
mathematics

Article

Using Cuckoo Search Algorithm with Q-Learning and
Genetic Operation to Solve the Problem of Logistics
Distribution Center Location

Juan Li 1,2, Dan-dan Xiao 1, Hong Lei 2, Ting Zhang 1 and Tian Tian 3,*
1 School of Information Engineering, Wuhan Technology and Business University, Wuhan 430065, China;

looj@whu.edu.cn (J.L.); xiaodandan@wtbu.edu.cn (D.-d.X.); 20040808005@wtbu.edu.cn (T.Z.)
2 School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China;

120150508@wut.edu.cn
3 School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
* Correspondence: tiantian@sdjzu.edu.cn

Received: 14 December 2019; Accepted: 17 January 2020; Published: 21 January 2020
����������
�������

Abstract: Cuckoo search (CS) algorithm is a novel swarm intelligence optimization algorithm, which is
successfully applied to solve some optimization problems. However, it has some disadvantages, as it is
easily trapped in local optimal solutions. Therefore, in this work, a new CS extension with Q-Learning
step size and genetic operator, namely dynamic step size cuckoo search algorithm (DMQL-CS),
is proposed. Step size control strategy is considered as action in DMQL-CS algorithm, which is used
to examine the individual multi-step evolution effect and learn the individual optimal step size by
calculating the Q function value. Furthermore, genetic operators are added to DMQL-CS algorithm.
Crossover and mutation operations expand search area of the population and improve the diversity
of the population. Comparing with various CS algorithms and variants of differential evolution (DE),
the results demonstrate that the DMQL-CS algorithm is a competitive swarm algorithm. In addition,
the DMQL-CS algorithm was applied to solve the problem of logistics distribution center location.
The effectiveness of the proposed method was verified by comparing with cuckoo search (CS),
improved cuckoo search algorithm (ICS), modified chaos-enhanced cuckoo search algorithm (CCS),
and immune genetic algorithm (IGA) for both 6 and 10 distribution centers.

Keywords: global optimization; cuckoo search algorithm; Q-learning; mutation; self-adaptive
step size

1. Introduction

Optimization problems have been one of the most important research topics in recent years.
They exist in many domains, such as scheduling [1,2], image processing [3–6], feature selection [7–9]
and detection [10], path planning [11,12], feature selection [13], cyber-physical social system [14,15],
texture discrimination [16], saliency detection [17], classification [18,19], object extraction [20], shape
design [21], big data and large-scale optimization [22,23], multi-objective optimization [24], knapsack
problem [25–27], fault diagnosis [28–30], and test-sheet composition [31]. Metaheuristic algorithms [32],
a theoretical tool, are based on nature-inspired ideas, which have been extensively used to solve highly
non-linear complex multi-objective optimization problems [33–35]. Several popular metaheuristics
with a stochastic nature are compared in some studies [36–38] with deterministic Lipschitz methods
by using operational zones. Most of these metaheuristics methods are inspired by natural or
physical processes, such as bat algorithm (BA) [39], biogeography-based optimization (BBO) [40],
ant colony optimization (ACO) [41], earthworm optimization algorithm (EWA) [42], elephant herding
optimization (EHO) [43,44], moth search (MS) algorithm [45], firefly algorithm (FA) [46], artificial bee

Mathematics 2020, 8, 149; doi:10.3390/math8020149 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8020149
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/149?type=check_update&version=2

Mathematics 2020, 8, 149 2 of 32

colony (ABC) [47–49], harmony search (HS) [50,51], monarch butterfly optimization (MBO) [52,53],
particle swarm optimization (PSO) [54,55], genetic programming [56], krill herd (KH) [57–63], immune
genetic algorithm (IGA) [64], and cuckoo search (CS) [65–69].

Yang and Deb [69] proposed a metaheuristic optimization method named CS algorithm, which is
inspired by smart incubation behavior of a type of birds called cuckoos in nature.

CS performs local search well in most cases, but sometimes it cannot escape from local optima,
which restricts its ability to carry out full search globally. To enhance the ability of CS, Mlakar et al. [70]
proposed a novel hybrid self-adaptively CS algorithm adding three features: a self-adaptively of cuckoo
search control parameters, a linear population reduction, and a balancing of the exploration search
strategies. Li et al. [71] enhanced the exploitation ability of the cuckoo search algorithm by using an
orthogonal learning strategy. An improved discrete version of CS was presented by Ouaarab et al. [72].

On the other hand, most researchers agree that the performance of algorithms can be improved
by using learning techniques. For example, Wang et al. [73] presented a new method to enhance
learning speed and improved final performance, which directly tuned the Q-values to affect the
action selection policy. Alex et al. [74] presented a new evolutionary cooperative learning scheme
that is able to solve function approximation and classification problems, improving accuracy and
generalization capabilities. A new CS algorithm named snap-drift cuckoo search (SDCS) was presented
by Hojjat et al. [75]. In SDCS, a snap-drift learning strategy is employed to improve search operators.
The snap-drift learning strategy provides an online trade-off between local and global search via two
snap and drift modes.

Although much effort has been made to enhance the performance of CS, many of the variants fail
to improve the performance of CS algorithm on certain complicated problems. Furthermore, there are
few studies on optimizing the parameters of CS algorithm by using learning strategy. In this paper,
we present an improved CS algorithm called dynamic step size cuckoo search algorithm (DMQL-CS)
that adopts strategies with Q-Learning and genetic operator. Step size strategy of the traditional
CS focused only on examining the individual fitness value based on the one-step evolution effect
of individual, but ignored the evaluation of step size from the multi-step evolution effect, which is
not conducive to the evolution of the algorithm. We use Q-Learning method to optimize the step
size, in which the most appropriate step size control strategies are retained for the next generation.
At the same time, their weights are adaptively adjusted by using learning rate, which is used to guide
individuals to search for a better solution at the next evolution. In addition, crossover operation and
mutation operation are added into the DMQL-CS algorithm to accelerate the convergence speed of the
algorithm and expand the diversity of the population.

The present manuscript differs from other similar work insofar as the advantage of learning
based on Q-Learning and genetic operators. Q-Learning considers the multi-step evolution effect
of individual such that the most appropriate step size control strategies are retained for the next
generation. For the proposed DMQL-CS approach, the outstanding work of the paper is mainly listed
in the following two aspects:

(1) In the DMQL-CS algorithm, the step size strategy is considered as an action which applies multiple
step control strategies (linear decreasing strategy, non-linear decreasing strategy, and adaptively
step-size strategy). In the DMQL-CS algorithm, according to multi-step effect of individual for
a few steps forward, the optimal step size control strategy is learned. During each learning
evolution step size, finally, the optimal individual and corresponding optimal step size strategy
are derived by calculating the Q function value. The current individual continues to evolve
through the step size obtained, which increases the adaptability of individual evolution.

(2) The research introduces two genetic operators, crossover and mutation, into the DMQL-CS
algorithm, intended for accelerating convergence. During crossover and mutation process,
chromosomes are divided into pairs according to certain probability. We introduce the specifically
designed crossover operation into problem of logistics distribution center location in this paper,
which determines the performance of the algorithm to some extent. To improve the search ability

Mathematics 2020, 8, 149 3 of 32

of the CS algorithm, numerous strategies have been designed to adjust the crossover rate. In this
work, a self-adaptive scheme is used to adjust the crossover rate. Genetic operators expand
the search area of the population to improve the exploration and maintain the diversity of the
population, which also helps to improve the exploration of the population of learners.

Finally, the DMQL-CS method was tested on 15 benchmark functions, CEC 2013 test suite, and the
problem of logistics distribution center location. The experimental results compared with those of other
approaches demonstrated the superiority of the proposed strategy. A series of simulation experiments
showed that DMQL-CS performs more accurately and efficiently than other evolutionary methods in
terms of the quality of the solution and convergence rate.

The remainder of this paper is organized as follows. In Section 2, the related work on cuckoo
search is presented. Section 3 presents cuckoo search. The proposed DMQL-CS algorithm, including
Q-Learning model, step size control model with Q-Learning, and genetic operator, is described in
Section 4. The comparison with other methods, through 15 functions, CEC 2013 test suite, and the
problem of logistics distribution center location, is given in Section 5. Finally, Section 6 concludes this
paper and points out some future research directions.

2. Related Work

CS algorithm is capable of finding the best solutions by continuously using new and potentially
better solution to replace a not-so-good cuckoo in the population, and it has been applied successfully
to diverse fields. Recently, many CS variants have been developed to improve the performance of the
CS algorithm. These variants can be generally divided into four categories: (1) parameter control [70];
(2) novel learning schemes [76]; (3) hybrid methods with other algorithm [74]; and (4) local search
operator [77].

Due to the important influence of control parameters for the performance, much meaningful work
has been done on the control parameter settings of CS algorithm. Initially, step size parameter control
was investigated to improve the performance of CS algorithms. For instance, aiming at the faults that
Cuckoo Search algorithm cannot acquire exact solutions and converges slowly in the later period,
Ma et al. [78] proposed a self-adaptively step size adjustment cuckoo search algorithm (ASCS), which
is an adaptively adjusted step size by using the distance between cuckoo nest location and the optimal
nest location, which speeds up CS algorithm speed and improves the calculation accuracy. To balance
the exploration and exploitation, Li and Yin [79] introduced two mutation rules and combined these
two rules using a linear decreasing probability. Then, an adaptive parameter adjustment strategy
was developed according to the relative success number of two newly added parameters in the
previous iteration. Comparison results of the proposed algorithm show that this scheme is better
than other algorithms. Two important factors, speed factor and aggregation factor, were defined by
Yang et al. [80]. Then, according to these two factors, the step size and discovery probability were
regulated. Experimental results show that the CS with improved step size and discovery probability
has strong competitiveness in tackling numerical optimization problems. Li et al. [79] proposed the
self-adaptive parameter CS algorithm, which uses two new mutation rules based on the rand and best
individuals among the entire population. The self-adaptive parameter is set as a uniform random
value based on the relative success number of the two new proposed parameters in the previous period,
which enhance diversity of the population. Experimental results show that the proposed method
performs better than twelve algorithms from the literature.

Li et al. [65] proposed an enhanced CS algorithm called dynamic CS with Taguchi opposition-based
search and dynamic evaluation. The Taguchi search strategy provided random generalized learning
based on opposing relationships to enhance the exploration ability of the algorithm. The dynamic
evaluation strategy reduced the number of function evaluations, and accelerated the convergence
property. Statistical comparisons of experimental results showed that the proposed algorithm makes
an appropriate trade-off between exploration and exploitation. Li et al. [81] proposed a new cuckoo
search algorithm extension based on self-adaptive knowledge learning, in which a learning model

Mathematics 2020, 8, 149 4 of 32

with individual history knowledge and population knowledge is introduced into the CS algorithm.
Individuals constantly adjust their position according to historical knowledge and communicate in the
optimization process. Statistical comparisons of the experimental results showed that the proposed
algorithm is a competitive new type of algorithm. Hojjat et al. [75] presented a new CS algorithm,
called snap-drift cuckoo search (SDCS), which first employs a learning strategy and then considers
improved search operators. The snap-drift learning strategy provides an online trade-off between
local and global search via two snap and drift modes. SDCS tends to increase global search to prevent
algorithm of being trapped in local minima via snap mode and reinforces the local search to enhance
the convergence rate via drift mode. Statistical comparisons of experimental results showed that SDCS
is superior to modified CS algorithms in terms of convergence speed and robustness.

According to the rand and best individuals among the entire population, Cheng et al. [82]
proposed an ensemble CS variant in which three different cuckoo search algorithms coexist in the
entire search process, which compete to produce better offspring for numerical optimization. Then,
an external archive is introduced to further maintain population diversity. Statistical comparisons
of experimental results showed that the improved CS variant is superior to modified CS algorithms
in terms of convergence speed and robustness. Wen et al. [83] proposed a new hybrid algorithm
based on grey wolf optimizer and cuckoo search (GWOCS), which was developed to extract the
parameters of different PV cell models with the experimental data under different operating conditions.
Zhang et al. [84] proposed an ensemble CS variant that divides the population into two subgroups and
adopts CS and DE for these two subgroups independently. These two subgroups can exchange useful
information by division. These two algorithms can utilize each other’s advantages to complement their
shortcomings, thus balancing the quality of solution and the computation consumption. Zhang et al. [85]
devised a hybridization of CS and covariance matrix adaption evolution strategy (CMA_ES) to
improve performance for the different optimization problems. Computational results demonstrate
that the proposed algorithm outperforms other competitor algorithms. Tang et al. [86] introduced
Gaussian distribution, Cauchy distribution, Levy distribution, and Uniform distribution, improving
the performance of cuckoo search algorithm by the method of pair combination. Simulation results
show that the hybrid distribution with Cauchy distribution and Levy distribution can make the CS
algorithm perform better.

With respect to applications, CS has been extensively applied to many domains, such as neural
networks [87], image processing [88], nonlinear systems [89,90], network structural optimization [91],
agriculture optimization [92], engineering optimization [93], and scheduling [94]. These applications
indicate that CS algorithm is an effective and efficient optimizer for solving some real-world problems.

