fisher metric; probabilistic mapping; Cramér-Rao
inequality

1. Introduction

In mathematical statistics, the notion of a statistical model and the notion of a parameterized statistical
model are of central importance [1]. For a measurable space X , let us denote by P(X ) the space of all
probability measures on X . According to currently accepted theories, see e.g., [1] and the references
therein, a statistical model is a subset PX ⊂ P(X ) and a parameterized statistical model is a parameter
set Θ, together with a mapping p : Θ → P(X ). The image p(Θ) ⊂ P(X ) is a statistical model
endowed with the parameterization p : Θ → p(Θ). If the parameter set Θ is a smooth manifold,
then we can study a statistical model p(Θ), endowed with a parameterization p : Θ→ p(Θ) ⊂ P(X ),
by applying differential geometric techniques to Θ and to smooth the mappings p : Θ→ P(X ).

This idea lies in the heart of the field of information geometry, which is in the domain of
mathematical statistics, where we study (parameterized) statistical models using techniques of
differential geometry [2–5]. In the book “Information Geometry" by Ay, Jost, Lê, and Schwachhöfer,
a parameterized statistical model is a triple (M,X , p) where M is a Banach manifold, X is a measurable

space, and i ◦ p : M
p→ P(X )

i→ S(X ) is a C1-map. Here S(X ) is the Banach space of all signed
finite measures on X endowed with the total variation norm ‖ · ‖TV and i is the natural inclusion.
We would like to emphasize that the concept of a parameterized statistical model introduced in [5–7]
encompasses statistical models endowed with the structure of a finite dimensional manifold [2,3,8],
or with the structure of an infinite dimensional Banach manifold [9]. The theory of parameterized
measure models, moreover, allows us to study singular statistical models PX using differential geometric
techniques, if PX is endowed with a parameterization by a Banach manifold.

In this study, inspired by the theory of diffeological spaces founded by Souriau and developed
further by many people, we shall generalize the concept of a parameterized statistical model to the
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concept of a Ck-diffeological statistical model P ⊂ P(X ), which, by definition, is a subset in P(X )

endowed with a compatible Ck-diffeology. We shall show that the concept of a Ck-diffeological statistical
model is more flexible than the concept of a parameterized statistical model. In particular, the
image p(M) of any parameterized statistical model (M,X , p) has a natural compatible C1-diffeology.
Moreover, for any k ∈ N+ ∪∞, any subset in P(X ) can be provided with a compatible Ck-diffeology
(and hence it has a structure of a Ck-diffeological statistical model).

Furthermore, not every subset in P(X ) can be written as p(M) for some parameterized statistical
model (M,X , p). Hence the class of C1-diffeological statistical models is larger than the class of
statistical models parameterized by Banach manifolds as the Ay–Jost–Lê–Schwachhöfer theory. We also
extend conceptually many results in the Ay–Jost–Lê–Schwachhöfer theory concerning the differential
geometry of parameterized statistical models and their application to statistics and to the class of
Ck-diffeological statistical models, using the theory of probabilistic mappings, developed in a recent
work by Jost, Lê, Luu and Tran [10].

Our paper is organized as follows. In the second section we introduce the notions of
Ck-diffeological statistical models, almost 2-integrable Ck-diffeological statistical models, and
2-integrable Ck-diffeological statistical models. In the third section we recall the notion of probabilistic
mappings and related results in [10] and prove that the class of (almost 2-integrable/resp. 2-integrable)
Ck-statistical models is preserved under probabilistic mappings (Theorem 1). Then we extend the
monotonicity of the Fisher metric on 2-integrable parameterized statistical models to the class of almost
2-integrable Ck-diffeological statistical models (Theorem 2). In the last section, we prove a diffeological
version of the Cramér–Rao inequality (Theorem 3) which extends previously known versions of the
Cramér–Rao inequality in [5,11]. We conclude our paper with a discussion on some future directions
and open questions.

2. Almost 2-Integrable Diffeological Statistical Models

Given a statistical model, P ⊂ P(X ), which we also denote by PX , it is known that PX is endowed
with a natural geometric structure induced from the Banach space (S(X ), ||, ||TV).

Definition 1. (cf. [5], Definition 3.2, p. 141) (1) Let (V, ‖ · ‖) be a Banach space, X
i
↪→ V be an arbitrary

subset, where i denotes the inclusion, and x0 ∈ X. Then v ∈ V is called a tangent vector of X at x0, if there is a
C1-map c : R→ X, i.e., the composition i ◦ c : R→ V is a C1-map, such that c(0) = x0 and ċ(0) = v.

(2) The tangent (double) cone CxX at a point x ∈ X is defined as the subset of the tangent space TxV = V
that consists of tangent vectors of X at x. The tangent space TxX is the linear hull of the tangent cone CxX.

(3) The tangent cone fibration CX (resp. the tangent fibration TX) is the union ∪x∈XCxX (resp.
∪x∈XTxX), which is a subset of V ×V and, therefore, it is endowed with the induced topology from V ×V.

