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Abstract: In this paper, approximation properties in Felbin-fuzzy normed spaces are studied. These
approximation properties have been recently introduced in Felbin-fuzzy normed spaces. We make
topological tools to analyze such approximation properties. We especially develop the representation
of dual spaces related to our contexts. By using this representation, we establish characterizations
of approximation properties in terms of infinite sequences. Finally, we provide dual problems for
approximation properties and their results in our contexts.
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1. Introduction

Since Katsaras first introduced the notion of fuzzy norm on a vector space, a study for fuzzy
normed spaces has been actively progressed [1]. In 1992, Felbin introduced a new definition of a
fuzzy norm (namely, Felbin-fuzzy norm) related to a specific fuzzy metric [2,3]. In 2003, Bag and
Samanta defined a more general notion of a fuzzy norm (namely, B-S fuzzy norm) [4,5]. Because of
their pioneering research, topological properties have been studied according to Felbin type’s fuzzy
norms and B-S type’s fuzzy norms, respectively [6–8]. Cho et al. investigated the classical and recent
results of fuzzy normed spaces and fuzzy operators in their book [9].

The approximation property (AP) is an essential concept in researching functional analysis
because the AP has been studied for the Shauder basis and operator theory. The AP means that the
identity operator on an Banach space can be approximated in the compact open topology by finite rank
operators (please see References [10–13]). In 2010 and 2016, Yilmaz et al. introduced the approximation
property in B-S fuzzy normed spaces [14,15]. In 2019, the approximation property in Felbin fuzzy
normed spaces was introduced [16]. Related works emerged from fuzzy theory. We would refer the
reader to where intuitionistic fuzzy Banach space theory is outlined in Reference [17].

In this paper, we study approximation properties in Felbin-fuzzy normed spaces. Moreover,
we will develop topological tools related approximation properties in Felbin-fuzzy normed spaces.
We first identify approximation properties in Felbin-fuzzy normed spaces in terms of infinite sequences.
We provide dual problems for such approximation properties. The advantage of our context is to
characterize a compact subset in Felbin-fuzzy normed spaces.

Our paper is organized as follows—Section 2 is comprised of some preliminary results.
In Section 3, we develop the representation of topological dual elements related approximation
properties in Felbin-fuzzy normed spaces. Section 4 is devoted to identifying approximation properties
in Felbin-fuzzy normed spaces in terms of infinite sequences. In Section 5, we apply this identification to
provide some results about dual problems for approximation properties in Felbin-fuzzy normed spaces.
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2. Preliminaries

Definition 1 (See Reference [5]). A mapping η : R → [0, 1] is called a fuzzy real number with α-level set
[η]α = {t : η(t) > α}, if it satisfies the following conditions:

(i) there exists a t0 ∈ R such that η(t0) = 1
(ii) for each α ∈ (0, 1], there exist real numbers η−α 6 η+

α such that the α-level set [η]α is equal to the
closed interval [η−α , η+

α ]

The set of all fuzzy real numbers is denoted by F(R). If η ∈ F(R) and η(t) = 0 whenever t < 0,
then η is called a non-negative fuzzy real number and F∗(R) denotes the set of all non-negative fuzzy
real numbers. Define a partial ordering by η � γ in F(R) if and only if η−α 6 γ−α , η+

α 6 γ+
α , for all

α ∈ (0, 1]. Since each r ∈ R can be considered as the fuzzy real number r̃ ∈ F(R) denoted by

r̃(t) =

{
1, t = r
0, t 6= r,

hence it follows that R can be embedded in F(R) (See [5]).

Definition 2 (See Reference [5]). Let X be a vector space over R. Assume the mappings L, R : [0, 1] ×
[0, 1] → [0, 1] are symmetric and non-decreasing in both arguments, and that L(0, 0) = 0 and R(1, 1) = 1.
Let ‖ · ‖ : X → F∗(R). The quadruple (X, ‖ · ‖, L, R) is called a Felbin-fuzzy normed space with the fuzzy
norm ‖ · ‖, if the following conditions are satisfied:

(F1) if x 6= 0, then inf0<α61 ‖x‖−α > 0,
(F2) ‖x‖ = 0̃ if and only if x = 0,
(F3) ‖rx‖ = |r̃|‖x‖ for x ∈ X and r ∈ R,
(F4) for all x, y ∈ X,
(F4L) ‖x + y‖(s + t) > L(‖x‖(s), ‖y‖(t)) whenever s 6 ‖x‖−1 , t 6 ‖y‖− and s + t 6 ‖x + y‖−1 ,
(F4R) ‖x + y‖(s + t) 6 R(‖x‖(s), ‖y‖(t)) whenever s > ‖x‖−1 , t > ‖y‖− and s + t > ‖x + y‖−1 .

The following definition gives the notion of strongly fuzzy bounded. Here, we use the arithmetic
multiplicative operation ⊗ on F(R)× F(R) as in [2]:

(η ⊗ γ)(t) = sup
t=xy

(min(η(x), γ(y))).