3. Cuckoo Search

The cuckoo search algorithm [69] is a stochastic optimization algorithm that models brood
parasitism of cuckoo birds. The algorithm is based on the obligate brood parasitic behavior found in
some cuckoo nests by combining a model of this behavior with the principles of Lévy flights, which
discard worst solutions and generate new ones after some certain iteration.

According to the mentioned characteristics, CS can be expressed as three idealized rules:

(1) Each cuckoo lays one egg at a time, and places it in a randomly chosen nest.
(2) The best nests with the highest-quality eggs (solutions) will be carried over to the next generations.
(3) The number of available host nests is fixed, and the alien egg is discovered by the host bird with

the probability pa ∈ [0, 1]. If the alien egg is discovered, the nest is abandoned and a new nest is
built in a new location.

The CS algorithm is equiponderant to the integration of Lévy flights. The position of the ith nest
is indicated by using D-dimensional vector Xi = (xi1, xi2, . . . , xid), 1 ≤ i ≤ n; a Lévy flight is performed:

Xt+1
i = xt

i + a⊗ levy(λ) (i = 1, 2, . . . , n), (1)

Mathematics 2020, 8, 149 5 of 32

a = a0 ⊗ (xt
j − xt

i)± (2)

where α > 0 is the step size that is used to control the range of the random search, which should
be related to the scales of the problem of interests, and step size information is more useful can be
computed by Equation (2). The product ⊗means entry-wise multiplications. xt

i and xt
j are two different

solutions selected randomly. A new solution with the same number of cuckoos is generated after
partial solutions are discarded. levy(λ) with the random walk can be expressed in terms of a simple
power-law equation.

levy(β) ∼ µ = t−1−β, 0 < β ≤ 2 (3)

where µ and t are two random numbers following the normal distribution and β often takes a fixed
value of 1.5.

levy(β) ∼
φ× µ

|v|1/β
(4)

φ =

Γ(1 + β) × sin(π×β2)

Γ(1+β
2) × β× 2

β−1
2

1/β

(5)

where Γ is gamma function. µ and v are random numbers drawn from a normal distribution with
mean of 0 and standard deviation of 1, which have an infinite variance with an infinite mean. Here,
the consecutive jumps/steps of a cuckoo essentially form a random walk process that obeys a power-law
step length distribution with a heavy tail. In Lévy flights random walk component, the new solution
Xi is generated through Equation (6).

Xg+1,i = Xg,i + α0
φ× µ

|v|1/β
(Xg,i−Xg,best) (6)

where Xg,best represents the best solution obtained thus far and α0 is a scaling factor. The Lévy
distribution is a process of random walk; after a series of smaller steps, Lévy flights can suddenly
obtain a relatively larger step size. Lévy distribution is implemented at the initial stage of algorithm,
which helps to jump out of the local optimum.

Xt+1
i = xt

i + r(Xt
m −Xt

n) (7)

where Xt
m and Xt

n are random solutions at the tth generation. r generates a random number between
−1 and 1. The basic steps of the CS algorithm are summarized in Algorithm 1.

Algorithm 1 CS Algorithm.

(1) randomly initialize population of n host nests
(2) calculate fitness value for each solution in each nest
(3) while (stopping criterion is not meet do)
(4) Generate xt+1

i as new solution by using Lévy flights;
(5) Choose candidate solution xt

i ;
(6) if f (xt

i) > f (xt+1
i)

(7) Replace xt
i with new solution xt+1

i ;
(8) end if
(9) Throw out a fraction (pa) of worst nests;
(10) Generate solution kt+1

i using Equation (3);
(11) if f (xt

i) > f (xt+1
i)

(12) Replace xt
i with new solution xt+1

i ;
(13) end if
(14) Rank the solution and find the current best.
(15) end while

Mathematics 2020, 8, 149 6 of 32

4. Cuckoo Search Algorithm with Q-Learning and Genetic Operations

4.1. Q-Learning Model

Q-Learning model, a milestone in reinforcement learning research, is an enhanced learning
method that is not constrained by the problem model. The optimal policy of Q-Learning is generated
by executing the action with the highest expected Q-values, which is the action of maximizing the
cumulative benefits with a discount. Control strategy of the optimal step size can be transformed into
the optimal action for the agent. The Q function is defined as discounted. In general, the environment
is the current state in which the agent makes decisions. The agent includes a set of feasible actions
which affect both next state and reward. In fact, the Q-Learning is a mapping from state–action to
prediction. The output for state vector s and action a are denoted by Q-value Q(s, a):

Q(st, at)← (1− a)Q(st, at) + a
[
rt+1 + γmax

at+1
Q(st+1, at+1)

]
(8)

where Q(st, at) represents the cumulative reward of action in the state of s at time t. Q(st+1, at+1)

indicates the cumulative reward of action in the state vector s at time t + 1. rt+1 is the reward received
for the action a at time t + 1. When st+1 is terminal, Q(st+1, at+1) goes to zero, where a and γ represent
learning factors and discount factors, respectively (0 < a < 1, 0 ≤ γ < 1). γ determines the impact of
lagging returns on optimal action. Q-Learning provides strong proof of convergence. The Q value
will converge with probability 1 to Q when each state–action pair is repeatedly visited. The error of Q
(s, a) must be reduced by γ whenever it is updated. When each state–action pair is visited infinitely,
the estimates of Qn(s, a) converge to real values of Q(s, a) as n→∞ .

4.2. Step Size Control Model by Using Q-Learning

In CS algorithm, the most important parameter is step size scaling factor with the typical
characteristics of Lévy flight, in addition to the population size, the number of iterations, and the
probability of discovery. Step size scaling factor is as suitable action that is selected to control an
individual search process. The accuracy of selected parameter can be improved by predicting before
making an action decision. When an individual selects an action, the advantages and disadvantages of
various actions can be evaluated by the multi-step effect of individual. Q-Learning is helpful to learn
the optimal step size control strategy and transform optimal step size control strategy into optimal
action selected of agent.

During the iteration of CS algorithm, the fixed step size strategy cannot meet the dynamic
requirements of the algorithm. Considering the aforementioned facts, at the later stage of the CS
algorithm, we add three step size control methods in the iterative process: (1) Dynamic linear decreasing
strategy (L1) is defined by Equation (9). (2) Dynamic non-linear decreasing strategy (L2) is defined
by Equation (10). (3) Adaptive step-size strategy (L3) is defined by Equation (11). Each individual
obtains the optimal step size control strategy via learning multiple steps forward, thus becomes
close to the optimal solution. Therefore, we try to evaluate the step size control strategy by using
multi-step evolution method, which increases the adaptability of individual evolution and improves
the performance of the algorithm. The current best step size control strategy is selected to execute the
next iteration by using Q-Learning method.

a = (a1 − a0) × (tmax − t)/tmax + a1 (9)

a = (a1 − a0) · (t/tmax)
2 + (a0 − a1) · (2 · t/tmax) + a1± (10)

a = a0 + (a1 − a0) · di (11)

di =
||xi − xbest||

dmax
(12)

Mathematics 2020, 8, 149 7 of 32

where tmax expresses the total number of iterations, t is the current number of iterations, and dmax is
the maximum distance between the optimal nest and all other nests. a0 < a1, a0 is the initial value of
step size.

In Q-Learning algorithm, the agent receives feedback, which is called reward, for each action.
When the state is set to s and the action is set to a, a set of actions is set to H = {a1, a2, . . . an}, the agent
has n actions to choose from each state, and the maximum reward of discount for the agent is:

Q(s, a)= r(st, at) + γ ·max
a′

Q(s′, a′) (13)

where r(s, a) is the immediate benefits for state s. max
a′

Q(s′, a′) is the maximum return value that the

agent select different actions at the next state s′. a′ is the action which is selected at the next state s′. γ
is the discount factor. The benefits that the agent selecting action a receives is:

Q(a) = r(a) + γ ·Q(a(1)) + γ2
·Q(a(2)) + . . .+ γm

·Q(a(m)) (14)

where m represents the number of steps forward, a, a(i) ∈ A, 1 ≤ i ≤ m. When γ = 0, Q is reduced to one
step forward. When γ is close to 1, the lagging benefits of optimal action increase gradually. r(a) is
the immediate benefit that the agent selects action a, which expresses that individuals have evolved
once, and new individuals use (a(1)) to generate new individuals again. At this time, the benefit is
recorded as Q(a(1)). By analogy, after m evolution, a new individual is generated by using (a(m)),
and the corresponding benefit is recorded as Q(a(m)).

n offspring will be generated after each evolution. These offspring are evolved again by adopting n
strategies. nm offspring will be produced after m evolutions. Boltzmann distribution is used to calculate
the probability of new individuals retained. Boltzmann distribution can be defined by Equation (15):

p(ai) = e
r(ai)

T /
∑n

i
e

r(ai)
T (15)

where r(ai) indicates the immediate benefits of the ith step strategy and T represents the temperature.
The step size control strategy corresponding to the maximum probability is selected. The results

of each generation are simplified by Boltzmann distribution. fp(a) is defined as the fitness function
corresponding to parent individual in the population and fo(a) is the fitness function corresponding to
the individual after adopting the parameter selection strategy. Substituting r(a) = fp(a) − fo(a) into
Equation (13) Equation (16) is obtained.

Q(a) = fp(a) − (1− γ) · fo(a(1)) − γ · (1− γ) · fo(a(2)) − . . .− γm
· fo(a(m)) (16)

where ∀m, limm
→1(1−) = 0 limm

→1 = 1; according to Equation (17), it can be concluded
that lim→1Q(a) = fp(a) − fo(a(m)), a′ = argmaxa ∈ Alim→ 1Q(a) = argmaxa ∈ A(fp(a) − fo(a(m))) .
The step size control strategy model with Q-Learning is described in Algorithm 2 and Figure 1.

Mathematics 2020, 8, 149 8 of 32

Algorithm 2 Step size with Q-Learning.

(1) Each individual is expressed as (x, σ), and the number of learning steps M is set;
(2) Generate three new offspring for each individual by using the given step size control strategy (Linear
decreasing strategy, non-linear decreasing strategy, adaptively step-size dynamic adjustment strategy), and set
t = 1;
(3) Do while t < m
Each individual generates three offspring by using the given step size control strategy, as shown in
Equations (9)–(12).
Calculate the probability of the newly generated offspring by using the Boltzmann distribution, and an
individual is selected according to the probability.
t = t + 1;
(4) Calculate the corresponding Q value of each retained individual according to the three-step selection
strategy. The step size corresponding to the step control strategy is retained when Q is maximized,
the corresponding offspring are selected, and other offspring will be discarded.

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 31

Algorithm 2 Step size with Q-Learning.
(1) Each individual is expressed as (x, σ), and the number of learning steps M is set;
(2) Generate three new offspring for each individual by using the given step size control strategy
(Linear decreasing strategy, non-linear decreasing strategy, adaptively step-size dynamic
adjustment strategy), and set t = 1;
(3) Do while t < m
Each individual generates three offspring by using the given step size control strategy, as shown in
Equations (9)–(12).
Calculate the probability of the newly generated offspring by using the Boltzmann distribution, and
an individual is selected according to the probability.
t = t + 1;
(4) Calculate the corresponding Q value of each retained individual according to the three-step
selection strategy. The step size corresponding to the step control strategy is retained when Q is
maximized, the corresponding offspring are selected, and other offspring will be discarded.

X0

X1

X2

X3

L2

X1,1

X1,2

X1,3

X2,1

X2,2

X2,3

X3,1

X3,2

X3,3

Xm,n

Xm,n

Xm,n

Xm,n

Select the
individual with
the largest Q

value

Boltzmann

Boltzmann

Boltzmann

L1: dynamic linear decreasing strategy
L2: non-linear dynamic decreasing strategy
L3: adaptively step-size dynamic adjustment strategy

Figure 1. Step selection model with Q-Learning.

4.3. Genetic Operation

4.3.1. Crossover Process

As we know, two of the most important operators are the crossover operator and mutation
operator for genetic operation [95], which have a great influence on the behavior and performance of
genetic operation. Therefore, these operations are introduced into the DMQL-CS algorithm. In
crossover process, a parameter Cr is defined as the probability of crossover and chromosomes are
divided into pairs. We introduce the specifically designed crossover operation into the problem of
logistics distribution center location in this paper, and apply it to a pair of chromosomes G1 and G2,
as illustrated in Figure 2. First, some genes are randomly selected in chromosome G1, as those pointed
to by a red arrow in the illustration. Then, these genes are found in chromosome G2, as pointed to by
a green arrow. If the same gene is not found in G2, two genes are randomly selected as the crossover
point. Generate one child as the combination of red-pointed genes in G1 and the rest of blue genes in
G2, and generate another child as the combination of green-pointed genes in G2 and the rest of blue
genes in G1. Finally, the optimal is found as an arc between any two nodes by using enumeration
method, which keep the child to obtain the lowest objective value, and obtain chromosomes R1 and

Figure 1. Step selection model with Q-Learning.