Remark 1. (1) The notion of a tangent cone in Definition 1 occurs in a similar fashion in the theory of singular
spaces, see e.g., [12], §3, [13], §3, [14], p. 166.

(2) Definition 1 differs from [5], Definition 3.1, in that, in Definition 1, the domain of a C1-curve c is R
and in [5] the domain of a C1-curve c is (−ε, ε). Since (−ε, ε) is diffeomorphic to R, both the two choices of the
domain of c are equivalent.

Example 1. Let us consider a mixture family PX of probability measures pηµ0 on X that are dominated by
µ0 ∈ P(X ), where the density functions, pη , are of the following form

pη(x) := g1(x)η1 + g2(x)η1 + g3(x)(1− η1 − η2) for x ∈ X . (1)

Here gi, for i = 1, 2, 3, are nonnegative functions on X , such that Eµ0(gi) = 1 and η = (η1, η2) ∈ Db ⊂
R2 is a parameter, which will be specified as follows. Let us divide the square D = [0, 1]× [0, 1] ⊂ R2 into
smaller squares and color them in black and white as with a chessboard. Let Db be the closure of the subset
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of D colored in black. If η is an interior point of Db, then Cpη PX = R2. If η is a boundary point of Db, then
Cpη PX = R. If η is a corner point of Db, then Cpη PX consists of two intersecting lines.

• Let PX be a statistical model. Then it is known that any v ∈ Cξ PX is dominated by ξ. Hence the
logarithmic representation of v

log v := dv/dξ (2)

is an element of L1(X , ξ). The set {log v| v ∈ Cξ PX } is a subset in L1(X , ξ). We denote it by
log(Cξ PX ) and will call it the logarithmic representation of Cξ PX .

• Next we want to put a Riemannian metric on a statistical model PX i.e., to put a positive quadratic
form g on each tangent space Tξ PX ⊂ L1(X , ξ). The space L1(X , ξ) does not have a natural metric
but its subspace L2(X , ξ) is a Hilbert space.

Definition 2. A statistical model PX will be called almost 2-integrable, if

log(Cξ PX ) ⊂ L2(X , ξ) (3)

for all ξ ∈ PX . In this case we define the Fisher metric g on PX as follows. For each v, w ∈ Cξ PX

gξ(v, w) := 〈log v, log w〉L2(X ,ξ) =
∫
X

log v · log w dξ. (4)

Since Tξ PX is the linear hull of Cξ PX , Formula (4) extends uniquely to a positive quadratic form
on Tξ PX , which is called the Fisher metric.

Example 2. Let us reconsider Example 1. Recall that our statistical model PX is parameterized by a map

p : Db → S(X ), η 7→ pη · µ0,

which is the restriction of the affine map L : R2 → S(X ), defined by the same formula. Hence, any tangent
vector ṽ ∈ Tη PX can be written as ṽ = dp(v) where v ∈ Tη Db. For v = (v1, v2) ∈ Tη Db, we have
dp(v) = [(g1 − g3)v1 + (g2 − g3)v2]µ0. If gi(x) > 0 for all x ∈ X and i = 1, 2, 3, then pη(x) > 0 for all
x ∈ X and all η ∈ Db. Therefore

log dp(v)|p(η) =
dp(v)

d(pηµ0)
=

(g1 − g3)v1 + (g2 − g3)v2

pη
∈ L1(X , p(η)).

Hence PX is almost 2-integrable, if

g1 − g3
√

p
η

,
g2 − g3
√

p
η

∈ L2(X , µ0) ∀η ∈ Db.

In this case we have

g|p(η)(dp(v), dp(w)) = 〈log dp(v), log dp(w)〉L2(X ,p(η)). (5)

Next we shall introduce the notion of a Ck-diffeological statistical model.

Definition 3. For k ∈ N+ ∪∞ and a nonempty set X, a Ck-diffeology of X is a set D of mappings p : U → X,
where U is an open domain in Rn, and n runs over nonnegative integers, such that the three following axioms
are satisfied.

D1. Covering. The set D contains the constant mappings x : r 7→ x, defined on Rn, for all x ∈ X and for
all n ∈ N.
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D2. Locality. Let p : U → X be a mapping. If for every point r ∈ U there exists an open neighborhood V
of r, such that p|V belongs to D then the map p belongs to D.

D3. Smooth compatibility. For every element p : U → X of D, for every real domain V, for every
ψ ∈ Ck(V, U), p ◦ ψ belongs to D.

A Ck-diffeological space is a nonempty set equipped with a Ck-diffeology D. Elements p : U → X of D
will be called Ck-maps from U to X.

A statistical model PX endowed with a Ck-diffeology DX will be called a Ck-diffeological statistical model,
if for any map p : U → PX in DX the composition i ◦ p : U → S(X ) is a Ck-map.

Remark 2. (1) In [14], Iglesias-Zemmour considered only C∞-diffeologies. The notion of a Ck-diffeology, as
given in Definition 3 is a straightforward adaptation of the concept of a smooth diffeology, as given in [14], §1.5.