Definition 3 (See Reference [18]). Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin-fuzzy normed spaces. The linear
operator T : X → Y is said to be a strongly fuzzy bounded if there is a real number M > 0 such that
‖Tx‖∼ � M̃⊗ ‖x‖ for all x ∈ X. We will denote the set of all strongly fuzzy bounded operators from (X, ‖ · ‖)
to (Y, ‖ · ‖∼) by F(X, Y). Then F(X, Y) is a vector space. For all M > 0 we denote F(X, Y, M) by

{T ∈ F(X, Y) : ‖Tx‖∼ � M̃⊗ ‖x‖, ∀x ∈ X, ∀t ∈ R}

where M is a positive real number.

A is called a bounded in F(X, Y) if A = F(X, Y, M) for some M > 0. Moreover, we denote
the set of all finite rank strongly fuzzy bounded operators from (X, ‖ · ‖) to (Y, ‖ · ‖∼) by F (X, Y).
Then F (X, Y) is a subspace of F(X, Y). We similarly define F (X, Y, M) for some M > 0. Now, we
provide definitions of the approximation properties in Felbin-fuzzy normed spaces. For the definition
and properties of α-level set (α ∈ (0, 1]), see Reference [3,19].

Note that, if Y = R, the linear space of all reals, we define a function ‖r‖∼ : R→ [0, 1] by

‖r‖∼(t) =
{

1, t = |r|
0, otherwise.
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Then ‖ · ‖∼ is a fuzzy norm on R and α-level sets of ‖r‖∼ are given by [‖r‖∼]α = [|r|, |r|] for all
0 < α 6 1.

Definition 4 (See Reference [20]). A strongly fuzzy bounded linear operator defined from a Felbin-fuzzy
normed space (X, ‖ · ‖) to (R, ‖ · ‖∼) is called a strongly fuzzy bounded linear functional. We denote the set of
all strongly fuzzy bounded linear functionals over (X, ‖ · ‖) by (X, ‖ · ‖)∗. Define

‖ f ‖∗−α = sup
x∈X,x 6=0

| f (x)|
‖x‖+α

, ‖ f ‖∗+α = sup
x∈X,x 6=0

| f (x)|
‖x‖−α

for all f ∈ (X, ‖ · ‖)∗.

Remark 1. Definition 4 came from Bag and Samanta [20]. Although they defined a strongly fuzzy bounded
linear operator differently from this paper, the two definitions are same in the case of functionals.

Definition 5 (See Reference [21]). Let (X, ‖ · ‖) be a Felbin-fuzzy normed space. A sequence {xn} of X is
said to converge to x ∈ X (limn→∞ xn = x) if limn→∞ ‖xn − x‖+α = 0 for all α ∈ (0, 1]. A subset A of X is
called compact in (X, ‖ · ‖) if each sequence of elements of A has a convergent subsequence in (X, ‖ · ‖).

Given a Felbin-fuzzy normed space (X, ‖ · ‖), we recall

B(x, α, ε) = {y ∈ X : ‖x− y‖+α < ε}.

Definition 6 (See Reference [21]). Let (X, ‖ · ‖) be a Felbin-fuzzy normed space and A ⊆ X. A point x0 ∈ X
is called a closure of A if {x0 + B(0, α, α)}⋂ A 6= ∅. A sequence {xn} of X is called a cauchy sequence if
limn,m→∞ ‖xn − xm‖+α = 0 for all α ∈ (0, 1]. A subset A ⊆ X is said to be complete if every cauchy sequence
in A converges in A.

Definition 7 (See Reference [16]). A Felbin-fuzzy normed space (X, ‖ · ‖) is said to have the approximation
property, briefly AP, if for every compact set K in (X, ‖ · ‖) and for each α ∈ (0, 1] and ε > 0, there exists an
operator T ∈ F (X, X) such that

‖T(x)− x‖+α 6 ε

for every x ∈ K.

As an example, having the AP in a Felbin-fuzzy normed space, let us consider Banach space `∞

with ‖x‖∞ = supn |xn|. Moreover, ‖x‖0 = supn |
xn
n | is another norm on `∞. Now let us define

‖x‖(t) =


1, t = ‖x‖0

1/2, ‖x‖0 6 t < ‖x‖∞

0, otherwise.

Then (`∞, ‖‖) has the AP in a Felbin-fuzzy normed space ([16], Example 1). Moreover, in
Reference [16], we made a comparison study among approximation properties in Felbin fuzzy normed
spaces with other fuzzy normed spaces.

Definition 8 (See Reference [16]). Let λ be a positive real number. A Felbin-fuzzy normed space (X, ‖ · ‖) is
said to have the λ-bounded approximation property, briefly λ-BAP, if for every compact set K in (X, ‖ · ‖) and
for each α ∈ (0, 1] and ε > 0, there exists an operator T ∈ F (X, X, λ) such that

‖T(x)− x‖+α 6 ε

for every x ∈ K. Also we say that (X, ‖ · ‖) has the BAP if (X, ‖ · ‖) has the λ-BAP for some λ > 0.
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3. The Dual Space of (F(X, Y), τ)

In this section, we give a representation of the dual space of F(X, Y) endowed with the topology τ

of uniform convergence on compact subsets of (X, ‖ · ‖) where (X, ‖ · ‖) and (Y, ‖ · ‖∼) are Felbin-fuzzy
normed spaces. We recall the following definition.