4.3. Genetic Operation

4.3.1. Crossover Process

As we know, two of the most important operators are the crossover operator and mutation operator
for genetic operation [95], which have a great influence on the behavior and performance of genetic
operation. Therefore, these operations are introduced into the DMQL-CS algorithm. In crossover
process, a parameter Cr is defined as the probability of crossover and chromosomes are divided
into pairs. We introduce the specifically designed crossover operation into the problem of logistics
distribution center location in this paper, and apply it to a pair of chromosomes G1 and G2, as illustrated
in Figure 2. First, some genes are randomly selected in chromosome G1, as those pointed to by a red
arrow in the illustration. Then, these genes are found in chromosome G2, as pointed to by a green
arrow. If the same gene is not found in G2, two genes are randomly selected as the crossover point.
Generate one child as the combination of red-pointed genes in G1 and the rest of blue genes in G2,
and generate another child as the combination of green-pointed genes in G2 and the rest of blue genes
in G1. Finally, the optimal is found as an arc between any two nodes by using enumeration method,

Mathematics 2020, 8, 149 9 of 32

which keep the child to obtain the lowest objective value, and obtain chromosomes R1 and R2. Two
chromosomes are selected from the parents and children with the smallest objective values to replace
the parents.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 31

R2. Two chromosomes are selected from the parents and children with the smallest objective values
to replace the parents.

At the same time, the crossover rate (Cr) is a critical factor for how the crossover operator
behaves, which determines the performance of the algorithm to some extent. To improve the search
ability of the algorithm, a substantial number of strategies have been designed to adjust the crossover
rate. In this work, a self-adaptive scheme was used to adjust the crossover rate, which can be
calculated as shown below.

11/ [1 exp()]rC K (17)

where maxavgf f , avgf is the average fitness, maxf is the max fitness, and 1K is the scale

factor between 0 and 1, 1K = 0.02.

32 10 2 14 5 20 7 11 1 6

14 30 11 5 10 17 9 12 7 9

G1

G2

Parents

10 7 11

32 2 14 5 20 1 611 10 7

14 30 5 17 9 12 9R1

R2

Children

Crossover

Figure 2. Crossover process of chromosomes.

4.3.2. Mutation Process

A parameter Cm is defined as the mutation probability. The number r is randomly generated in
the interval [0, 1]. If r < Cm, the ith chromosome G1 is selected to perform the mutation operation and
this process is repeated at each iteration. For illustration, we continue to use the problem of logistics
distribution center location with 40 cities and 10 distribution centers. Two genes located on
chromosome G1 are randomly selected and their positions swapped to obtain a possible child. Then,
the optimal is found as an arc between any two nodes by using enumeration method, which keeps
the child obtaining the lowest objective value. Finally, we get chromosome R1, as shown in Figure 3.
If R1 has a smaller objective value than G1, G1 is replaced with R1, else G1 is retained. A new generation
of population is generated after the evaluation, crossover, and mutation operations.

32 10 2 14 5 20 7 11 1 6G1
Parent

Mutation

32 11 2 14 5 20 7 10 1 6R1
Child

Figure 3. Mutation process of chromosomes.

Figure 2. Crossover process of chromosomes.

At the same time, the crossover rate (Cr) is a critical factor for how the crossover operator behaves,
which determines the performance of the algorithm to some extent. To improve the search ability
of the algorithm, a substantial number of strategies have been designed to adjust the crossover rate.
In this work, a self-adaptive scheme was used to adjust the crossover rate, which can be calculated as
shown below.

Cr = 1/[1 + exp(K1)

1

℧] (17)

where = favg − fmax, favg is the average fitness, fmax is the max fitness, and K1 is the scale factor between
0 and 1, K1 = 0.02.

4.3.2. Mutation Process

A parameter Cm is defined as the mutation probability. The number r is randomly generated in
the interval [0, 1]. If r < Cm, the ith chromosome G1 is selected to perform the mutation operation
and this process is repeated at each iteration. For illustration, we continue to use the problem of
logistics distribution center location with 40 cities and 10 distribution centers. Two genes located on
chromosome G1 are randomly selected and their positions swapped to obtain a possible child. Then,
the optimal is found as an arc between any two nodes by using enumeration method, which keeps the
child obtaining the lowest objective value. Finally, we get chromosome R1, as shown in Figure 3. If R1

has a smaller objective value than G1, G1 is replaced with R1, else G1 is retained. A new generation of
population is generated after the evaluation, crossover, and mutation operations.

Mathematics 2020, 8, 149 10 of 32

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 31

R2. Two chromosomes are selected from the parents and children with the smallest objective values
to replace the parents.

At the same time, the crossover rate (Cr) is a critical factor for how the crossover operator
behaves, which determines the performance of the algorithm to some extent. To improve the search
ability of the algorithm, a substantial number of strategies have been designed to adjust the crossover
rate. In this work, a self-adaptive scheme was used to adjust the crossover rate, which can be
calculated as shown below.

11/ [1 exp()]rC K (17)

where maxavgf f , avgf is the average fitness, maxf is the max fitness, and 1K is the scale

factor between 0 and 1, 1K = 0.02.

32 10 2 14 5 20 7 11 1 6

14 30 11 5 10 17 9 12 7 9

G1

G2

Parents

10 7 11

32 2 14 5 20 1 611 10 7

14 30 5 17 9 12 9R1

R2

Children

Crossover

Figure 2. Crossover process of chromosomes.

4.3.2. Mutation Process

A parameter Cm is defined as the mutation probability. The number r is randomly generated in
the interval [0, 1]. If r < Cm, the ith chromosome G1 is selected to perform the mutation operation and
this process is repeated at each iteration. For illustration, we continue to use the problem of logistics
distribution center location with 40 cities and 10 distribution centers. Two genes located on
chromosome G1 are randomly selected and their positions swapped to obtain a possible child. Then,
the optimal is found as an arc between any two nodes by using enumeration method, which keeps
the child obtaining the lowest objective value. Finally, we get chromosome R1, as shown in Figure 3.
If R1 has a smaller objective value than G1, G1 is replaced with R1, else G1 is retained. A new generation
of population is generated after the evaluation, crossover, and mutation operations.

32 10 2 14 5 20 7 11 1 6G1
Parent

Mutation

32 11 2 14 5 20 7 10 1 6R1
Child

Figure 3. Mutation process of chromosomes. Figure 3. Mutation process of chromosomes.

4.3.3. Cuckoo Search Algorithm with Q-Learning Model and Genetic Operator

Introducing Q-Learning into CS algorithm helps to learn the optimal step size strategy and
transform. Crossover and mutation strategies enable the nest to approach the historical optimal nest
quickly, which can speed up the global convergence rate. The structure of the genetic operator cuckoo
search algorithm with Q-Learning model (DMQL-CS) is described in Algorithm 3.

Algorithm 3 DMQL-CS Algorithm.

Input: Population size, NP; Maximum number of function evaluations, MAX_FES, LP
(1) Randomly initialize position of NP nest, FES = NP;
(2) Calculate the fitness value of each initial solution;
(3) while (stopping criterion is not meet do)
(4) Select the best step size control strategy according to Algorithm 2;
(5) Generate new solution xt+1

i with the new step size by Lévy flights;
(6) Randomly choose a candidate solution xt

i ;
(7) if f (xt

i) > f (xt+1
i)

(8) Replace xt
i with new solution xt+1

i ;
(9) end if
(10) Generate new solution xt+1

i by using crossover operator and mutation operator;
(11) Throw out a fraction (pa) of worst nests, generate solution kt+1

i using Equation (3);
(12) if f (xt

i) > f (xt+1
i)

(13) Replace xt
i with new solution xt+1

i ;
(14) end if
(15) Rank the solution and find the current best.
(16) end while

4.3.4. Analysis of Algorithm Complexity

To show the convergence effect of the algorithm, typical function Rastrigrin was selected to
analyze the convergent process of DMQL-CS algorithm. Figure 4 shows the location distribution of
cuckoo individuals in the search area with a population size of 10. Figure 4a describes the individual
distribution at the first generation, Figure 4b describes the individual distribution at the 30th generation,
Figure 4c describes the individual distribution at the 50th generation, and Figure 4d describes the
individual distribution at the 80th generation. In Figure 4, it can be seen that the activity area of
individuals keeps changing and gradually draws closer to the optimal solution during the evolution of
the algorithm. It is worth noting that algorithm converged at the 80th generation, which indicates that
Q-learning and genetic operation expand activity area of the population and improve the convergence
performance of the DMQL-CS algorithm.

Mathematics 2020, 8, 149 11 of 32

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 31

4.3.3. Cuckoo Search Algorithm with Q-Learning Model and Genetic Operator

Introducing Q-Learning into CS algorithm helps to learn the optimal step size strategy and
transform. Crossover and mutation strategies enable the nest to approach the historical optimal nest
quickly, which can speed up the global convergence rate. The structure of the genetic operator cuckoo
search algorithm with Q-Learning model (DMQL-CS) is described in Algorithm 3.

Algorithm 3 DMQL-CS Algorithm.
Input: Population size, NP; Maximum number of function evaluations, MAX_FES, LP
(1) Randomly initialize position of NP nest, FES = NP;
(2) Calculate the fitness value of each initial solution;
(3) while (stopping criterion is not meet do)
(4) Select the best step size control strategy according to Algorithm 2;
(5) Generate new solution 1t

ix with the new step size by Lévy flights;

(6) Randomly choose a candidate solution t
ix ;

(7) if 1() ()t t
i if x f x

(8) Replace with new solution 1t
ix ;

(9) end if
(10) Generate new solution 1t

ix by using crossover operator and mutation operator;
(11) Throw out a fraction (pa) of worst nests, generate solution 1t

ik using Equation (3);

(12) if 1() ()t t
i if x f x

(13) Replace t
ix with new solution 1t

ix ;

(14) end if
(15) Rank the solution and find the current best.
(16) end while

4.3.4. Analysis of Algorithm Complexity

To show the convergence effect of the algorithm, typical function Rastrigrin was selected to
analyze the convergent process of DMQL-CS algorithm. Figure 4 shows the location distribution of
cuckoo individuals in the search area with a population size of 10. Figure 4a describes the individual
distribution at the first generation, Figure 4b describes the individual distribution at the 30th
generation, Figure 4c describes the individual distribution at the 50th generation, and Figure 4d
describes the individual distribution at the 80th generation. In Figure 4, it can be seen that the activity
area of individuals keeps changing and gradually draws closer to the optimal solution during the
evolution of the algorithm. It is worth noting that algorithm converged at the 80th generation, which
indicates that Q-learning and genetic operation expand activity area of the population and improve
the convergence performance of the DMQL-CS algorithm.

(a) 1st iteration (b) 10th iteration

t
ix

Mathematics 2020, 8, x FOR PEER REVIEW 11 of 31

(c) 30th iteration (d) 80th iteration

Figure 4. Analysis of algorithm complexity.

5. Results

5.1. Optimization of Functions and Parameter Settings

In this section, to check and verify the efficacy DMQL-CS algorithm, it is thoroughly investigated
through benchmark evaluations from various respects. We tested our algorithms on two function
groups: Group A and Group B. Group A contains fourteen different global optimization problems, as
shown in Table 1. Group B is the CEC 2013 test suite including 28 benchmark functions. To make a
fair comparison, all experiments were carried out on a P4 Dual-core platform with a 1.75 GHz
processor and 4 GB memory, running under the Windows 7.0 operating system. The algorithms were
written in MATLAB R2017a. The following were set: maximum number of evaluation MAX_FES =
NP × 105, population size NP = 30, run time T = 30, and probability of foreign eggs pa = 0.25.

Table 1. Brief description of fifteen functions.

Type Function Name Search Range
Acceptable
Accuracy

Global
Optimum

Unimodal

F1 Sphere [−100, 100] 1 × 10−8 0
F2 Rosenbrock [−30, 30] 1 × 10−8 0
F3 Step [−100, 100] 1 × 10−8 0
F4 Schwefel2.22 [−10, 10] 1 × 10−8 0

Multimodal
Shifted

multimodal

F5 Ackley [−32, 32] 1 × 10−8 0
F6 Rastrigin [−5.12, 5.12] 10 0
F7 Griewank [−600, 600] 0.05 0
F8 Generalized Penalized1 [−50, 50] 1 × 10−8 0
F9 Generalized Penalized2 [−50, 50] 1 × 10−8 0
F10 Shifted Schwefels Problem 1.2 [−100, 100] 1 × 10−8 −450

F11 Shifted Rotated High
Conditioned Elliptic Function

[−100, 100] 1 × 10−8 −450

F12 Shifted Rosenbrock [−100, 100] 2 390
F13 Shifted Rotated Ackleys [−32, 32] 2 −140
F14 Shifted Griewanks [−600, 600] 0.2 0
F15 Shifted Rotated Rastrigin [−5.12, 5.12] 10 −330

5.2. Comparison with Other CS Variants and Rank Based Analysis

We compared the performance of DMQL-CS with four improved CS variants: CCS [68], GCS
[96], CSPSO [97], and OLCS [71]. CCS is a modified Chaos enhanced Cuckoo search algorithm. GCS
introduces Gaussian disturbance into the CS algorithm. CSPSO is a kind of algorithm combining CS
with PSO. A new search strategy based on orthogonal learning strategy is used in OLCS to enhance
the exploitation ability of CS algorithm. The parameter configurations of these algorithms are shown
in Table 2 according to corresponding references. Fifteen benchmark functions are shown in Tables
3–6 at D = 30 and D = 50. All optimization algorithms were tested by using the same parameter

Figure 4. Analysis of algorithm complexity.