(2) As (S(X ), ‖ · ‖TV) is a Banach space, by [15], Lemma 3.11, p. 30, a compatible C∞-diffeology on a
statistical model PX is defined by smooth maps c : R→ PX .

(3) Given a Ck-diffeological statistical model (PX ,DX ) and ξ ∈ PX , the tangent cone Cξ(PX ,DX ) is the
subset of Cξ PX that consists of the tangent vectors ċ(0) of Ck-curves c : R→ X in DX , such that c(0) = ξ.
Similarly, the tangent space Tξ(PX ,DX ) is the linear hull of Cξ(PX ,DX ).

(4) Let (PX ,DX ) be a Ck-diffeological statistical model and V a locally convex vector space. A map
ϕ : PX → V is called Gateaux-differentiable on (PX ,DX ) if for any Ck-curve c : R → PX in DX the
composition ϕ ◦ c : R → V is differentiable. We recommend [15] for differential calculus on locally convex
vector spaces.

Example 3. (1) Let (M,X , p) be a parametrized statistical model. Then (p(M),DX ) is a C1-diffeological
statistical model where DX consists of all C1-maps q : Rn ⊃ U → p(M), such that there exists a C1-map
ψM : U → M and q = p ◦ ψM.

(2) Let PX be a statistical model. Then PX can be endowed with a structure of a Ck-diffeological statistical
model for any k ∈ N+ ∪∞, where its diffeology D(k)

X consists of all mappings p : U → PX , such that the
composition i ◦ p : U → S(X ) is of the class Ck, where U is any open domain in Rn for n ∈ N.

(3) Let X be the closed interval [0, 1]. Let PX := f · µ0, where f ∈ C∞(X ), such that
∫
X f dµ0 = 1 and

f (x) > 0 for all x ∈ X . We claim that, there does not exist a parameterized statistical model (M,X , p), such
that PX = p(M). Assume the opposite, i.e., there is a C1-map p : M→ S(X ), such that p(M) = PX . Then
for any m ∈ M we have dp(Tm(M)) = Tp(m)PX = { f ∈ C∞(X )|

∫
X f dµ0 = 0}. However, this is not the

case, as it is known that the space C∞([0, 1]) cannot be the image of a linear bounded map from a Banach space
M to L1([0, 1]), see e.g., [16], p. 1434.

Definition 4. A Ck-diffeological statistical model (PX ,DX ) will be called almost 2-integrable, if
log(Cξ(PX ,DX )) ⊂ L2(X , ξ) for all ξ ∈ PX .

An almost 2-integrable Ck-diffeological statistical model (PX ,DX ) will be called 2-integrable, if for any
Ck-map p : U → PX in DX , the function v 7→ |dp(v)|g is continuous on TU.

Example 4. (1) By [5], Theorem 3.2, p. 155, a parameterized statistical model (M,X , p) is 2-integrable, if and
only if (p(M), p∗(DM)) is a 2-integrable C1-diffeological statistical model.

(2) The C1-diffeological statistical model (PX ,D(1)
X ) in Example 3(3) is 2-integrable, though there is no

parameterized statistical model (M,X , p) such that p(M) = PX .
(3) Let X be a measurable space and λ be a σ-finite measure. In [17], p. 274, Friedrich considered a family

P(λ) := {µ ∈ P(X )| µ� λ} that is endowed with the following diffeology D(λ). A curve c : R→ P(λ) is
a C1-curve, if

log ċ(t) ∈ L2(X , c(t)).

Hence (P(λ),D(λ)) is an almost 2-integrable C1-diffeological statistical model.
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Remark 3. The axiomatics of Espaces différentiels, which became later the diffeological spaces, were introduced
by J.-M. Souriau in the beginning of the nineteen-eighties [18]. Diffeology is a variant of the theory of
differentiable spaces, introduced and developed a few years before by K.T. Chen [19]. As I have worked with
a different theory of smooth structures on singular spaces [12,13], I appreciate the elegance of the theory of
diffeology for its consistent and simple treatment of smooth structures on (possibly infinite dimensional) singular
spaces. The best source for diffeology is the monograph by P. Iglesias-Zemmour [14].

3. Probabilistic Mappings

In 1962, Lawvere proposed a categorical approach to probability theory, where morphisms
are Markov kernels, and most importantly, he supplied the space P(X ) with a natural σ-algebra
Σw, making the notion of Markov kernels and hence many constructions in probability theory and
mathematical statistics functorial.

Let us recall the definition of Σw. Given a measurable space X , let Fs(X ) denote the linear space
of simple functions on X . Recall that S(X ) is the space of all signed finite measures on X . There
is a natural homomorphism I : Fs(X ) → S∗(X ) := Hom(S(X ),R), f 7→ I f , defined by integration:
I f (µ) :=

∫
X f dµ for f ∈ Fs(X ) and µ ∈ S(X ). Following Lawvere [20], we define Σw to be the

smallest σ-algebra on S(X ), such that I f is measurable for all f ∈ Fs(X ). Let M(X ) denote the
space of all finite nonnegative measures on X . We also denote by Σw , the restriction of Σw toM(X ),
M∗(X ) :=M(X ) \ {0}, and P(X ).