Definition 9 (See Reference [16]). Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin-fuzzy normed spaces. For a compact
K ⊂ (X, ‖ · ‖), ε > 0, α ∈ (0, 1], and T ∈ F(X, Y) we put

Ne(T, K, α, ε) = {R ∈ F(X, Y) : sup
x∈K
‖Tx− Rx‖∼+α < ε}.

Let S be the collection of all such Ne(T, K, α, ε)′s. Then the τ-topology on F(X, Y) is the topology generated
by S . Clearly, τ is locally convex topology. Moreover, (F(X, Y), τ)∗ is the vector spaces of all continuous
fucntionals of F(X, X)

The τ-topology is important tool to study approximation properties as followings. The proofs
are trivial.

Theorem 1. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space and I ∈ F(X, X) be an identity operator and λ be a
positive real number.

(a) I ∈ F (X, X)
τ

if and only if X has the AP.
(b) I ∈ F (X, X, λ)

τ
if and only if X has the λ-BAP.

Now we establish a representation of (F(X, Y), τ)∗, which will be applied to characterize the
approximation property and bounded approximation property in fuzzy normed spaces. The proof
shall be given later.

Theorem 2. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be complete Felbin-fuzzy normed spaces. Then (F(X, Y), τ)∗

consists of all functionals ϕ of the form

ϕ(T) =
∞

∑
n=1

y∗n(Txn)

where (xn) ⊂ (X, ‖ · ‖) and (y∗n) ⊂ (Y, ‖ · ‖+α1
)∗ for some (αn) ⊆ (0, 1] ↓ 0 such that

∞

∑
n=1
‖xn‖+αn‖y

∗
n‖+α1

< ∞.

By the proof of (Reference [15], Lemma 4.2), we have the following.

Lemma 1. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space and K be a compact subset in (X, ‖ · ‖). Then there
exists a finite set {x1, x2, . . . , xn} in K such that for x ∈ K, we have x ∈ B(xi, α, ε) for some xi.

The following Theorem shows that a relatively compact subset of a fuzzy normed space contained
in the convex hull of a null sequence. Here, the convex hull of a subset A of a topological vector space
X, denoted by co(A), is the smallest convex set that includes A and we denote the closure of co(A)
by co(A).

Theorem 3. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space. Suppose that K is a relatively compact subset of
(X, ‖ · ‖). Then there is a sequence (xn) in X converging to 0 in (X, ‖ · ‖) such that

K ⊆ co({xn}).
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Proof. First, we recall that aB(0, α, ε) = B(0, α, aε) for each α ∈ (0, 1) and ε > 0 and a > 0 and

B(x, α1, ε1) ⊆ B(x, α2, ε2)

whenever x ∈ X, α1 < α2, and 0 < ε1 < ε2 ([21], Lemma 3.1). It may be assumed that K 6= ∅. Since 2K
is relatively compact, ([21], Theorem 4.2), 2K is fuzzy bounded in (X, ‖ · ‖). Then there exists t( 3

4 ) > 0
such that

2K ⊆ B(0, 3/4, t(3/4)).

Also, by Lemma 1, there exists a finite set {x1, x2, . . . , xn1} in 2K such that 2K ⊆⋃n1
j=1 B(xj, 2−1, 2−1). Let

K1 =
n1⋃

j=1

(
(2K ∩ B(xj, 2−1, 2−1))− xj

)
.

Then K1 ⊆ B(0, 2−1, 2−1). Since K1 is nonempty and relatively compact, there exists a finite set
{xn1+1, xn1+2, . . . , xn2} in 2K1 such that 2K1 ⊆

⋃n2
j=n1+1 B(xj, 2−2, 2−2). Let

K2 =
n2⋃

j=n1+1

(
(2K1 ∩ B(xj, 2−2, 2−2))− xj

)
.

Then K2 ⊆ B(0, 2−2, 2−2). Since K2 is nonempty and relatively compact, there exists a finite set
{xn2+1, xn2+2, . . . , xn3} in 2K2 such that 2K2 ⊆

⋃n3
j=n2+1 B(xj, 2−3, 2−3). Let

K3 =
n3⋃

j=n2+1

(
(2K2 ∩ B(xj, 2−3, 2−3))− xj

)
.

The construction of (xn) is continued in the obvious fashion.
Now, let α ∈ (0, 1) and ε > 0. Then we choose k ∈ N such that 2−k < α and 2−k+1 < ε. By the

above claim and (xn)’s selection, we obtain that for each ` ≥ k

(xj)
n`+1
j=n`+1 ⊂ 2K` ⊂ 2B(0, 2−`, 2−`) = B(0, 2−`, 2−`+1) ⊆ B(0, α, ε),

hence we have (xj)
∞
j=nk+1 ⊂ B(0, α, ε). Thus, for all j ≥ nk + 1, we have

‖xj‖+α < ε,

hence (xn) converges to 0 in (X, ‖ · ‖).
Finally, x0 ∈ K. Since 2x0 ∈ 2K, there is a positive integer j1 such that 1 ≤ j1 ≤ n1 such that

2x0 − xj1 ∈ K1, so there is a positive integer j2 such that n1 ≤ j2 ≤ n2 such that 4x0 − 2xj1 − xj2 ∈ K2,
and so forth. If follows that for each m ∈ N

2mx0 − 2m−1xj1 − 2m−2xj2 · · · − xjm ∈ Km.