5. Results

5.1. Optimization of Functions and Parameter Settings

In this section, to check and verify the efficacy DMQL-CS algorithm, it is thoroughly investigated
through benchmark evaluations from various respects. We tested our algorithms on two function
groups: Group A and Group B. Group A contains fourteen different global optimization problems, as
shown in Table 1. Group B is the CEC 2013 test suite including 28 benchmark functions. To make a fair
comparison, all experiments were carried out on a P4 Dual-core platform with a 1.75 GHz processor
and 4 GB memory, running under the Windows 7.0 operating system. The algorithms were written in
MATLAB R2017a. The following were set: maximum number of evaluation MAX_FES = NP × 105,
population size NP = 30, run time T = 30, and probability of foreign eggs pa = 0.25.

Mathematics 2020, 8, 149 12 of 32

Table 1. Brief description of fifteen functions.

Type Function Name Search Range Acceptable
Accuracy

Global
Optimum

Unimodal

F1 Sphere [−100, 100] 1 × 10−8 0

F2 Rosenbrock [−30, 30] 1 × 10−8 0

F3 Step [−100, 100] 1 × 10−8 0

F4 Schwefel2.22 [−10, 10] 1 × 10−8 0

Multimodal Shifted
multimodal

F5 Ackley [−32, 32] 1 × 10−8 0

F6 Rastrigin [−5.12, 5.12] 10 0

F7 Griewank [−600, 600] 0.05 0

F8 Generalized Penalized1 [−50, 50] 1 × 10−8 0

F9 Generalized Penalized2 [−50, 50] 1 × 10−8 0

F10 Shifted Schwefels Problem 1.2 [−100, 100] 1 × 10−8 −450

F11 Shifted Rotated High
Conditioned Elliptic Function [−100, 100] 1 × 10−8 −450

F12 Shifted Rosenbrock [−100, 100] 2 390

F13 Shifted Rotated Ackleys [−32, 32] 2 −140

F14 Shifted Griewanks [−600, 600] 0.2 0

F15 Shifted Rotated Rastrigin [−5.12, 5.12] 10 −330

5.2. Comparison with Other CS Variants and Rank Based Analysis

We compared the performance of DMQL-CS with four improved CS variants: CCS [68],
GCS [96], CSPSO [97], and OLCS [71]. CCS is a modified Chaos enhanced Cuckoo search algorithm.
GCS introduces Gaussian disturbance into the CS algorithm. CSPSO is a kind of algorithm combining
CS with PSO. A new search strategy based on orthogonal learning strategy is used in OLCS to enhance
the exploitation ability of CS algorithm. The parameter configurations of these algorithms are shown
in Table 2 according to corresponding references. Fifteen benchmark functions are shown in Tables 3–6
at D = 30 and D = 50. All optimization algorithms were tested by using the same parameter settings:
population size NP = 30, MAX_FES = 100,000 × D, probability switching parameter pa = 0.25, and run
time T = 30.

As shown in Table 3, the DMQL-CS find global optima 0.00 on the four benchmark functions F1,
F6, F7, and F14 when D = 30. For unimodal functions F1–F5, the DMQL-CS algorithm achieves higher
accuracy than other CS variants on functions F2, F4, and F5. DMQL-CS is only inferior to OLCS on F2.
For multimodal problems F6–F11, DMQL-CS algorithm shows higher performance than the other CS
variants on functions F6, F7, F8, and F11. For F10, the same solution is found by the four algorithms
(CCS, GCS, CSPSO, and OLCS). For the shifted unimodal functions F13–F15, DMQL-CS is significantly
better than CCS, GCS, OLCS, and CSPSO on F13, F14 and F15. For F12, CCS performs the best.

Table 2. The personal parameters of different algorithms.

Algorithms Parameter Configurations

CCS [68] pa = 0.2, a = 0.5, b = 0.2, xi = (0, 1)
GCS [96] a = 1/3, pa = 0.25
CSPSO [97] pa = 0.25, a = 0.1, W = 0.9~0.4, c1 = c2 = 2.0
OLCS [71] pa = 0.2, a = 0.5, K = 9, Q = 3
DMQL-CS pa = 0.25, M = 3, γ = 0.5

Mathematics 2020, 8, 149 13 of 32

Table 3. The optimization results obtained by CCS, GCS, CSPSO, OLCS, and DMQL-CS at D = 30.

Func CCS GCS CSPSO OLCS DMQL-CS

F1 3.21 × 10−12
± 2.09 × 10−12 4.34 × 10−10

± 3.23 × 10−11 4.77 × 10−45
± 3.65 × 10−44 2.89 × 10−106

± 1.43 × 10−105 0.00 ± 0.00
F2 3.96 × 10−5

± 8.01 × 10−5 1.54 × 10−1
± 1.82 × 10−1 1.66 × 10−1

± 2.95 × 100 1.45 × 10−7
± 4.01 × 10−7 0.76 × 10−7 ± 5.12 × 10−7

F3 4.12 × 100
± 3.11 × 100 7.09 × 100

± 2.13 × 100 7.12 × 100
± 3.31 × 100 0.00 ± 0.00 4.88 × 10−2

± 5.19 × 10−1

F4 5.56 × 10−33
± 3.21 × 10−32 4.11 × 10−24

± 5.01 × 10−23 2.76 × 10−76 ± 4.43 × 10−76 4.09 × 10−34
± 3.88 × 10−34 8.88 × 10−35

± 5.78 × 10−34

F5 4.67 × 10−5
± 3.21 × 10−6 4.11 × 10−14

± 5.01 × 10−13 2.76 × 10−2
± 4.43 × 10−2 7.21 × 10−15

± 0.00 1.01 × 10−15 ± 2.87 × 10−14

F6 6.22 × 10−7
± 1.12 × 10−5 3.13 × 10−7

± 2.98 × 10−6 3.87 × 101
± 2.01 × 101 0.00 ± 0.00 0.00 ± 0.00

F7 3.13 × 10−10
± 1.11 × 10−10 2.87 × 10−11

± 2.12 × 10−10 5.77 × 10−6
± 3.03 × 10−6 0.00 ± 0.00 0.00 ± 0.00

F8 4.90 × 10−7
± 2.77 × 10−7 3.96 × 10−7

± 3.31 × 10−5 1.39 × 10−6
± 1.17 × 10−5 1.88 × 10−8 ± 4.09 × 10−8 3.38 × 10−7

± 2.99 × 10−7

F9 2.22 × 10−23
± 1.05 × 10−22 3.04 × 10−22

± 1.99 × 10−22 4.67 × 10−4
± 2.89 × 10−6 4.39 × 10−29 ± 6.50 × 10−26 2.45 × 10−22

± 6.89 × 10−22

F10 6.01 × 10−15
± 3.77 × 10−16 3.66 × 10−15

± 2.19 × 10−16 3.21 × 10−16 ± 5.33 × 10−16 3.21 × 10−15
± 3.17 × 10−11 9.55 × 10−15

± 7.09 × 10−13

F11 2.76 × 109
± 5.77 × 109 2.81 × 109

± 3.06 × 109 2.28 × 109
± 9.02 × 108 5.63 × 106

± 2.22 × 106 5.11 × 106 ± 3.90 × 106

F12 1.23 × 101 ± 2.77 × 100 1.42 × 101
± 2.93 × 100 5.23 × 101

± 2.91 × 10+1 2.65 × 101
± 4.23 × 100 4.21 × 101

± 1.09 × 101

F13 1.90 × 103
± 3.97 × 103 5.88 × 103

± 3.08 × 103 4.34 × 104
± 1.88 × 103 4.70 × 103

± 2.26 × 103 2.06 × 102 ± 3.77 × 101

F14 2.71 × 10−1
± 2.09 × 100 4.01 × 10−1

± 7.00 × 100 1.37 × 10−2
± 8.01 × 10−2 0.00 ± 0.00 0.00 ± 0.00

F15 5.90 × 101
± 3.78 × 100 7.88 × 101

± 2.89 × 100 0.98 × 102
± 3.56 × 101 3.65 × 101

± 4.11 2.87 × 101 ± 4.77 × 101

Table 4. The ranking of different strategies according to the Friedman test.

CCS GCS CSPSO OLCS MP-QL-CS

Friedman rank 3.18 3.82 4.31 2.53 2.44
Final rank 3 4 5 2 1

Mathematics 2020, 8, 149 14 of 32

Table 5. The optimization results obtained by CCS, GCS, CSPSO, OLCS, and DMQL-CS at D = 50.

Func CCS GCS CSPSO OLCS MP-QL-CS

F1 3.76 × 10−6
± 2.21 × 10−6 2.78 × 10−8

± 5.67 × 10−9 3.99 × 10−19
± 6.43 × 10−18 4.45 × 10−29

± 6.33 × 10−28 6.55 × 10−30 ± 2.90 × 10−28

F2 3.88 × 101
± 3.09 × 101 2.89 × 101

± 1.22 × 102 5.98 × 10−1
± 2.99 × 10−1 3.10 × 101

± 2.90 × 101 1.99 × 10−1 ± 4.56 × 10−1

F3 3.78 × 101
± 2.66 × 100 3.67 × 101

± 4.52× 100 5.34 × 100
± 2.11× 100 0.00± 0.00 4.77 × 10−2

± 3.21 × 10−12

F4 4.02 × 10−2
± 1.55 × 10−2 3.78 × 10−2

± 2.90 × 10−2 3.88 × 10−4
± 1.89 × 10−4 4.65 × 10−5

± 4.09 × 10−5- 4.90 × 10−7 ± 2.11 × 10−8

F5 1.89 × 10−2
± 2.87 × 10−2 5.97 × 10−7

± 5.22 × 10−7 4.77 × 10−2
± 4.44 × 10−1 5.09 × 10−12

± 4.89 × 10−14 2.99 × 10−12 ± 3.09 × 10−14

F6 5.34 × 10−1
± 3.87 × 10−1 6.44 × 10−6

± 3.72 × 10−6 9.28 × 103
± 4.73 × 103 0.00 ± 0.00 3.98 × 10−2

± 2.22 × 10−1

F7 3.12 × 10−2
± 4.78 × 10−2 4.33 × 10−2

± 9.21 × 10−2 6.34 × 10−2
± 3.18 × 10−2 0.00 ± 0.00 0.00 ± 0.00

F8 6.67 × 10−5
± 1.90 × 10−5 5.78 × 10−7

± 3.77 × 10−7 8.90 × 10−7
± 2.30 × 10−7 3.77 × 10−8 ± 7.56 × 10−8 1.77 × 10−4

± 2.12 × 10−4

F9 5.78 × 10−3
± 0.55 × 10−3 7.78 × 10−20

± 6.23 × 10−20 3.66 × 10−1
± 3.41 × 10−1 4.67 × 10−25 ± 1.23 × 10−26 3.90 × 10−10

± 3.66 × 10−9

F10 5.78 × 10−10
± 5.55 × 10−10 3.99 × 10−10

± 2.98 × 10−10 7.90 × 10−10
± 8.11 × 10−10 7.34 × 10−10

± 5.45 × 10−9 2.78 × 10−10 ± 1.34 × 10−6

F11 3.66 × 1012
± 3.89 × 1012 2.89 × 1012

± 5.78 × 1012 2.90 × 107 ± 3.11 × 107 5.89 × 108
± 9.90 × 108 4.89 × 1011

± 3.67 × 1010

F12 4.89 × 103
± 3.78 × 103 2.90 × 103

± 2.22 × 103 5.98 × 103
± 2.09 × 103 6.99 × 102 ± 3.90 × 101 2.97 × 103

± 1.86 × 103

F13 4.89 × 105
± 2.17 × 105 5.89 × 104

± 1.12 × 104 5.33 × 105
± 4.56 × 105 5.02 × 104

± 2.09 × 104 1.09 × 103 ± 3.89 × 103

F14 6.98 × 101
± 1.11 × 102 5.56 × 101

± 2.98 × 102 5.89 × 102
± 2.21 × 102 0.00 ± 0.00 2.90 × 101

± 3.76 × 101

F15 6.25 × 102
± 3.33 × 102 4.28 × 102

± 1.77 × 102 3.45 × 103
± 2.76 × 103 8.89 × 102

± 4.11 × 102 2.22 × 102 ± 1.78 × 102

Table 6. The ranking of different strategies according to the Friedman test.

CCS GCS CSPSO OLCS MP-QL-CS

Friedman rank 4.19 3.62 4.15 2.41 2.46
Final rank 5 3 4 1 2

Mathematics 2020, 8, 149 15 of 32

DMQL-CS still has outstanding optimization performance when D = 50, as shown in Table 5. From
the results, it is apparent that the convergence precision of other algorithms drops rapidly, while the
DMQL-CS algorithm achieves better performance than other CS variants on most functions. DMQL-CS
and OLCS achieve the global optimum on function F7. DMQL-CS cannot get the minimum; even
then, it is not inferior to other algorithms on F4, F5, F10, F12, F13, and F15. In addition, the DMQL-CS
demonstrates a remarkable accuracy on benchmark F1 and F2. Comparing with the optimization
results, we can conclude that the DMQL-CS optimization algorithm explored a larger search space
than other CS variants. Moreover, it is important to point out that, regardless of the problem’s
dimensionality, the DMQL-CS converges to the better solution on the shifted multimodal functions F13,
F14 and F15. Therefore, these statistical tests confirmed that DMQL-CS algorithm with Q-Learning
step size and genetic operators has a better overall performance than all other tested competitors.
For a clearer observation that DMQL-CS performs best, Table 4 shows the ranking of the strategies in
Table 3 according to the Friedman test. We can see that DMQL-CS obtains the best rank, OLCS ranks
second, followed by CCS, GCS, and CSPSO. Table 6 shows the ranking of the five strategies according
to the Friedman test. OLCS obtains the best rank, DMQL-CS ranks second, followed by GCS, CSPSO,
and CCS.