• For a topological space X we shall consider the natural Borel σ-algebra B(X ). Then, every
continuous function is measurable w.r.t. B(X ). If X is, moreover, a metric space, then B(X ) is
the smallest algebra making any continuous function measurable ([21], Lemma 2.13).

• Let Cb(X ) be the space of bounded continuous functions on a topological space X . We denote by
τv, the smallest topology on S(X ), such that for any f ∈ Cb(X ) the map I f : (S(X ), τv)→ R is
continuous. We also denote by τv, the restriction of τv toM(X ) and P(X ), which is also called
the weak topology that generates the weak convergence of probability measures. It is known that
(P(X ), τv) is separable, and metrizable if, and only if, X is [21], Theorem 3.1.4, p. 104. If X is
separable and metrizable then the Borel σ-algebra on P(X ) generated by τv coincides with Σw.

Definition 5. ([10], Definition 2.4) A probabilistic mapping (or an arrow) from a measurable space X to a
measurable space Y is a measurable mapping from X to (P(Y), Σw).

We shall denote by T : X → (P(Y), Σw) the measurable mapping defining/generating a
probabilistic mapping T : X ; Y . Similarly, for a measurable mapping p : X → P(Y) we shall denote
by p : X ; Y the generated probabilistic mapping. Note that a probabilistic mapping is denoted by a
curved arrow and a measurable mapping by a straight arrow.

Example 5. ([10], Example 2.6) (1) Assume that X is separable and metrizable. Then the identity mapping
IdP : (P(X ), τv) → (P(X ), τv) is continuous, and hence measurable w.r.t. the Borel σ-algebra Σw =

B(τv). Consequently, IdP generates a probabilistic mapping ev : (P(X ),B(τv)) ; (X ,B(X )) and we
write ev = IdP . Similarly, for any measurable space X , we also have an arrow (a probabilistic mapping)
ev : (P(X ), Σw) ; X generated by the measurable mapping ev = IdP .

(2) Let δx denote the Dirac measure concentrated at x. It is known that the map δ : X →
(P(X ), Σw), x 7→ δ(x) := δx, is measurable [22]. If X is a topological space, then the map δ : X →
(P(X ), τv) is continuous, as the composition I f ◦ δ : X → R is continuous for any f ∈ Cb(X ). Hence, if
κ : X → Y is a measurable mapping between measurable spaces (resp. a continuous mapping between separable

metrizable spaces), then the map κ : X δ◦κ→ P(Y) is a measurable mapping (resp. a continuous mapping).
We regard κ as a probabilistic mapping defined by δ ◦ κ : X → P(Y). In particular, the identity mapping
Id : X → X of a measurable space X is a probabilistic mapping generated by δ : X → P(X ). Graphically
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speaking, any straight arrow (a measurable mapping) κ : X → Y between measurable spaces can be seen as a
curved arrow (a probabilistic mapping).

Given a probabilistic mapping T : X ; Y , we define a linear map S∗(T) : S(X )→ S(Y), called
Markov morphism, as follows [2], Lemma 5.9, p. 72,

S∗(T)(µ)(B) :=
∫
X

T(x)(B)dµ(x) (6)

for any µ ∈ S(X ) and B ∈ ΣY .

Proposition 1. Assume that T : X ; Y is a probabilistic mapping.
(1) Then T induces a linear bounded map S∗(T) : S(X )→ S(Y) w.r.t. the total variation norm || · ||TV .

The restriction M∗(T) of S∗(T) to M(X ) (resp. P∗(T) of S∗(T) to P(X )) maps M(X ) to M(Y) (resp.
P(X ) to P(Y)).

(2) Probabilistic mappings are morphisms in the category of measurable spaces; i.e., for any probabilistic
mappings T1 : X ; Y and T2 : Y ; Z , we have

M∗(T2 ◦ T1) = M∗(T2) ◦M∗(T1), P∗(T2 ◦ T1) = P∗(T2) ◦ P∗(T1). (7)

(3) M∗ and P∗ are faithful functors.
(4) If ν� µ ∈ M∗(X ) then M∗(T)(ν)� M∗(T)(µ).

Remark 4. The first assertion of Proposition 1 is due to Chentsov [2], Lemma 5.9, p. 72. The second assertion
has been proven in [10], Theorem 2.14 (1), extending Giry’s result in [22]. The third assertion has been proven
in [10]. The last assertion of Proposition 1 is due to Morse–Sacksteder [23], Proposition 5.1.