Hence we have

x0 −
m

∑
n=1

2−nxjn ∈ 2−mKm ⊆ 2−mB(0, 2−m, 2−m) = B(0, 2−m, 2−2m) ⊆ B(0, 2−m, 2−m)

for each m ∈ N , and therefore we have x0 = ∑n 2−nxjn ∈ co({xn}).
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Corollary 1. Let (X, ‖ · ‖) be a fuzzy normed space. Then there exists a sequence (αn) ↓ 0 in (0, 1] such that

‖xn‖+αn → 0

where (xn) is the sequence selected in Theorem 3.

Proof. As we see in the proof of Theorem 3, we have a sequence (nj)
∞
j=0 in N with n0 = 0, nj ↑ ∞

satisfying
x1, x2, · · · , xn1 ∈ 2K ⊆ B(0, 3/4, t(3/4)),

xn1+1, xn1+2, · · · , xn2 ∈ 2K1 ⊆ B(0, 2−1, 1),

xn2+1, xn2+2, · · · , xn3 ∈ 2K2 ⊆ B(0, 2−2, 2−1),

. . . . . .

xn`+1, xn`+2, · · · , xn`
∈ 2K` ⊆ B(0, 2−`, 2−`+1),

. . . . . .

Then we obtain
‖xn‖3/4 ≤ t(3/4), ∀n = 1, 2, · · · , n1,

‖xn‖+1
2
≤ 1, ∀n = n1 + 1, n1 + 2, · · · , n2,

‖xn‖+1
4
≤ 1

2
, ∀n = n2 + 1, n2 + 2, · · · , n3,

. . . . . .

‖xn‖+1
2`
≤ 1

2`−1 , ∀n = n` + 1, n` + 2, · · · , n`+1,

. . . . . .

Now we put

αn =



3
4 , 1 6 n 6 n1
1
2 , n1 + 1 6 n 6 n2
1
22 , n2 + 1 6 n 6 n3

. . .
1
2`

, n` + 1 6 n 6 n`+1.
. . .

Clearly, we have (αn) ↓ 0 in (0, 1] and

‖xn‖+αn → 0.

The following lemma can be obtained from the proof of (Reference [15], Lemma 5.7).

Lemma 2. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin-fuzzy normed spaces. If ϕ ∈ (F(X, Y), τ)∗, then there exists
a finite subset {x1, x2, . . . , xn} of X and α ∈ (0, 1] and ε > 0 such that T ∈ ⋂n

i=1{T ∈ F(X, Y) : ‖Txi‖∼2
α <

ε} implies |ϕ(T)| < 1.

Proof of Theorem 2. If a linear functional ϕ on F(X, Y) is given by

ϕ(T) =
∞

∑
n=1

y∗n(Txn)
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where (xn) ⊂ (X, ‖ · ‖) and (y∗n) ⊂ (Y, ‖ · ‖∼+α1
)∗ for some (αn) ⊆ (0, 1] ↓ 0 such that

∞

∑
n=1
‖xn‖+αn‖y

∗
n‖+α1

< ∞,

then we shall show that there are a compact subset K of (X, ‖ · ‖) and B > 0 such that

ϕ(T) ≤ B

for all T ∈ Ne(0, K, α1, 1), which proves that ϕ is in (F(X, Y), τ)∗. First, let (ηn) be a sequence of
positive reals so that

ηn ↑ ∞,
∞

∑
n=1

ηn‖xn‖+αn‖y
∗
n‖+α1

< ∞.

Put
K = {0}

⋃
{ xn

ηn‖xn‖+αn

}

and B = ∑∞
n=1 ηn‖xn‖+αn‖y

∗
n‖+α1

.
Now, we shall show that K is a compact subset of (X, ‖ · ‖). We are enough to prove that

∀β ∈ (0, 1],

‖ xn

ηn‖xn‖+αn

‖+β → 0.

Take any α1 < β ≤ 1. Since ∀n ∈ N, ‖xn‖+β ≤ ‖xn‖+αn , we have n ∈ N,

‖xn‖+β
ηn‖xn‖+αn

≤ 1
ηn

,

hence
‖ xn

ηn‖xn‖+αn

‖+β → 0.

Now we take any α2 < β ≤ α1. By the above argument, for n ≥ 2,

‖xn‖+β
ηn‖xn‖+αn

≤ 1
ηn

,

hence we have
‖ xn

ηn‖xn‖+αn

‖+β → 0.