To further demonstrate the convergence of DMQL-CS, the median convergence properties of five
algorithms are illustrated in Figure 5. There is no obvious “evolution stagnation” for all algorithms.
For the same population size and number of generations, the optimization performance of the four
algorithms declines rapidly. However, DMQL-CS can get better convergence curve than CCS, GCS,
CSPSO, and OLCS on F1–F2, F5–F6, F12, and F14. In Figure 5, DMQL-CS algorithm converged to
the specified error threshold on function F1, which suggests that DMQL-CS algorithm has a faster
convergence rate for the specified error threshold. Generally speaking, when M is too small, useful
step size information will not be learned. When M is too large, the speed of Q-Learning will be slowed
down. When the value of M is 3 or 5, the convergence performance of DMQL-CS can be improved for
the ill-condition function F2, complex multimodal functions F5–F6, and Shifted multimodal functions
F12 and F14. It is worth mentioning that the accuracy of OLCS is similar to that of DMQL-CS,
but the convergence speed of DMQL-CS is much faster than that of OLCS. For multimodal function,
all algorithms converge to the specified error threshold with the same number of successes. However,
DMQL-CS has good reliability, stability, and faster convergence rate on functions F5–F6. For function
F14, DMQL-CS algorithms can find the global optimum with 50,000 FES. As mentioned above, it can
be clearly observed that DMQL-CS provided better performance than the four other CS versions,
and achieves a promising solution on most test functions.

Mathematics 2020, 8, 149 16 of 32

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 31

Table 6. The ranking of different strategies according to the Friedman test.

 CCS GCS CSPSO OLCS MP-QL-CS
Friedman rank 4.19 3.62 4.15 2.41 2.46

Final rank 5 3 4 1 2

To further demonstrate the convergence of DMQL-CS, the median convergence properties of
five algorithms are illustrated in Figure 5. There is no obvious “evolution stagnation” for all
algorithms. For the same population size and number of generations, the optimization performance
of the four algorithms declines rapidly. However, DMQL-CS can get better convergence curve than
CCS, GCS, CSPSO, and OLCS on F1–F2, F5–F6, F12, and F14. In Figure 5, DMQL-CS algorithm
converged to the specified error threshold on function F1, which suggests that DMQL-CS algorithm
has a faster convergence rate for the specified error threshold. Generally speaking, when M is too
small, useful step size information will not be learned. When M is too large, the speed of Q-Learning
will be slowed down. When the value of M is 3 or 5, the convergence performance of DMQL-CS can
be improved for the ill-condition function F2, complex multimodal functions F5–F6, and Shifted
multimodal functions F12 and F14. It is worth mentioning that the accuracy of OLCS is similar to that
of DMQL-CS, but the convergence speed of DMQL-CS is much faster than that of OLCS. For
multimodal function, all algorithms converge to the specified error threshold with the same number
of successes. However, DMQL-CS has good reliability, stability, and faster convergence rate on
functions F5–F6. For function F14, DMQL-CS algorithms can find the global optimum with 50,000
FES. As mentioned above, it can be clearly observed that DMQL-CS provided better performance
than the four other CS versions, and achieves a promising solution on most test functions.

0 0.5 1 1.5 2 2.5 3
iteration/F1 105

10-200

10-150

10-100

10-50

100

GCS
CCS
CSPSO
OLCS
DMQL-CS

0 0.5 1 1.5 2 2.5 3
iteration/F2 105

10-10

10-5

100

105

1010

GCS
CSPSO
CCS
OLCS
DMQL-CS

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 31

Figure 5. Convergence curves of different algorithms on test functions when D = 30.

A series of comparisons proved the high efficiency of DMQL-CS. The performance ranking of
the multiple algorithms of the test suite is listed in Tables 7–9. The average rankings of the five CS
variants for functions F1–F8 are shown in Table 7 (D = 30 and D = 50). The average rankings of the
five CS variants for functions F9–F15 are shown in Table 8 (D = 30 and D = 50). In competition ranking,
if performances of algorithms are the same, they received the same rank. It can be seen in Tables 7–9
that the average ranking value of DMQL-CS on D = 30 is smaller than that of CCS, GCS, OLCS, and
CSPSO. Therefore, the performance of DMQL-CS is better than the other CS variants. When D = 50,
the results are similar to those when D = 30, with the average ranking value of DMQL-CS being
smaller than those of CCS, GCS, OLCS, and CSPSO.

In Table 9, DMQL-CS has the best total rank when D = 30 and D = 50, i.e., 25 and 29, which means
that DMQL-CS has the best performance on most of the test functions compared with other
algorithms. OLCS has the second-best total rank at D = 30 and D = 50, i.e., 29 and 30. Obviously, OLCS
has better performance than the three other algorithms on high-dimension test functions. Similarly,
in Table 9, the order can be clearly observed: DMQL-CS > OLCS > CCS > GCS > CSPSO at D = 30; and
DMQL-CS > OLCS > GCS > CCS > CSPSO at D = 50. Based on the analysis of the above, DMQL-CS
has the best performance among all the algorithms on both D = 30 and D = 50.

Table 7. Rank results of each algorithm on F1–F8 for D = 30 and D = 50.

Dim Algorithm F1 F2 F3 F4 F5 F6 F7 F8

30

CCS 4 3 3 3 4 4 4 4
GCS 5 4 4 2 3 3 3 3

CSPSO 3 5 5 4 5 5 5 5
OLCS 2 1 1 5 2 1 1 2

DMQL-CS 1 2 2 1 1 1 1 1

50

CCS 5 5 5 5 4 4 3 3
GCS 4 3 4 4 3 2 4 2

CSPSO 3 2 3 3 5 5 5 4
OLCS 2 4 1 2 2 1 1 1

DMQL-CS 1 1 2 1 1 3 1 5

0 0.5 1 1.5 2 2.5 3
iteration/F12 105

101

102

103

104

105

CCS
GCS
CSPSO
OLCS
DMQL-CS

Figure 5. Convergence curves of different algorithms on test functions when D = 30.

A series of comparisons proved the high efficiency of DMQL-CS. The performance ranking of
the multiple algorithms of the test suite is listed in Tables 7–9. The average rankings of the five CS
variants for functions F1–F8 are shown in Table 7 (D = 30 and D = 50). The average rankings of
the five CS variants for functions F9–F15 are shown in Table 8 (D = 30 and D = 50). In competition
ranking, if performances of algorithms are the same, they received the same rank. It can be seen in
Tables 7–9 that the average ranking value of DMQL-CS on D = 30 is smaller than that of CCS, GCS,
OLCS, and CSPSO. Therefore, the performance of DMQL-CS is better than the other CS variants. When
D = 50, the results are similar to those when D = 30, with the average ranking value of DMQL-CS being
smaller than those of CCS, GCS, OLCS, and CSPSO.

Mathematics 2020, 8, 149 17 of 32

Table 7. Rank results of each algorithm on F1–F8 for D = 30 and D = 50.

Dim Algorithm F1 F2 F3 F4 F5 F6 F7 F8

30

CCS 4 3 3 3 4 4 4 4

GCS 5 4 4 2 3 3 3 3

CSPSO 3 5 5 4 5 5 5 5

OLCS 2 1 1 5 2 1 1 2

DMQL-CS 1 2 2 1 1 1 1 1

50

CCS 5 5 5 5 4 4 3 3

GCS 4 3 4 4 3 2 4 2

CSPSO 3 2 3 3 5 5 5 4

OLCS 2 4 1 2 2 1 1 1

DMQL-CS 1 1 2 1 1 3 1 5

Table 8. Rank results of each algorithm on F9-F15 for D = 30 and D = 50.

Dim Algorithm F9 F10 F11 F12 F13 F14 F15

30

CCS 3 4 4 1 2 4 4
GCS 4 3 5 2 4 3 3

CSPSO 5 1 3 5 5 2 5
OLCS 1 2 2 3 3 1 2

DMQL-CS 2 5 1 4 1 1 1

50

CCS 4 3 5 4 4 3 2
GCS 2 2 4 2 3 4 4

CSPSO 5 5 1 5 5 5 3
OLCS 1 4 2 1 2 1 5

DMQL-CS 3 1 3 3 1 2 1

Table 9. Total rank and final rank on F1–F15 for D = 30 and D = 50.

Dim Rank
Algorithms

CCS GCS CSPSO OLCS DMQL-CS

30
Total rank 49 53 63 29 25
Final rank 3 4 5 2 1

50
Total rank 60 47 55 30 29
Final rank 5 3 4 2 1

In Table 9, DMQL-CS has the best total rank when D = 30 and D = 50, i.e., 25 and 29, which means
that DMQL-CS has the best performance on most of the test functions compared with other algorithms.
OLCS has the second-best total rank at D = 30 and D = 50, i.e., 29 and 30. Obviously, OLCS has better
performance than the three other algorithms on high-dimension test functions. Similarly, in Table 9,
the order can be clearly observed: DMQL-CS > OLCS > CCS > GCS > CSPSO at D = 30; and DMQL-CS
> OLCS > GCS > CCS > CSPSO at D = 50. Based on the analysis of the above, DMQL-CS has the best
performance among all the algorithms on both D = 30 and D = 50.

5.3. Statistical Analysis of Performance for the CEC 2013 Test Suite

In this section, the CEC 2013 test suite is selected to test the effectiveness of three different
algorithms (jDE [98], SaDE [99], and CLPSO [100]). These algorithms can be seen as representatives of
the state-of-the-art algorithms for comparison, and the parameter configurations of these algorithms
were set according to the corresponding references, as listed in Table 10.

Mathematics 2020, 8, 149 18 of 32

Table 10. The personal parameters of different algorithms.

Algorithms Parameter Configurations

jDE [98] F = 0.5, CR = 0.9
SaDE [99] F~N(0.5, 0.3), CR0 = 0.5, CR~N(CRm, 0.1), LP = 50
CLPSO [100] W = 0.7298, c = 1.49618, m = 7, pc = 0.05~0.5
DMQL-CS pa = 0.25, PL = 20, η = 0.015

Table 11 summarizes the results of CEC 2013 test problems on 28 benchmark functions for
30-dimensional case. The rank was used to obtain the ranking of different algorithms on all problems,
as shown in Table 12. This means that DMQL-CS gets the first rank and outperforms jDE, SaDE,
and CLPSO. The results in Table 11 indicate that with 80% certainty DMQL-CS has statistically higher
accuracy than the other algorithms. Note that DMQL-CS obtains the global optimal value 0.00 on F1
and F11. DMQL-CS is significantly better than the three other algorithms, especially on functions CEC
2013-F1, CEC 2013-F2, and CEC 2013-F4. About basic Multimodal Function and composition Functions
(CEC 2013-F6–CEC 2013-F28), the ability of DMQL-CS to find the optimal solution is slightly better
than that of CLPSO. For functions CEC 2013-F5, CEC 2013-F7, CEC 2013-F17, CEC 2013-F22, and CEC
2013-F25, the performance of DMQL-CS is slightly worse than the other algorithms. For the Unimodal
problem CEC 2013-F3, jDE obtains the best solution 2.99 × 106. On Shift Rastrigin Function, SaDE
and jDE can get better solutions of 1.10 × 101 and 1.06 × 10−4, respectively. For CEC 2013-F25–CEC
2013-F26, DMQL-CS is obviously better than SaDE and jDE. CLPSO has the weakest ability to find
the optimal solution for 28 functions. From the above results, it can be seen that DMQL-CS with
Q-Learning and genetic operations has a better overall performance than all other tested competitors
on the CEC 2013 test suite. Table 13 reports the rankings of the results between DMQL-CS and other
algorithms. In Table 13, it can be seen that DMQL-CS performs the best among the four algorithms.
DMQL-CS exhibits consistent ranks of the first in optimizing most of the functions. For a clearer
observation that DMQL-CS performs best, Table 12 shows the ranking of the algorithms in according to
the Friedman test. DMQL-CS obtains the best rank, jDE ranks second, followed by SaDE and CLPSO.

Mathematics 2020, 8, 149 19 of 32

Table 11. The mean and standard deviation (STD) of CEC 2013 test suite with four algorithms.