We also denote by T∗ the map S∗(T), if no confusion can arise.
Given a probabilistic mapping T : X ; Y and a Ck-diffeological statistical model (PX ,DX ), we

define a Ck-diffeological space (T∗(PX ), T∗(DX )) as the image of D by T [14], §1.43, p. 24. In other
words, a mapping p : U → T∗(PX ) belongs to T∗(DX ) if and only if it satisfies the following condition.
For every r ∈ U there exists an open neighborhood V ⊂ U of r, such that either p|V is a constant
mapping, or there exists a mapping q : U → PX in DX , such that p|V = T∗ ◦ q.

Theorem 1. Let T : X ; Y be a probabilistic mapping and (PX ,DX ) is a Ck-diffeological statistical model.
(1) Then (T∗(PX ), T∗(DX )) is a Ck-diffeological statistical model.
(2) If (PX ,DX ) is an almost 2-integrable Ck-diffeological statistical model, then (T∗(PX ), T∗(DX )) is

also an almost 2-integrable Ck-diffeological statistical model.
(3) If (PX ,DX ) is a 2-integrable Ck-diffeological statistical model, then (T∗(PX ), T∗(DX )) is also a

2-integrable Ck-diffeological statistical model.

Proof. (1) The first assertion is straightforward, since T∗ : S(X )→ S(Y) is a linear bounded map by
Proposition 1(1).

(2) Assume that (PX ,DX ) is an almost 2-integrable Ck-statistical model and v ∈ Cξ(PX ,DX ).
Then there exits a Ck-map c : R→ PX in DX , such that d

dt |t=0c(ξ) = v. Since T∗ : S(X ) → S(Y) is a
bounded linear map,

d
dt |t=0

T∗ ◦ c = T∗(v).

By the monotonicity theorem [5], Corollary 5.1, p. 260, we have

‖dT∗v
dT∗ξ

‖L2(Y ,T∗ξ) ≤ ‖v‖L2(X ,ξ). (8)
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This proves that (T∗(PX ), T∗(DX )) is almost 2-integrable.
(3) Assume that (PX ,DX ) is a Ck-diffeological statistical model. Let c : R→ T∗(PX ) be an element

in T∗(DX ). Then c = T∗ ◦ c′, where c : R → PX is an element of DX , i.e., i ◦ c : R → S(X ) is of
class Ck and (R,X , c) is a parameterized 2-integrable statistical model. By [5], Theorem 5.4, p. 264,
(R,Y , T∗ ◦ c) is a 2-integrable parameterized statistical model. Combined with the first assertion of
Theorem 1 this proves the last assertion of Theorem 1.

Denote by L(X ), the space of bounded measurable functions on a measurable space X . Given a
probabilistic mapping T : X ; Y , we define a linear map T∗ : L(Y)→ L(X ), as follows [10], (2.2),

T∗( f )(x) := I f (T(x)) =
∫
Y

f dT(x), (9)

which coincides with the classical formula (5.1) in [2], p. 66, for the transformation of a bounded
measurable f under a Markov morphism (i.e., a probabilistic mapping) T. In particular, if κ : X → Y
is a measurable mapping, then we have κ∗( f )(x) = f (κ(x)), since κ = δ ◦ κ.

Definition 6. ([10], Definition 2.22, cf. [23]) Let PX ⊂ P(X ) and PY ⊂ P(Y). A probabilistic mapping
T : X ; Y will be called sufficient for PX if there exists a probabilistic mapping p : Y ; X , such that for all
µ ∈ PX and h ∈ L(X ) we have

T∗(hµ) = p∗(h)T∗(µ), i.e., p∗(h) =
dT∗(hµ)

dT∗(µ)
∈ L1(Y , T∗(µ)). (10)

In this case we shall call the measurable mapping p : Y → P(X ) defining the probabilistic mapping p : Y ; X
a conditional mapping for T.

Example 6. Assume that κ : X ; Y is a measurable mapping (i.e., a statistic) which is a probabilistic
mapping sufficient for PX ⊂ P(X ). Let p : Y → P(X ), y 7→ py, be a conditional mapping for κ. By (9),
p∗(1A)(y) = py(A), and we rewrite (10) as follows

py(A) =
dκ∗(1Aµ)

dκ∗µ
∈ L1(Y , κ∗(µ)). (11)

The RHS of (11) is the conditional measure of µ applied to A w.r.t. the measurable mapping κ. The equality
(11) implies that this conditional measure is regular and independent of µ. Thus the notion of sufficiency of a
measurable mapping κ for PX coincides with the classical notion of sufficiency of κ for PX , see e.g., [2], p. 28, [24],
Definition 2.8, p. 85. We also note that the equality in (11) is understood as equivalence class in L1(Y , κ∗(µ))

and hence every statistic κ′ that coincides with a sufficient statistic κ except on a zero µ-measure set, for all
µ ∈ PX , is also a sufficient statistic for PX .