By continuing this process for β, we prove our claim. On the other hand, we have for all
T ∈ Ne(0, K, α, 1)

|ϕ(T)| ≤
∞

∑
n=1
|y∗n(Txn)| =

∞

∑
n=1
|y∗n(T(

xn

ηn‖xn‖+αn

)ηn‖xn‖+αn |

≤ sup
n
‖T( xn

ηn‖xn‖+α1

)‖∼+α1

∞

∑
n=1

ηn‖xn‖+αn‖y
∗
n‖+α1

≤ sup
x∈K
‖T(x)‖∼+αn

∞

∑
n=1

ηn‖xn‖+αn‖y
∗
n‖+α1

≤ B.

(1)
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Now, for the converse, assume that ϕ ∈ (F(X, Y), τ)∗. Then, by Lemma 2, there are compact sets
K1, . . . , Km and α ∈ (0, 1] and ε > 0 such that supx∈Ki

‖Tx‖+α < ε, T ∈ F(X, Y), i = 1, 2, . . . , n implies
|ϕ(T)| < 1. Put K =

⋃n
i=1 Ki and B > 1/ε. Then it is easy to check that

|ϕ(T)| ≤ B sup
x∈K
‖Tx‖∼+α

for all T ∈ F(X, Y). By Theorem 3, there is a sequence (xn) in X converging to 0 in (X, ‖ · ‖) such that

K ⊆ co({xn}).

Moreover, Corollary 1, there exists a sequence (αn) ↓ 0 in (0, 1] such that

‖xn‖+αn → 0.

There exists n0 ∈ N such that αn0 ≤ α. Put

α
′
n =

{
α, 1 ≤ n ≤ n0

αn, n > n0

Then we may assume (αn) ↓ 0 such that for all n, αn ≤ α and

‖xn‖+αn → 0.

Also, we can observe
|ϕ(T)| ≤ B sup

n
‖Txn‖∼+α1

for all T ∈ F(X, Y).
Now we put Y1 = (Y, ‖ · ‖∼+α1

) Let us consider the linear map

φ : F(X, Y)→ c0(Y1)

T −→ (Txn).

Since for each T ∈ F(X, Y), there exists M > 0 such that

‖T(xn)‖∼+α1
≤ M‖xn‖+α1

≤ M‖xn‖+αn

the linear map φ is well defined. Now we define Φ(η) = ϕ(T) if η ∈ φ(F(X, Y)) and η = φ(T).
We claim that Φ is well-defined and linear continuous functional on φ(F(X, Y)). Indeed, observe that
φ(T) = 0 implies supn ‖Txn‖∼+αn = 0, hence ϕ(T) = 0. Thus Φ is well-defined. Also, we obtain that

|Φ(η)| = |ϕ(T)| ≤ B sup
n
‖Txn‖∼+α1

= B‖η‖c0(Y1)
,

it proves our claim.
Now, by applying Hahn-Banach extension theorem, the functional Φ can be extended to a

Φ̂ ∈ c0(Y1)
∗. Then there is uniquely the sequence (y∗n) in Y∗1 such that ∑∞

n=1 ‖y∗n‖+α1
= ‖Φ‖ and

Φ((yn)) =
∞

∑
n=1

y∗n(yn), ∀(yn) ∈ c0(Y1).

Since
‖xn‖+αn ≤ 1,
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we have
∞

∑
n=1
‖xn‖+αn‖y

∗
n‖+α1

< ∞.

Thus, for each T ∈ F(X, Y) we have

ϕ(T) = Φ((Txn)) = Φ̂((Txn)) =
∞

∑
n=1

y∗n(Txn).

4. Characterizations of Approximation Properties

In this section, we establish new characterizations of approximation properties in Felbin-fuzzy
normed spaces in terms of infinite sequences by applying the representation of Section 5. The following
includes our main theorems. The proof shall be given later.

Theorem 4. A complete Felbin-fuzzy normed space (X, ‖ · ‖) has the AP if and only if for every (αn) ⊆ (0, 1] ↓
0, (xn) ⊂ (X, ‖ · ‖) and (x∗n) ⊂ (X, ‖ · ‖+α1

)∗ such that

∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞,

∞

∑
n=1

x∗n(x)xn = 0, ∀x ∈ X,

we have
∞

∑
n

x∗n(xn) = 0.

Theorem 5. A complete Felbin-fuzzy normed space (X, ‖ · ‖) has the BAP if and only if for every (αn) ⊆
(0, 1] ↓ 0, (xn) ⊂ (X, ‖ · ‖) and (x∗n) ⊂ (X, ‖ · ‖+αn)

∗ such that

∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞,

∞

∑
n=1

x∗n(x)xn ≤ 1, ∀x ∈ X,

we have
∞

∑
n

x∗n(xn) ≤ 1.

Remark 2. Theorems 4, 5 are very important tools to solve dual problems for approximation properties in
Felbin-fuzzy normed spaces (see Section 5).

Lemma 3. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space. Suppose that C is a subspace of F(X, X). Let T ∈
F(X, X). Then the following are equivalent.

(a) T belongs to Cτ .
(b) For every f ∈ (F(X, X), τ)∗ such that f (S) = 0 for all S ∈ C, we have f (T) = 0.

Proof. This can be directly derived from a result of the locally convex space version of the Hahn-Banach
theorem. One may refer to Reference [22], Corollary 2.2.20.