Function Mean Std
Algorithms

SaDE jDE CLPSO DMQL-CS

CEC 2013-F1 Mean/Std 0.00/0.00 0.00/0.00 2.16 × 10−13/0.00 0.00/0.00
CEC 2013-F2 Mean/Std 4.21 × 105/1.21 × 105 1.27 × 105/6.86 × 105 2.99 × 107/2.10 × 106 1.12 × 105/4.88 × 105

CEC 2013-F3 Mean/Std 2.98 × 107/2.99 × 107 2.99 × 106/3.01 × 106 3.16 × 108/2.92 × 108 3.78 × 107/5.87 × 106

CEC 2013-F4 Mean/Std 3.22 × 103/2.98 × 103 0.97 × 101/1.88 × 101 4.87 × 104/1.09 × 103 8.09 × 100/7.90 × 100

CEC 2013-F5 Mean/Std 0.00/0.00 1.19 × 10−13/3.55 × 10−14 3.54 × 10−11/2.01 × 10-12 4.56 × 10−14/1.90 × 10-12

CEC 2013-F6 Mean/Std 2.78 × 101/5.66 × 101 1.23 × 101/9.78 × 100 3.56 × 101/1.00 × 101 5.62 × 10−2/9.89 × 100

CEC 2013-F7 Mean/Std 2.22 × 101/1.38 × 100 2.12 × 101/1.38 × 100 6.97 × 101/3.20 × 101 8.90 × 101/5.12 × 100

CEC 2013-F8 Mean/Std 2.11 × 101/6.45 × 101 2.01 × 100/6.11 × 100 2.09 × 101/3.73 × 10-2 2.07 × 101/1.78 × 10−2

CEC 2013-F9 Mean/Std 1.78 × 101/2.33 × 100 2.59 × 101/4.45 × 100 3.19 × 101/3.62 × 100 1.01 × 101/7.90 × 100

CEC 2013-F10 Mean/Std 2.73 × 10−1/2.33 × 10−1 4.37 × 10−2/4.73 × 10−2 3.99 × 101/2.01 × 100 2.77 × 10−3/6.89 × 10−2

CEC 2013-F11 Mean/Std 3.87 × 10−2/3.64 × 10−1 0.00/0.00 6.14 × 101/3.01× 101 0.00/0.00
CEC 2013-F12 Mean/Std 4.19 × 101/2.65× 101 5.56 × 101/1.49× 101 1.23 × 102/2.11× 101 9.01 × 100/4.67 × 101

CEC 2013-F13 Mean/Std 1.10 × 101/3.21 × 102 1.29 × 101/5.22× 101 1.78 × 102/3.91× 101 1.11 × 102/3.99 × 102

CEC 2013-F14 Mean/Std 7.34 × 100/2.22 × 100 1.06 × 10−4/4.24 × 10−3 5.77 × 102/4.79× 102 1.89 × 102/0.00
CEC 2013-F15 Mean/Std 4.90 × 103/5.67 × 102 5.03 × 103/6.02 × 102 6.01 × 103/4.25× 102 4.98 × 103/2.67 × 103

CEC 2013-F16 Mean/Std 2.24 × 100/5.12 × 10−1 3.05 × 100/2.26 × 10−1 3.22 × 100/2.21 × 10-1 1.18 × 100/2.05 × 10−1

CEC 2013-F17 Mean/Std 6.12 × 101/1.16 × 10−2 6.13 × 101/3.65 × 100 7.23 × 101/5.51 × 100 5.89 × 102/4.24 × 101

CEC 2013-F18 Mean/Std 1.02 × 102/2.57× 101 1.61 × 102/3.21 × 101 2.25 × 101/1.11× 101 1.78 × 101/1.12 × 101

CEC 2013-F19 Mean/Std 4.91 × 100/6.18 × 10−1 1.05 × 100/3.81 × 10−1 3.18 × 100/1.03 × 10−1 3.27 × 100/3.99 × 10−1

CEC 2013-F20 Mean/Std 1.10 × 101/5.23 × 100 1.15 × 101/4.09 × 100 1.41 × 101/2.55 × 100 1.02 × 101/5.12 × 100

CEC 2013-F21 Mean/Std 2.80 × 102/3.55 × 101 2.65 × 102/1.29 × 101 3.12 × 102/4.11 × 101 2.01 × 102/4.88 × 102

CEC 2013-F22 Mean/Std 1.25 × 103/2.23 × 102 1.17 × 103/2.23 × 102 7.35 × 102/1.01 × 102 8.23 × 102/6.98 × 102

CEC 2013-F23 Mean/Std 4.83 × 103/0.21 × 103 4.90 × 103/2.21 × 102 6.23 × 103/3.83 × 102 2.00 × 103/3.23 × 102

CEC 2013-F24 Mean/Std 2.35 × 102/2.56 × 100 2.21 × 102/5.56 × 101 2.89 × 102/7.38 × 100 2.67 × 102/3.21 × 100

CEC 2013-F25 Mean/Std 2.45 × 102/1.28 × 101 2.66 × 102/1.01 × 100 2.80 × 102/6.33 × 100 2.02 × 102/3.98 × 100

CEC 2013-F26 Mean/Std 2.23 × 102/2.09 × 103 2.17 × 102/2.51 × 101 1.97 × 102/1.66 × 10−1 1.04 × 102/1.09 × 102

CEC 2013-F27 Mean/Std 5.48 × 102/4.23 × 101 6.34 × 102/3.32 × 102 8.13 × 102/2.65 × 102 6.89 × 102/3.89 × 102

CEC 2013-F28 Mean/Std 3.05 × 102/0.00 3.05 × 102/0.00 3.03 × 102/2.98 × 10-3 3.02 × 102/3.20 × 102

Mathematics 2020, 8, 149 20 of 32

Table 12. The ranking of different strategies according to the Friedman test.

SaDE jDE CLPSO DMQL-CS

Friedman rank 3.34 2.95 4.26 2.59
Final rank 3 2 4 1

Table 13. Comparisons between DMQL-CS and other algorithms for CEC 2013 test suite.

Function
SaDE jDE CLPSO DMQL-CS

Rank Rank Rank Rank

CEC 2013-F1 1 (≈/=) 1 (≈/=) 4 (-) 1
CEC 2013-F2 4 (-) 2 (-) 3 (-) 1
CEC 2013-F3 2 (-) 1 (+) 4 (-) 3
CEC 2013-F4 3 (-) 2 (-) 4 (-) 1
CEC 2013-F5 1 (+) 3 (+) 2 (+) 4
CEC 2013-F6 3 (-) 2 (-) 4 (-) 1
CEC 2013-F7 2 (+) 1 (+) 3 (+) 4
CEC 2013-F8 4 (-) 1 (+) 3 (-) 2
CEC 2013-F9 2 (-) 3 (-) 4 (-) 1

CEC 2013-F10 2 (-) 3 (-) 4 (-) 1
CEC 2013-F11 3 (-) 1 (≈/=) 4 (-) 1
CEC 2013-F12 2 (-) 3 (-) 4 (-) 1
CEC 2013-F13 1 (+) 3 (+) 4 (+) 2
CEC 2013-F14 2 (+) 1 (+) 4 (-) 3
CEC 2013-F15 1 (+) 3 (-) 4 (-) 2
CEC 2013-F16 2 (-) 3 (-) 4 (-) 1
CEC 2013-F17 1 (+) 2 (+) 3 (+) 4
CEC 2013-F18 2 (-) 3 (-) 4 (-) 1
CEC 2013-F19 4 (-) 1 (+) 2 (+) 3
CEC 2013-F20 2 (-) 3 (-) 4 (-) 1
CEC 2013-F21 3 (-) 2 (-) 4 (-) 1
CEC 2013-F22 3 (+) 2 (+) 1 (+) 4
CEC 2013-F23 2 (-) 3 (-) 4 (-) 1
CEC 2013-F24 2 (+) 1 (+) 4 (-) 3
CEC 2013-F25 1(+) 2 (+) 3 (+) 4
CEC 2013-F26 4 (-) 3 (-) 2 (-) 1
CEC 2013-F27 1 (+) 2 (+) 4 (-) 3
CEC 2013-F28 3 (-) 3 (-) 2 (-) 1

Rank_Sun 63 60 96 56
Rank_Final 3 2 4 1

5.4. Application in the Problem of Logistics Distribution Center Location

5.4.1. Problem Description

The location of logistics distribution center is an important link in the logistics system. The location
of distribution center determines the efficiency of the entire logistics network system and the utilization
of resources. The location selection model of logistics distribution center is a nonlinear model with
more complex constraints and non-smooth characteristics, which can be attributed to HP-hard problem.
The problem of logistics distribution center location can be described as: m cargo distribution centers
are searched in n demand points, so that the distance between m searched distribution centers and
other n cargo demand points is the shortest. At the same time, the following constraint conditions
must be met: the supply of goods in the distribution center can meet the requirements of the cargo
demand points; the goods required for a cargo demand point can only be provided by one distribution
center; and the cost of transporting the goods to the distribution center is not considered. According

Mathematics 2020, 8, 149 21 of 32

to the above assumptions, the mathematical model of the problem for logistics distribution center
location can be described as:

min(cos t) =
m∑

i=1

n∑
j=1

(need j · disti, j · µi. j) (18)

s.t.
m∑

i=1

µi, j = 1, i ∈M, j ∈ N (19)

µi, j ≤ h j, i ∈M, j ∈ N (20)

m∑
t=1

hi ≤ p, i ∈M (21)

h j ∈ {0, 1}, i ∈M (22)

µi, j ∈ {0, 1}, i ∈M, j ∈ N (23)

M =
{
j
∣∣∣ j = 1, 2, . . . , m

}
N =

{
j
∣∣∣ j = 1, 2, . . . , n

}
(24)

where Equation (18) is the objective function, cost represents the transportation cost, m is the number
of logistics distribution center, n determines the number of goods demand point, nestj is the demand
quantity of demand point j, and disti,j indicates the distance between distribution center i and goods
demand point j. When ui,j is equal to 1, the goods of demand point j are distributed by distribution
point i. Equations (19)–(24) are the constraints. Equation (19) defines that a demand point of goods can
only be distributed by a distribution center. Equation (20) indicates that each demand point of goods
must have a distribution center to distribute goods. Equation (21) represents the number of goods
demand points for a distribution center. Equations (22)–(24) are the relevant definitions.

5.4.2. Analysis of Experimental Results

To verify the performance of the DMQL-CS algorithm in solving the problem of logistics
distribution center location, 40 demand points were adopted. The geographical position coordinates
and demands are shown in Table 14. To make a fair comparison, all experiments were carried out on
a P4 Dual-core platform with a 1.75 GHz processor and 4 GB memory, running under the Windows
7.0 operating system. The algorithms were written by MATLAB R2017a. The maximum number
of iterations, population size, and the times of running were set to 30,000, 15, and 30, respectively.
The probability of foreign eggs being found was = 0.25.

Table 14. The geographical position coordinates and demands.

No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand
x y x y x y x y

1 97 28 94 11 91 96 85 21 111 117 92 31 125 66 45
2 100 56 11 12 39 90 54 22 63 42 99 32 169 49 98
3 45 67 50 13 50 101 25 23 67 105 98 33 31 188 31
4 150 197 88 14 67 66 87 24 160 156 88 34 86 42 91
5 105 48 80 15 157 54 66 25 100 125 47 35 90 21 79
6 24 158 29 16 104 35 82 26 35 48 47 36 46 53 47
7 88 61 93 17 169 95 48 27 143 172 34 37 62 30 84
8 55 105 10 18 48 39 78 28 94 56 33 38 163 176 52
9 120 120 18 19 115 61 16 29 57 73 43 39 190 141 10
10 43 105 38 20 154 174 49 30 25 127 100 40 170 30 77

To further verify the efficiency of the DMQL-CS algorithm, the effectiveness of the proposed
method was verified by comparing the standard cuckoo search algorithm (CS) [69], the improved
cuckoo search algorithm (ICS) [101], a modified chaos-enhanced cuckoo search algorithm (CCS) [68],
and the immune genetic algorithm (IGA) [64]. Figure 5 shows the average convergence curve and

Mathematics 2020, 8, 149 22 of 32

optimal convergence curve of DMQL-CS algorithm for running 20, 30, and 50 times, respectively, in 40
cities and six distribution centers. The six optimal distribution center points and optimal routes found
by DMQL-CS algorithm are also shown in Figure 6. Figure 7 shows the average convergence curve and
optimal convergence curve of DMQL-CS algorithm running 20, 30, and 50 times, respectively, in 40
cities and 10 distribution centers. Table 15 shows distribution ranges for six distribution centers in 40
cities, and Table 16 shows distribution ranges for 10 distribution centers in 40 cities.

Mathematics 2020, 8, x FOR PEER REVIEW 21 of 31

Table 14. The geographical position coordinates and demands.

No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand No
Coordinates

Demand
x y x y x y x y

1 97 28 94 11 91 96 85 21 111 117 92 31 125 66 45
2 100 56 11 12 39 90 54 22 63 42 99 32 169 49 98
3 45 67 50 13 50 101 25 23 67 105 98 33 31 188 31
4 150 197 88 14 67 66 87 24 160 156 88 34 86 42 91
5 105 48 80 15 157 54 66 25 100 125 47 35 90 21 79
6 24 158 29 16 104 35 82 26 35 48 47 36 46 53 47
7 88 61 93 17 169 95 48 27 143 172 34 37 62 30 84
8 55 105 10 18 48 39 78 28 94 56 33 38 163 176 52
9 120 120 18 19 115 61 16 29 57 73 43 39 190 141 10

10 43 105 38 20 154 174 49 30 25 127 100 40 170 30 77

To further verify the efficiency of the DMQL-CS algorithm, the effectiveness of the proposed
method was verified by comparing the standard cuckoo search algorithm (CS) [69], the improved
cuckoo search algorithm (ICS) [101], a modified chaos-enhanced cuckoo search algorithm (CCS) [68],
and the immune genetic algorithm (IGA) [64]. Figure 5 shows the average convergence curve and
optimal convergence curve of DMQL-CS algorithm for running 20, 30, and 50 times, respectively, in
40 cities and six distribution centers. The six optimal distribution center points and optimal routes
found by DMQL-CS algorithm are also shown in Figure 6. Figure 7 shows the average convergence
curve and optimal convergence curve of DMQL-CS algorithm running 20, 30, and 50 times,
respectively, in 40 cities and 10 distribution centers. Table 15 shows distribution ranges for six
distribution centers in 40 cities, and Table 16 shows distribution ranges for 10 distribution centers in
40 cities.