Example 7. (cf. [2], Lemma 2.8, p. 28) Assume that µ ∈ P(X ) has a regular conditional distribution w.r.t. to
a statistic κ : X → Y ; i.e., there exists a measurable mapping p : Y → P(X ), y 7→ py, such that

Eσ(κ)
µ (1A|y) = py(A) (12)

for any A ∈ ΣX and y ∈ Y . Let Θ be a set and P := {νθ ∈ P(X )| θ ∈ Θ} be a parameterized family of
probability measures dominated by µ. If there exists a function h : Y ×Θ→ R such that for all θ ∈ Θ, and we
have

νθ = h(κ(x))µ, (13)

then κ is sufficient for P, since, for any θ ∈ Θ,

p∗(1A) =
dκ∗(1Aνθ)

dκ∗νθ
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does not depend on θ. Condition (13) is the Fisher–Neymann sufficiency condition for a family of dominated
measures.

Example 8. Let κ : X → Y be a measurable 1-1 mapping. Then for any statistical model PX ⊂ P(X ),
the statistic κ is sufficient w.r.t. PX , since, for any A ∈ ΣX and any µ ∈ PX , we have

dκ∗(1Aµ)

dκ∗µ
= (κ−1)∗(1A) ∈ L1(Y , κ∗(µ)).

Next, we shall show that probabilistic mappings do not increase the Fisher metrics on almost
2-integrable Ck-diffeological statistical models. Thus the Fisher metric serves as a “information
quantity” of almost 2-integrable Ck-diffeological statistical models.

Theorem 2. Let T : X ; Y be a probabilistic mapping and (PX ,DX ) an almost 2-integrable Ck-diffeological
statistical model. Then for any µ ∈ PX and any v ∈ Tµ(PX ,DX ), we have

gµ(v, v) ≥ gT∗µ(T∗v, T∗v)

with the equality, if T is sufficient w.r.t. PX .

Proof. The monotonicity assertion of Theorem 2 follows from (8). The second assertion of Theorem 2
follows from the first assertion, taking into account Theorem 2.8.2 in [10], which states the existence of a
probabilistic mapping p : Y ; X , such that p∗(T∗(PX )) = PX , and therefore p∗(T∗(DX )) = DX .

Let us apply Theorem 2 to Example 4 (3), originally from [17]. In [17], Satz 1, p.274, Friedrich
considered the group G(X , ΣX , λ) of all measurable 1-1 mappings Φ : X → X , such that Φ∗(λ)� λ.
Clearly Φ∗(P(λ)) ⊂ P(λ). Example 8 says that Φ is a sufficient statistic w.r.t. P(λ). Hence Theorem 2
implies the following

Corollary 1. ([17], Satz 1) The group G(X , ΣX , λ) acts isometrically on P(λ).

Remark 5. Theorem 2 extends the Monotonicity Theorem [5], Theorem 5.5, p. 265, for 2-integrable
parameterized statistical models. (As we remarked in Section 5, Theorem 2 can be easily extended to the
case of almost l-integrable Ck-diffeological measure models.)

4. The Cramér–Rao Inequality for 2-Integrable Diffeological Statistical Models

In this section we shall prove a version of the Cramér–Rao inequality for estimators with values
in a 2-integrable Ck-diffeological statistical model.

Definition 7. Let PX ⊂ P(X ) be a statistical model. An estimator is a map σ̂ : X → PX .

Assume that V is a locally convex topological vector space. Then we denote, by Map(PX , V),
the space of all mappings ϕ : PX → V and by V′, the topological dual of V. It is usually easier to
estimate only a “coordinate" ϕ(ξ) of a probability measure ξ ∈ PX , which determines ξ uniquely, if ϕ

is embedded.

Definition 8. Let PX be a statistical model and ϕ ∈ Map(PX , V). A ϕ-estimator σ̂ϕ is a composition

ϕ ◦ σ̂ : X σ̂→ PX
ϕ→ V.

Example 9. Assume that k : X × X → R is a symmetric and positive definite kernel function and let V
be the associated RKHS. For any x ∈ X , we denote by kx, the function on X defined by kx(y) := k(x, y),
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for any y ∈ X . Then kx is an element of V. Let PX = P(X ). Then we define the kernel mean embedding
ϕ : P(X )→ V as follows [25]

ϕ(ξ) :=
∫
X

kxdξ(x),

where the integral should be understood as a Bochner integral.

Remark 6. (1) In classical statistics (see e.g., [26], §13, p. 51, [27], p. 4, [8], §4, p. 82, [5], Definition 5.1,
p. 277) one considers only the parameter estimations for parameterized statistical models. In this case, an
estimator is a map from X to the parameter set Θ of a statistical model p(Θ) ⊂ P(X ). Usually one assumes
that the parameterization p : Θ→ p(Θ) is 1-1, hence, a parameter estimation is equivalent to a nonparametric
estimation in the sense of Definition 7. Note that the ultimate aim of a statistical experiment is to estimate
the probability measure generating the observable of the experiment. In general, we can only assume that the
unknown generating probability measure belongs to a statistical model PX ⊂ P(X ). In this case, we need to
use non-parametric estimation; see e.g., [28], p. 1. Note that, by Example 3, PX has a natural structure of a
C1-diffeological statistical model.