Moreover, we need the following lemma [23].
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Lemma 4. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space. Suppose that C is a balanced convex subset of F(X, X).
Let T ∈ F(X, X). Then the following are equivalent.

(a) T belongs to Cτ .
(b) For every f ∈ (F(X, X), τ)∗ such that | f (S)| ≤ 1 for all S ∈ C, we have | f (T)| ≤ 1.

Proposition 1. Let Y be a finite dimensional subspace of a Felbin-fuzzy normed space (X, ‖ · ‖). Suppose that
x ∈ X\Y. Then there is a strongly fuzzy bounded linear functional f on X such that supα∈(0,1] ‖ f ‖∗+α = 1,
f (x) = infy∈Y infα∈(0,1] ‖x− y‖−α and Y ⊆ ker( f ).

Proof. The proof comes from Reference [16], Theorem 2.

The following theorem gives the representation of finite rank strongly fuzzy bounded operators
([16], Corollary 2).

Theorem 6. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin-fuzzy normed spaces. If T : X → Y is a finite rank
strongly fuzzy bounded linear operator, then there exist (yn)k

n=1 ⊂ Y and ( fn)k
n=1 ⊂ (X, ‖ · ‖)∗ such that

T(x) =
k

∑
n=1

fn(x)yn

for all x ∈ X.

Now, we are ready to prove Theorems 4 and 5.

Proof of Theorem 4. Let (αn) ⊆ (0, 1] ↓ 0, (xn) ⊂ (X, ‖ · ‖) and (x∗n) ⊂ (X, ‖ · ‖+α1
)∗ such that

∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞,

∞

∑
n=1

x∗n(x)xn = 0, ∀x ∈ X.

Now a linear functional ϕ on F(X, X) is given by

ϕ(T) =
∞

∑
n=1

x∗n(Txn).

By Theorem 2, we have ϕ ∈ (F(X, X), τ)∗. Since (X, ‖ · ‖) has the AP, we have

I ∈ F (X, X)
τ
.

Then, by Lemma 3, we are enough to show that

ϕ(S) = 0, ∀S ∈ F (X, X).

We can observe that for each x ∈ X and x∗ ∈ (X, ‖ · ‖)∗, by assumption, we have

x∗(0) = x∗(
∞

∑
n=1

x∗n(x)xn) =
∞

∑
n=1

x∗n(x)x∗(xn) = 0,
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because x∗ is sequentially fuzzy continuous. Let S be in F (X, X). By Theorem 6, there exist (zi)
k
i=1 ⊂ X

and (z∗i )
k
i=1 ⊂ (X, ‖ · ‖)∗ such that

S(x) =
k

∑
i=1

z∗i (x)zi, ∀x ∈ X.

Then, by the above observation, we have

ϕ(S) =
∞

∑
n=1

k

∑
i=1

x∗n(z
∗
i (xn)zi) =

k

∑
i=1

∞

∑
n=1

z∗i (xn)x∗n(zi) = 0.

Conversely, let ϕ be in (F(X, X), τ)∗ and

ϕ(S) = 0, ∀S ∈ F (X, X)

Then, by Theorem 2, we have

ϕ(T) =
∞

∑
n=1

x∗n(Txn)

where (xn) ⊂ (X, ‖ · ‖) and (x∗n) ⊂ (X‖ · ‖+α1
)∗ for some (αn) ⊆ (0, 1] ↓ 0 such that

∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞.

By Lemma 3 and the assumption, we are enough to show that

ϕ(I) = 0, i.e.
∞

∑
n=1

x∗n(x)xn = 0, ∀x ∈ X.

First, we claim that for each x ∈ X, ∑∞
n=1 x∗n(x)xn exists in (X, ‖ · ‖). Indeed, take any α ∈ (0, 1]

and ε > 0 and x ∈ X. There is k0 ∈ N with αk0 ≤ α such that for all m > k0,

m

∑
n=k0

‖x‖+α1
‖xn‖+αn‖x

∗
n‖+α1

< ε.

Then we have

‖
m

∑
n=k0

x∗n(x)xn‖+α ≤
m

∑
n=k0

|x∗n(x)|‖xn‖+α ≤
m

∑
n=k0

‖x‖+α1
‖xn‖+αn‖x

∗
n‖+α1

< ε,

so (∑m
n=1 x∗n(x)xn) is Cauchy sequence. Since (X, ‖ · ‖) is complete, ∑∞

n=1 x∗n(x)xn exists. Also, we claim
that for each x∗ ∈ (X, ‖ · ‖)∗ and x ∈ X, we have

x∗(
∞

∑
n=1

x∗n(x)xn) = 0.

Indeed, let x∗ ∈ (X, ‖ · ‖)∗ and x ∈ X. Put

S(z) := x∗(z)x, ∀z ∈ X.