Figure 6. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm
in 6 distribution centers.

Table 15. The distribution scheme for six distribution centers in 40 cities.

Distribution Center Distribution Scope
10 33, 6, 30, 12, 13, 8, 23
21 11, 25, 9
20 4, 27, 38, 24, 39
22 14, 29, 3, 36, 26, 18, 37, 7
1 28, 25, 16, 19, 34, 35

15 31, 17, 32, 40

For the first set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times
independently in 40 cities for six distribution centers. As shown in Figure 6, the average convergence

Figure 6. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm in
6 distribution centers.

Mathematics 2020, 8, x FOR PEER REVIEW 22 of 31

curve can converge at 30 iterations. It indicates that the fitness value decreases rapidly for the logistics
distribution center location method based on DMQL-CS algorithm at early stage of the algorithm.
The optimal distribution cost and average distribution cost obtained by the DMQL-CS algorithm are
4.5013 × 104 and 4.8060 × 104, respectively, which indicates that DMQL-CS has high solution accuracy
for six distribution centers and reduces the cost of logistics distribution. The optimal distribution
center points found in Figure 3 are: 10, 21, 20, 22, 1, and 15.

Figure 7. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm
in 10 distribution centers.

Table 16. The distribution scheme for 10 distribution centers in 40 cities.

Distribution Center Distribution Scope
30 6, 33
23 8,12, 13, 10
14 3, 29
18 26, 36, 22, 37
11 -
28 7, 34, 2, 19, 31, 5
21 25, 9
1 16, 35

20 4, 27, 38, 24, 39
15 17, 32, 40

For the second set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times
independently for 40 cities and 10 distribution centers. As shown in Figure 7, the average convergence
curve can converge at 20 iterations. The optimal distribution cost and average distribution cost
obtained by the DMQL-CS algorithm are 2.9811 × 104 and 3.0157 × 104, respectively, which indicates
that DMQL-CS has high solution accuracy not only for six distribution centers but also for 10
distribution centers. The 10 optimal distribution centers and distribution addressing schemes are
shown in Table 16 and Figure 7. The optimal distribution center points are: 30, 23, 14, 18, 11, 28, 21, 1,
20, and 15.

Due to limited space, only three comparison algorithms (CS [69], CCS [68], and IGA [64]) are
listed in this paper. IGA algorithm introduced crossover and variation strategy into immune
algorithm, which improves performance of the immune algorithm. In this experiment, the
convergence curves and optimal distribution scheme diagrams of 6 and 10 distribution centers in 40
cities are shown, respectively. Figures 8 and 9 show the convergence curves and optimal distribution
centers scheme for the IGA algorithm for 6 and 10 distribution centers. Figures 10 and 11 show the
convergence curves and optimal distribution centers scheme for the CS algorithm for 6 and 10

20 40 60 80 100 120 140 160 180 200
20

40

60

80

100

120

140

160

180

200

1

2
3

4

5

6

7

8

9

10
11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Figure 7. Convergence curves and optimal distribution centers scheme for the DMQL-CS algorithm in
10 distribution centers.

Table 15. The distribution scheme for six distribution centers in 40 cities.

Distribution Center Distribution Scope

10 33, 6, 30, 12, 13, 8, 23
21 11, 25, 9
20 4, 27, 38, 24, 39
22 14, 29, 3, 36, 26, 18, 37, 7
1 28, 25, 16, 19, 34, 35

15 31, 17, 32, 40

Mathematics 2020, 8, 149 23 of 32

Table 16. The distribution scheme for 10 distribution centers in 40 cities.

Distribution Center Distribution Scope

30 6, 33
23 8,12, 13, 10
14 3, 29
18 26, 36, 22, 37
11 -
28 7, 34, 2, 19, 31, 5
21 25, 9
1 16, 35

20 4, 27, 38, 24, 39
15 17, 32, 40

For the first set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times independently
in 40 cities for six distribution centers. As shown in Figure 6, the average convergence curve can
converge at 30 iterations. It indicates that the fitness value decreases rapidly for the logistics distribution
center location method based on DMQL-CS algorithm at early stage of the algorithm. The optimal
distribution cost and average distribution cost obtained by the DMQL-CS algorithm are 4.5013 × 104

and 4.8060 × 104, respectively, which indicates that DMQL-CS has high solution accuracy for six
distribution centers and reduces the cost of logistics distribution. The optimal distribution center
points found in Figure 3 are: 10, 21, 20, 22, 1, and 15.

For the second set of experiments, the DMQL-CS algorithm was run 20, 30, and 50 times
independently for 40 cities and 10 distribution centers. As shown in Figure 7, the average convergence
curve can converge at 20 iterations. The optimal distribution cost and average distribution cost obtained
by the DMQL-CS algorithm are 2.9811 × 104 and 3.0157 × 104, respectively, which indicates that
DMQL-CS has high solution accuracy not only for six distribution centers but also for 10 distribution
centers. The 10 optimal distribution centers and distribution addressing schemes are shown in Table 16
and Figure 7. The optimal distribution center points are: 30, 23, 14, 18, 11, 28, 21, 1, 20, and 15.

Due to limited space, only three comparison algorithms (CS [69], CCS [68], and IGA [64]) are
listed in this paper. IGA algorithm introduced crossover and variation strategy into immune algorithm,
which improves performance of the immune algorithm. In this experiment, the convergence curves
and optimal distribution scheme diagrams of 6 and 10 distribution centers in 40 cities are shown,
respectively. Figures 8 and 9 show the convergence curves and optimal distribution centers scheme
for the IGA algorithm for 6 and 10 distribution centers. Figures 10 and 11 show the convergence
curves and optimal distribution centers scheme for the CS algorithm for 6 and 10 distribution centers.
Figures 12 and 13 show the convergence curves and optimal distribution centers scheme for CCS
algorithm for 6 and 10 distribution centers. The six optimal distribution centers and distribution
addressing schemes for these algorithms are shown in Table 17, while the 10 optimal distribution
centers and distribution addressing schemes are shown in Table 18.

Mathematics 2020, 8, 149 24 of 32

Mathematics 2020, 8, x FOR PEER REVIEW 23 of 31

distribution centers. Figures 12 and 13 show the convergence curves and optimal distribution centers
scheme for CCS algorithm for 6 and 10 distribution centers. The six optimal distribution centers and
distribution addressing schemes for these algorithms are shown in Table 17, while the 10 optimal
distribution centers and distribution addressing schemes are shown in Table 18.

Figure 8. Convergence curves and optimal distribution centers scheme for the IGA algorithm for six
distribution centers.

Figure 9. Convergence curves and optimal distribution centers scheme for the IGA algorithm for 10
distribution centers.

Figure 10. Convergence curves and optimal distribution centers scheme for the CS algorithm for six
distribution centers.

Figure 8. Convergence curves and optimal distribution centers scheme for the IGA algorithm for six
distribution centers.

Mathematics 2020, 8, x FOR PEER REVIEW 23 of 31

distribution centers. Figures 12 and 13 show the convergence curves and optimal distribution centers
scheme for CCS algorithm for 6 and 10 distribution centers. The six optimal distribution centers and
distribution addressing schemes for these algorithms are shown in Table 17, while the 10 optimal
distribution centers and distribution addressing schemes are shown in Table 18.

Figure 8. Convergence curves and optimal distribution centers scheme for the IGA algorithm for six
distribution centers.

Figure 9. Convergence curves and optimal distribution centers scheme for the IGA algorithm for 10
distribution centers.

Figure 10. Convergence curves and optimal distribution centers scheme for the CS algorithm for six
distribution centers.

Figure 9. Convergence curves and optimal distribution centers scheme for the IGA algorithm for 10
distribution centers.

Mathematics 2020, 8, x FOR PEER REVIEW 23 of 31

distribution centers. Figures 12 and 13 show the convergence curves and optimal distribution centers
scheme for CCS algorithm for 6 and 10 distribution centers. The six optimal distribution centers and
distribution addressing schemes for these algorithms are shown in Table 17, while the 10 optimal
distribution centers and distribution addressing schemes are shown in Table 18.

Figure 8. Convergence curves and optimal distribution centers scheme for the IGA algorithm for six
distribution centers.

Figure 9. Convergence curves and optimal distribution centers scheme for the IGA algorithm for 10
distribution centers.

Figure 10. Convergence curves and optimal distribution centers scheme for the CS algorithm for six
distribution centers.

Figure 10. Convergence curves and optimal distribution centers scheme for the CS algorithm for six
distribution centers.

Mathematics 2020, 8, 149 25 of 32
Mathematics 2020, 8, x FOR PEER REVIEW 24 of 31

Figure 11. Convergence curves and optimal distribution centers scheme for the CS algorithm for 10
distribution centers.

Figure 12. Convergence curves and optimal distribution centers scheme for the CCS algorithm for six
distribution centers.

Figure 13. Convergence curves and optimal distribution centers scheme for the CCS algorithm for 10
distribution centers.

Figure 11. Convergence curves and optimal distribution centers scheme for the CS algorithm for 10
distribution centers.

Mathematics 2020, 8, x FOR PEER REVIEW 24 of 31

Figure 11. Convergence curves and optimal distribution centers scheme for the CS algorithm for 10
distribution centers.

Figure 12. Convergence curves and optimal distribution centers scheme for the CCS algorithm for six
distribution centers.

Figure 13. Convergence curves and optimal distribution centers scheme for the CCS algorithm for 10
distribution centers.

Figure 12. Convergence curves and optimal distribution centers scheme for the CCS algorithm for six
distribution centers.

Mathematics 2020, 8, x FOR PEER REVIEW 24 of 31

Figure 11. Convergence curves and optimal distribution centers scheme for the CS algorithm for 10
distribution centers.

Figure 12. Convergence curves and optimal distribution centers scheme for the CCS algorithm for six
distribution centers.

Figure 13. Convergence curves and optimal distribution centers scheme for the CCS algorithm for 10
distribution centers.

Figure 13. Convergence curves and optimal distribution centers scheme for the CCS algorithm for 10
distribution centers.

Mathematics 2020, 8, 149 26 of 32

Table 17. Comparisons between DMQL-CS and other algorithms for six distribution centers.

CS IGA CCS

D-C Distribution Scope D-C Distribution Scope D-C Distribution Scope

3 30, 12, 10, 13, 29, 14, 36, 26 10 33, 6, 30, 12, 8, 23, 13 23 33, 6, 30, 10, 12, 13, 8, 11
11 8, 23, 6, 33, 25, 21, 9 22 26, 36, 3, 18, 29, 14, 37, 35 21 9, 25
22 18, 37, 7 21 25, 11, 9 22 26, 36, 3, 29, 14, 18, 37
1 34, 35, 28, 2, 5, 16, 19 2 7, 34, 28, 19, 31, 1, 16, 5, 19 16 1, 35, 34, 7, 28, 2, 5, 19
15 31, 32, 17, 40 20 4, 27, 24, 38, 39 15 31, 17, 32, 40
20 27, 4, 38, 24, 39 17 15, 32, 40 20 4, 27, 24, 38, 39

Table 18. Comparisons between DMQL-CS and other algorithms for 10 distribution centers.

CS IGA CCS

D-C Distribution Scope D-C Distribution Scope D-C Distribution Scope

6 30, 33 30 6, 33 6 33
8 10, 12, 13, 23, 19 23 12, 10, 13, 8 10 30, 12, 13, 8
18 3, 26, 36, 22, 37 14 29, 3, 26, 36, 18, 22 23 11
11 - 1 34, 37, 35, 16 14 3, 29
21 25, 9 2 7, 28,5,19,31 22 36, 26, 18, 37
28 14, 7, 34, 2, 19, 31 11 - 25 21, 9
16 5 25 21, 9 7 34, 28, 2,19
1 35 24 17, 20, 38, 39 16 1, 35, 5
20 4, 27, 38, 24, 39 15 17, 32, 40 15 31, 17, 32, 40
15 17, 32, 40 4 - 20 4, 27, 38, 24, 39

For the third set of experiments, the CS algorithm was run 20, 30 and 50 times independently for
the 40 city and six distribution center example. As shown in Figure 10, both the average convergence
curve and the optimal convergence curve can converge at 80 iterations. The optimal distribution
cost and average distribution cost obtained by the CS algorithm are 4.9629 × 104 and 6.1392 × 104,
respectively. As shown in Figure 11, average convergence curve can converge at 100 iterations for 10
distribution centers. The optimal distribution cost and average distribution cost obtained by the CS
algorithm are 3.2435 × 104 and 3.9502 × 104, which indicates that logistics distribution location strategy
of CS algorithm is the worst in both the optimal convergence curve and the average convergence curve.
Convergence curve of CCS algorithm can converge at 20 iterations in both the optimal convergence
curve and the average convergence curve. CCS algorithm is much inferior to DMQL-CS algorithm in
solving accuracy for 6 and 10 distribution centers. Although the IGA algorithm can converge, it has a
lot of noise for the average convergence curve. The convergence effect of IGA is worse compared with
CCS algorithm. The results of standard deviation indicate that DMQL-CS has a better robustness than
the other algorithms. The optimal distribution centers and distribution addressing schemes are shown
in Tables 17 and 18. According to Tables 17 and 18, the optimal distribution center points found by CS
algorithm for 6 and 10 distribution centers are (3, 11, 22, 1, 15, 20) and (6, 8, 18, 11, 21, 28, 16, 1, 20, 15).
The optimal distribution center points found by IGA algorithm for 6 and 10 distribution centers are (10,
22, 21, 2, 20, 17) and (30, 23, 14, 1, 2, 11, 25, 24, 15, 4). The optimal distribution center points found by
CCS algorithm for 6 and 10 distribution centers are (23, 22, 21, 16, 15, 20) and (6, 10, 23, 14, 22, 25, 7, 16,
15, 20).