(2) The notion of a ϕ-estimation occurs in classical statistics in similar fashion; see e.g., [26], p. 52, where
the author called similar estimators substitution estimators, and in [29], Definition 1.2, p. 4, where the authors
consider estimands, which are versions of ϕ-estimators for a parameter estimation problem, see [5], p. 279.

For ϕ ∈ Map(PX , V) and l ∈ V′ we denote by ϕl the composition l ◦ ϕ. Then we set

L2
ϕ(X , PX ) := {σ̂ : X → PX | ϕl ◦ σ̂ ∈ L2

ξ(X ) for all ξ ∈ PX and l ∈ V′}.

For σ̂ ∈ L2
ϕ(X , PX ) we define the ϕ-mean value of σ̂, denoted by ϕσ̂ : PX → V′′, as follows (cf. [5],

(5.54), p. 279)
ϕσ̂(ξ)(l) := Eξ(ϕl ◦ σ̂) for ξ ∈ PX and l ∈ V′.

Let us identify V with a subspace in V
′′

via the canonical pairing.
The difference bϕ

σ̂ := ϕσ̂ − ϕ ∈ Map(PX , V
′′
) will be called the bias of the ϕ-estimator σ̂ϕ.

For all ξ ∈ PX we define a quadratic function MSEϕ
ξ [σ̂] on V′, which is called the mean square error

quadratic function at ξ, by setting for l, h ∈ V′ (cf. [5], (5.56), p. 279)

MSEϕ
ξ [σ̂](l, h) := Eξ [(ϕl ◦ σ̂(x)− ϕl(ξ)) · (ϕh ◦ σ̂(x)− ϕh(ξ))]. (14)

Similarly we define the variance quadratic function of the ϕ-estimator ϕ ◦ σ̂ at ξ ∈ PX is the
quadratic form Vϕ

ξ [σ̂] on V′, such that, for all l, h ∈ V′ we have (cf. [5], (5.57), p. 279)

Vϕ
ξ [σ̂](l, h) = Eξ [ϕ

l ◦ σ̂(x)− Eξ(ϕl ◦ σ̂(x)) · ϕh ◦ σ̂(x)− Eξ(ϕh ◦ σ̂(x))].

Then it is known that [5], (5.58), p. 279,

MSEϕ
ξ [σ̂](l, h) = Vϕ

ξ [σ̂](l, h) + 〈bϕ
σ̂ (ξ), l〉 · 〈bϕ

σ̂ (ξ), h〉. (15)

Remark 7. Assume that V is a real Hilbert space with a scalar product 〈·, ·〉 and the associated norm ‖ · ‖.
Then the scalar product defines a canonical isomorphism V = V′, v(w) := 〈v, w〉, for all v, w ∈ V. For σ̂ ∈
L2

ϕ(X , PX ), the mean square error MSEϕ
ξ (σ̂) of the ϕ-estimator ϕ ◦ σ̂ is defined by

MSEϕ
ξ (σ̂) := Eξ(‖ϕ ◦ σ̂− ϕ(ξ)‖2). (16)

The RHS of (16) is well-defined, since σ̂ ∈ L2
ϕ(X , PX ), and therefore

〈ϕ ◦ σ̂(x), ϕ ◦ σ̂(x)〉 ∈ L1(X , ξ) and 〈ϕ ◦ σ̂(x), ϕ(ξ)〉 ∈ L2(X , ξ).
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Similarly, we define the variance of a ϕ-estimator ϕ ◦ σ̂ at ξ as follows

Vϕ
ξ (σ̂) := Eξ(‖ϕ ◦ σ̂−Eξ(ϕ ◦ σ̂)‖2).

If V has a countable basis of orthonormal vectors v1, · · · , v∞, then we have

MSEϕ
ξ (σ̂) =

∞

∑
i=1

MSEϕ
ξ [σ̂](vi, vi), (17)

Vϕ
ξ (σ̂) =

∞

∑
i=1

Vϕ
ξ [σ̂](vi, vi). (18)

Now, we assume that (PX ,DX ) is an almost 2-integrable Ck-diffeological statistical model. For any
ξ ∈ PX , let Tg

ξ (PX ,DX ) be the completion of Tξ(PX ,DX ) w.r.t. the Fisher metric g. Since Tg
ξ (PX ,DX )

is a Hilbert space, the map

Lg : Tg
ξ (PX ,DX )→ (Tg

ξ (PX ,DX ))′, Lg(v)(w) := 〈v, w〉g,

is an isomorphism. Then we define the inverse g−1 of the Fisher metric g on (Tg
ξ (PX ,DX ))′ as follows

〈Lgv, Lgw〉g−1 := 〈v, w〉g. (19)

Definition 9. (cf. [5], Definition 5.18, p. 281) Assume that σ̂ ∈ L2
ϕ(X , PX ). We shall call σ̂ a ϕ-regular

estimator, if for all l ∈ V′ the function ξ 7→ ‖ϕl ◦ σ̂‖L2(X ,ξ) is locally bounded, i.e., for all ξ0 ∈ PX

lim
ξ→ξ0

sup ‖ϕl ◦ σ̂‖L2(X ,ξ) < ∞.