Then S ∈ F (X, X), by assumption, we have

ϕ(S) =
∞

∑
n=1

x∗n(x)x∗(xn) = 0.
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Since x∗ is sequentially fuzzy continuous, we have

x∗(
∞

∑
n=1

x∗n(x)xn) =
∞

∑
n=1

x∗n(x)x∗(xn) = 0

It follows that
∞

∑
n=1

x∗n(x)xn = 0

because if not, that is, ∑∞
n=1 x∗n(x)xn 6= 0, then, by Proposition 1, there exists x∗ ∈ (X, ‖ · ‖)∗ such that

x∗(
∞

∑
n=1

x∗n(x)xn) = inf
α∈(0,1]

‖
∞

∑
n=1

x∗n(x)xn‖−α 6= 0,

it is a contradiction.

Proof of Theorem 5. Since F (X, X, λ) is a balanced convex, by Lemma 4 and similar arguments of
Theorem 4, we can prove it.

5. Application to the Dual Problems

In this section, we provide dual problems for approximation properties in Felbin-fuzzy normed
spaces and their partial solutions.

Dual problems. Let (X, ‖ · ‖) be a Felbin-fuzzy normed space. If (X, ‖ · ‖)∗ has the AP, then does
(X, ‖ · ‖) have the AP? Conversely, if (X, ‖ · ‖) has the AP, then does (X, ‖ · ‖)∗ have the AP?

In Banach space theory, dual problems were completely solved (see Reference [13]). However, in
fuzzy normed spaces, we have partial solutions.

Proposition 2. Let (X, ‖ · ‖) be a fuzzy normed space and α ∈ (0, 1]. We define

‖x‖(α)(t) =
{

1, t = ‖x‖+α
0, otherwise.

Then (X, ‖ · ‖(α)) is a fuzzy normed space. Also, for all β ∈ (0, 1] we have

[‖x‖(α)]β = [‖x‖+α , ‖x‖+α ].

Proof. The proof is clear.

We have a partial solution for dual problems by giving the specific condition of a dual space as
the following.

Theorem 7. Let (X, ‖ · ‖) be a complete Felbin-fuzzy normed space. If for every α ∈ (0, 1], (X, ‖ · ‖(α))∗ has
the AP, then (X, ‖ · ‖) has the AP.

Proof. We shall use Theorem 4. Let (αn) ⊆ (0, 1] ↓ 0. Also we fix (xn) ⊂ (X, ‖ · ‖) and (x∗n) ⊂
(X, ‖ · ‖+α1

)∗ such that
∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞,

∞

∑
n=1

x∗n(x)xn = 0, ∀x ∈ X.
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Now let us consider (X, ‖ · ‖(α1)
). Since, ∀x ∈ X, ∑∞

n=1 x∗n(x)xn converges to 0 in (X, ‖ · ‖(α1)
),

we have
∞

∑
n=1

x∗(xn)x∗n = 0, ∀x∗ ∈ (X, ‖ · ‖(α1)
)∗.

We can observe that (x∗n) ⊂ (X, ‖ · ‖(α1)
)∗ because for each α ∈ (0, 1], by Proposition 2, we have

|x∗n(x)| ≤ M‖x‖+α1
= M‖x‖(α1)α

, ∀x ∈ X.

Also, for each x∗ ∈ (X, ‖ · ‖(α1)
)∗, by again Proposition 2, we obtain

‖x∗‖∗+
(α1)α

= sup
|x∗(x)|
‖x‖−

(α1)α

= sup
|x∗(x)|
‖x‖+α1

= ‖x∗‖+α1
,

Now we define that for each x ∈ X,

J(x)(x∗) := x∗(x), ∀x∗ ∈ (X, ‖ · ‖(α1)
)∗.

Then, ∀x ∈ X, we can regard J(x) as the element of ((X, ‖ · ‖(αn))
∗, ‖ · ‖∗+

(αn)α1
)∗ because

‖J(x)‖+
(α1)α1

= sup
|J(x)(x∗)|
‖x∗‖∗+

(α1)α1

= sup
|x∗(x)|
‖x∗‖∗+

(α1)α1

= sup
|x∗(x)|
‖x∗‖+α1

= ‖x‖+α1
.

Thus it follows (J(xn)) ⊂ ((X, ‖ · ‖(α1)
)∗, ‖ · ‖∗+

(α1)α1
)∗, hence we have

∞

∑
n=1
‖x∗n‖∗+(α1)αn

‖J(xn)‖+(α1)α1
≤

∞

∑
n=1
‖xn‖+α1

‖x∗n‖+α1
≤

∞

∑
n=1
‖xn‖+αn‖x

∗
n‖+α1

< ∞

Then we have
∞

∑
n=1

J(xn)(x∗)x∗n = 0, ∀x∗ ∈ (X, ‖ · ‖(α1)
)∗.

Since (X, ‖ · ‖(α1)
)∗ has the AP, by Theorem 4, we obtain

∞

∑
n=1

J(xn)(x∗n) = 0,

so ∑∞
n=1 x∗n(xn) = 0, by again Theorem 4, (X, ‖ · ‖) has the AP.

The following proposition is the solution for the other part of the dual problems.

Proposition 3. There exists a Felbin-fuzzy normed space (X, ‖ · ‖) which has the AP but (X, ‖ · ‖)∗ does not
have the AP. does not have the AP.

Proof. Let us consider a Banach space X having the AP whose dual fails to have the AP (see
Reference [13]). We denote this Banach space by (X, ‖ · ‖0). Let us define

‖x‖(t) =
{

1, t = ‖x‖0

0, otherwise.

It is clear that ‖x‖+α = ‖x‖0 = ‖x‖−α for all α ∈ (0, 1]. Clearly, (X, ‖ · ‖) is complete fuzzy normed
space and hast the AP.
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Now we claim that (X, ‖ · ‖0)
∗ = (X, ‖ · ‖)∗ as vector spaces. Let x∗ ∈ X, ‖ · ‖0)

∗. Then there
exists a positive M > 0 such that

|x∗(x)| ≤ M‖x‖0 = ‖x‖−α = ‖x‖+α , ∀α ∈ (0, 1],

it follows x∗ ∈ (X, ‖ · ‖)∗, i.e. (X, ‖ · ‖0)
∗ ⊆ (X, ‖ · ‖)∗. The converse can be obtained the same way.

Moreover, we have
‖x∗‖∗+α = ‖x∗‖ = ‖x∗‖∗−α , ∀α ∈ (0, 1].

Then we have that (X, ‖ · ‖)∗ does not have the AP.

6. Conclusions and Further Works

In this paper, we have studied approximation properties in Felbin-fuzzy normed spaces
and developed topological tools to analyse such approximation properties. We have identified
approximation properties in Felbin fuzzy normed spaces in terms of infinite sequences. By using
this, we provided partial solutions about dual problems for approximation properties in Felbin
fuzzy normed space. We hope that our approach may present topological foundations to research
topological objects including compact subsets and weakly compact subsets in Felbin-fuzzy normed
spaces. Moreover, dual problems for approximation properties can be answered completely.
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10. Banach, S. Théorie des opérations Linéaires; Monografje Matematyczne: Warsaw, Poland, 1932.
11. Enflo, P. A counter example to the approximation problem. Acta. Math. 1973, 130, 309–317. [CrossRef]
12. Grothendieck, A. Produits tensoriels topologiques et espaces nucleires. Mem. Am. Math. Soc. 1955, 16, 1–140.
13. Lindenstrauss, J.; Tzafriri, L. The approximation property. In Classical Banach Spaces I, Sequence Spaces;

Springer: Berlin, Germany, 1977; pp. 29–42.
14. Yilmaz, Y. Schauder bases and approximation property in fuzzy normed spaces. Comput. Math. Appl. 2010,

59, 1957–1964. [CrossRef]
15. Lee, K.Y. Approximation properties in fuzzy normed spaces. Fuzzy Sets Syst. 2016, 282, 115–130. [CrossRef]
16. Kim, J.M.; Lee, K.Y. Approximation properties in Felbin-fuzzy normed spaces. Mathematics 2019, 7, 1003.

[CrossRef]
17. Konwar, N.; Davvaz, B.; Debnath, P. Approximation of new bounded operators in intuitionistic fuzzy n-

Banach spaces. J. Intell. Fuzzy Syst. 2018, 35, 6301–6312. [CrossRef]

http://dx.doi.org/10.1016/0165-0114(84)90034-4
http://dx.doi.org/10.1016/0165-0114(92)90338-5
http://dx.doi.org/10.1016/0165-0114(84)90069-1
http://dx.doi.org/10.1016/j.fss.2007.09.006
http://dx.doi.org/10.3390/sym11070923
http://dx.doi.org/10.3390/math7010011
http://dx.doi.org/10.1007/BF02392270
http://dx.doi.org/10.1016/j.camwa.2009.11.014
http://dx.doi.org/10.1016/j.fss.2015.02.003
http://dx.doi.org/10.3390/math7101003
http://dx.doi.org/10.3233/JIFS-181094


Mathematics 2020, 8, 161 15 of 15

18. Saheli, M. A comparative study of fuzzy norms of linear operators on a fuzzy normed linear spaces.
J. Math. Model. 2015, 2, 217–234.

19. Bag, T.; Samanta, S.K. Fuzzy bounded linear operators. Fuzzy Sets Syst. 2005, 151, 513–547. [CrossRef]
20. Bag, T.; Samanta, S.K. Fuzzy bounded linear operators in Felbin’s type fuzzy normed linear spaces.

Fuzzy Sets Syst. 2008, 159, 685–707. [CrossRef]
21. Xiao, J.; Zhu, X. On linearly topological structure and property of fuzzy normed linear space. Fuzzy Sets Syst.

2002 125, 389–399. [CrossRef]
22. Megginson, R.E. Vector topologies. In An Introduction to Banach Space Theory; Springer: New York, NY, USA,

1988; pp. 180–181.
23. Kim, J.M. Characterizations of bounded approximation properties. Taiwan. J. Math. 2008, 12, 179–190.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.fss.2004.05.004
http://dx.doi.org/10.1016/j.fss.2007.09.006
http://dx.doi.org/10.1016/S0165-0114(00)00136-6
http://dx.doi.org/10.11650/twjm/1500602496
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The Dual Space of (F(X, Y), )
	Characterizations of Approximation Properties
	Application to the Dual Problems
	Conclusions and Further Works
	References