Proposition 2. Assume that (PX ,DX ) is a 2-integrable Ck-diffeological statistical model, V is a topological
vector space, ϕ ∈ Map(PX , V) and σ̂ : X → PX is a ϕ-regular estimator. Then the V′′-valued function ϕσ̂

is Gateaux-differentiable on (PX ,DX ). Furthermore, for any l′ ∈ V′, the differential dϕl
σ̂(ξ) extends to an

element in (Tg
ξ (PX ,DX ))′ for all ξ ∈ PX .

Proof. Assume that a map c : R→ PX belongs to DX . Then (R,X , c) is a 2-integrable parametrized
statistical model. By Lemma 5.2 in [5], p. 282, the composition ϕσ̂ ◦ c is differentiable. This proves the
first assertion of Proposition 2.

Next, we shall show that dϕσ̂(ξ) extends to an element in (Tg
ξ (PX ,DX ))′ for all ξ ∈ PX . Let

X ∈ Cξ(PX ,DX ) and c : R→ PX be a Ck-curve, such that c(0) = ξ and ċ(0) = X. By Lemma 5.3 [5],
p. 284, we have

∂X(ϕl
σ̂) =

∫
X
(ϕl ◦ σ̂(x)−Eξ(ϕl ◦ σ̂) · log X dξ(x), (20)

where ϕl ◦ σ̂(x) − Eξ(ϕl ◦ σ̂) ∈ L2(X , ξ). Denote by Πξ : L2(X , ξ) · ξ → Tg
ξ PX , the orthogonal

projection. Set
gradg(ϕl

σ̂) := Πξ [(ϕl ◦ σ̂(x)−Eξ(ϕl ◦ σ̂)) · ξ] ∈ Tg
ξ PX . (21)

Then we rewrite (20), as follows
∂X(ϕl) = 〈gradg(ϕl

σ̂), X〉g.

Hence dϕl
σ̂ is the restriction of Lg(gradg(ϕl

σ̂)) ∈ (Tg
ξ (PX ,DX ))′. This completes the proof of

Proposition 2.
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For any ξ ∈ PX , we denote (g
ϕ
σ̂ )
−1(ξ) to be the following quadratic form on V′:

(g
ϕ
σ̂ )
−1(ξ)(l, k) := 〈dϕl

σ̂, dϕk
σ̂〉g−1(ξ) := 〈gradg(ϕl

σ̂), gradg(ϕk
σ̂)〉. (22)

Theorem 3 (Diffeological Cramér–Rao inequality). Let (PX ,DX ) be a 2-integrable Ck-diffeological
statistical model, ϕ, a V-valued function on PX and σ̂ ∈ L2

ϕ(X , PX ), a ϕ-regular estimator. Then the difference
V ϕ

ξ [σ̂]− (ĝ
ϕ
σ̂ )
−1(ξ) is a positive semi-definite quadratic form on V′ for any ξ ∈ PX .

Proof. To prove Theorem 3 it suffices to show that for any l ∈ V′ we have

Eξ(ϕl ◦ σ̂−Eξ(ϕl ◦ σ̂))2 ≥ ‖gradg(ϕl
σ̂))‖2

g. (23)

Clearly (23) follows from (21). This completes the proof of Theorem 3.

Theorem 3 is an extension of the general Cramér–Rao inequality [11], Theorem 2, see also [5],
Theorem 5.7, p. 286.

5. Discussion

The extension of the notion of a k-integrable parametrized measure model (as introduced in [6,7],
see also [5]) to the notion of an almost k-integrable diffeological measure model can be done.

(1) There are two main differences between parameterized statistical models and Ck-diffeological
statistical models. First, the parameter space of a parameterized statistical model is a single smooth
Banach manifold, and parameter spaces for a Ck-diffeological statistical model can be different but compatible.
Secondly, parameter spaces for a Ck-diffeological statistical model are finite dimensional. If k = ∞,
this assumption is well-motivated [14], see also Remark 2 (2).

(2) It would be interesting to apply the theory of Ck-statistical models to stochastic processes. It is
known that Banach manifolds are not suitable for many questions of global analysis, see e.g., [15],
p. 1, and therefore, the theory of parameterized measure models might have limited applications to
stochastic processes. On the other hand, there are many open questions in the theory of C∞-diffeological
spaces, e.g., we do not know under which conditions we can define the Levi–Civita connection on a
Riemannian C∞-diffeological space. Furthermore, the theory of Ck-diffeological spaces has not been
considered before, with k 6= ∞.

(3) The variational calculus founded by Leibniz and Newton is a cornerstone of differential
geometry and modern analysis. In our opinion, it is best expressed in the language of diffeological
spaces that declare which mappings into a diffeological space are smooth. This language is a
counterpart to the language of ringed spaces in algebraic geometry that declares which functions
are algebraic.
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