To further analyze the effectiveness of DMQL-CS algorithm, DMQL-CS was compared with four
algorithms: CS [69], CCS [68], ICS [101], and IGA [64]. The comparison results with average fitness
value (Mean), the best fitness value (Best), the worst fitness value (Worst), standard deviation (Std),
and running time (Time) are shown in Table 19. It can be seen that the average distribution cost of
DMQL-CS at six distribution centers is 4.8060 × 104 which is 13,332 lower than CS, and the average
distribution cost in 10 distribution centers is 3.0157 × 104, which is 9345 lower than CS. Therefore,
DMQL-CS is obviously superior to CS algorithm. Although ICS can provide far better final results
for most of the cases, it takes more execution time because of the use of more expensive exploration
operation during the initial phases. For 6 and 10 distribution centers, there is not much difference

Mathematics 2020, 8, 149 27 of 32

between ICS and DMQL-CS for average distribution cost, but the optimal distribution cost of DMQL-CS
is significantly higher than that of ICS algorithm. Meanwhile, from the standard deviation and running
time data, it can be known that DMQL-CS has better robustness. The IGA algorithm achieved the worst
performance compared with other comparison algorithms, except for the CS algorithm. For the six
distribution centers, the average value obtained by IGA algorithm is 5.3008 × 104, which is 4948 more
than DMQL-CS. The average value obtained by IGA algorithm is 3.6460 × 104, which is 6330 more than
DMQL-CS for 10 distribution centers. CCS algorithm obtains the third best performance for 6 and 10
distribution center, respectively. In summary, the results of DMQL-CS are better than the comparison
algorithms in terms of optimal value, worst value, average value, or running time. The reason may
be that the Q-learning step size strategy improves the precision of the algorithm. The crossover and
mutation operator accelerate the convergence speed of the algorithm. Overall, the selection method of
logistics distribution center based on cuckoo search algorithm with Q-Learning and genetic operation
has better optimal value compared with the five other algorithms for both 6 and 10 distribution centers,
which indicates that the selection strategy based on DMQL-CS has higher solution accuracy and wider
range of optimization. Meanwhile, it can be seen in Table 19 that the running time of DMQL-CS is
significantly lower than the four other algorithms, and the number of iterations is significantly reduced.
In general, DMQL-CS algorithm can select the address of logistics distribution center more quickly and
accurately compared with the comparison algorithm. Finally, we can say that our proposed algorithm
interestingly outperforms other competitive algorithms in terms of convergence rate and robustness.

Table 19. Comparisons between DMQL-CS and other algorithms for 6 and 10 distribution centers in
40 cities.

Algorithm Distribution Points
Algorithms

Best Mean Worst Std Time (s)

CS
6 4.9629 × 104 6.1392 × 104 7.9211 ×104 2.4874 × 105 4.5187

10 3.2435 × 104 3.9502 × 104 4.3961 × 104 3.9872 × 105 4.5530

CCS
6 4.7913 × 104 4.9009 × 104 5.2085 × 104 4.9009 × 105 4.9486

10 3.1619 × 104 3.3815 × 104 3.4209 × 104 3.3815 × 104 4.8706

IGA
6 5.2032 × 104 5.3008 × 104 5.3814 × 104 5.9226 × 105 4.4255

10 3.5424 × 104 3.6460 × 104 3.6980 × 104 9.0172 × 105 4.5235

ICS
6 4.5748 × 104 4.6187 × 104 4.6919 × 104 5.8622 × 104 4.7245

10 3.1034 × 104 3.2197 × 104 3.3113 × 104 8.0172 × 104 4.7811

DMQL-CS
6 4.5013 × 104 4.8060 × 104 4.9253 ×104 1.2763 × 104 4.6255

10 2.9811 × 104 3.0157 × 104 3.2132 ×104 2.7651 × 104 4.6509

6. Conclusions

In this study, we constructed a model of CS with Q-Learning and genetic operators, and then solved
the address of logistics distribution center with DMQL-CS algorithm in which adopts Q-Learning
scheme to learn the individual optimal step size strategy according to the effect of individual multi-steps.
The most appropriate step size control strategy is chosen as a parameter for the current step size
evolution of the cuckoo, which increases the adaptability of individual evolution. At the same time,
to accelerate the convergence of the algorithm, genetic operators and hybrid operations are added to
DMQL-CS algorithm. Crossover and mutation operations expand the search area of the population,
and accelerate the convergence of the DMQL-CS algorithm.

To verify the performance of DMQL-CS, DMQL-CS was employed to solve fifteen benchmark test
functions and CEC 2013 test suit. The results show that the proposed DMQL-CS algorithm clearly
outperforms the standard CS algorithm. Comparing with some improved CS variants and DE variants,
we found that DMQL-CS algorithm outperforms the other algorithms on a majority of benchmarks.

Mathematics 2020, 8, 149 28 of 32

In addition, the effectiveness of the proposed method was further verified by comparing with CS, ICS,
CCS, and IGA for both 6 and 10 distribution centers.

In the future, we will focus our research work on the study of special cases to strengthen the
algorithm in more complex conditions. We will determine how to generalize our work to handle
combinatorial optimization problems and to extend DMQL-CS optimization algorithms to in the
realistic engineering areas and feature selection for machine learning [102].

Author Contributions: Conceptualization, J.L.; methodology, H.L.; software, D.-d.X. and T.Z.; validation, T.T.;
writing—original draft preparation, J.L. and H.L.; writing—review and editing, D.-d.X. and T.Z.; funding
acquisition, J.L. and T.T.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by doctoral Foundation of Wuhan Technology and Business University (No.
D2019010) and the National Natural Science Foundation of China (No. 61503220).

Acknowledgments: The authors would like to thank the anonymous reviewers and the editor for their careful
reviews and constructive suggestions to help us improve the quality of this paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Sang, H.-Y.; Pan, Q.-K.; Duan, P.-Y.; Li, J.-Q. An effective discrete invasive weed optimization algorithm for
lot-streaming flowshop scheduling problems. J. Intell. Manuf. 2015, 29, 1337–1349. [CrossRef]

2. Sang, H.-Y.; Pan, Q.-K.; Li, J.-Q.; Wang, P.; Han, Y.-Y.; Gao, K.-Z.; Duan, P. Effective invasive weed optimization
algorithms for distributed assembly permutation flowshop problem with total flowtime criterion. Swarm
Evol. Comput. 2019, 44, 64–73. [CrossRef]

3. Li, M.; Xiao, D.; Zhang, Y.; Nan, H. Reversible data hiding in encrypted images using cross division and
additive homomorphism. Signal Process. Image Commun. 2015, 39, 234–248. [CrossRef]

4. Li, M.; Guo, Y.; Huang, J.; Li, Y. Cryptanalysis of a chaotic image encryption scheme based on
permutation-diffusion structure. Signal Process. Image Commun. 2018, 62, 164–172. [CrossRef]

5. Fan, H.; Li, M.; Liu, D.; Zhang, E. Cryptanalysis of a colour image encryption using chaotic APFM nonlinear
adaptive filter. Signal Process. 2018, 143, 28–41. [CrossRef]

6. Dong, W.; Shi, G.; Li, X.; Ma, Y.; Huang, F. Compressive sensing via nonlocal low-rank regularization.
IEEE Trans. Image Process. 2014, 23, 3618–3632. [CrossRef]

7. Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W. Feature selection algorithm based on bare bones particle swarm
optimization. Neurocomputin 2015, 148, 150–157. [CrossRef]

8. Zhang, Y.; Song, X.-F.; Gong, D.-W. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci.
2017, 418, 561–574. [CrossRef]

9. Mao, W.; He, J.; Tang, J.; Li, Y. Predicting remaining useful life of rolling bearings based on deep feature
representation and long short-term memory neural network. Adv. Mech. Eng. 2018, 10, 1687814018817184.
[CrossRef]

10. Jian, M.; Lam, K.-M.; Dong, J. Facial-feature detection and localization based on a hierarchical scheme. Inf. Sci.
2014, 262, 1–14. [CrossRef]

11. Wang, G.-G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat
algorithm. Aerosp. Sci. Technol. 2016, 49, 231–238. [CrossRef]

12. Wang, G.; Guo, L.; Duan, H.; Liu, L.; Wang, H.; Shao, M. Path planning for uninhabited combat aerial vehicle
using hybrid meta-heuristic DE/BBO algorithm. Adv. Sci. Eng. Med. 2012, 4, 550–564. [CrossRef]

13. Zhang, Y.; Gong, D.-w.; Gao, X.-z.; Tian, T.; Sun, X.-y. Binary differential evolution with self-learning for
multi-objective feature selection. Inf. Sci. 2020, 507, 67–85. [CrossRef]

14. Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social
systems by using evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput.
2017. [CrossRef]

15. Cui, Z.; Sun, B.; Wang, G.-G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

16. Jian, M.; Lam, K.-M.; Dong, J. Illumination-insensitive texture discrimination based on illumination
compensation and enhancement. Inf. Sci. 2014, 269, 60–72. [CrossRef]

http://dx.doi.org/10.1007/s10845-015-1182-x
http://dx.doi.org/10.1016/j.swevo.2018.12.001
http://dx.doi.org/10.1016/j.image.2015.10.001
http://dx.doi.org/10.1016/j.image.2018.01.002
http://dx.doi.org/10.1016/j.sigpro.2017.08.018
http://dx.doi.org/10.1109/TIP.2014.2329449
http://dx.doi.org/10.1016/j.neucom.2012.09.049
http://dx.doi.org/10.1016/j.ins.2017.08.047
http://dx.doi.org/10.1177/1687814018817184
http://dx.doi.org/10.1016/j.ins.2013.12.001
http://dx.doi.org/10.1016/j.ast.2015.11.040
http://dx.doi.org/10.1166/asem.2012.1223
http://dx.doi.org/10.1016/j.ins.2019.08.040
http://dx.doi.org/10.1109/TETC.2017.2703784
http://dx.doi.org/10.1016/j.jpdc.2016.10.011
http://dx.doi.org/10.1016/j.ins.2014.01.019

Mathematics 2020, 8, 149 29 of 32

17. Jian, M.; Lam, K.M.; Dong, J.; Shen, L. Visual-patch-attention-aware saliency detection. IEEE Trans. Cybern.
2015, 45, 1575–1586. [CrossRef]

18. Wang, G.-G.; Lu, M.; Dong, Y.-Q.; Zhao, X.-J. Self-adaptive extreme learning machine. Neural Comput. Appl.
2016, 27, 291–303. [CrossRef]

19. Mao, W.; Zheng, Y.; Mu, X.; Zhao, J. Uncertainty evaluation and model selection of extreme learning machine
based on Riemannian metric. Neural Comput. Appl. 2013, 24, 1613–1625. [CrossRef]

20. Liu, G.; Zou, J. Level set evolution with sparsity constraint for object extraction. IET Image Process. 2018, 12,
1413–1422. [CrossRef]

21. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Deb, S.; Wang, G.-G. A novel fruit fly framework for multi-objective
shape design of tubular linear synchronous motor. J. Supercomput. 2017, 73, 1235–1256. [CrossRef]

22. Yi, J.-H.; Xing, L.-N.; Wang, G.-G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover
operators in NSGA-III for large-scale optimization problems. Inf. Sci. 2020, 509, 470–487. [CrossRef]

23. Yi, J.-H.; Deb, S.; Dong, J.; Alavi, A.H.; Wang, G.-G. An improved NSGA-III Algorithm with adaptive
mutation operator for big data optimization problems. Future Gener. Comput. Syst. 2018, 88, 571–585.
[CrossRef]

24. Sun, J.; Miao, Z.; Gong, D.; Zeng, X.-J.; Li, J.; Wang, G.-G. Interval multi-objective optimization with memetic
algorithms. IEEE Trans. Cybern. 2019. [CrossRef] [PubMed]

25. Feng, Y.; Wang, G.-G. Binary moth search algorithm for discounted {0-1} knapsack problem. IEEE Access
2018, 6, 10708–10719. [CrossRef]

26. Feng, Y.; Wang, G.-G.; Wang, L. Solving randomized time-varying knapsack problems by a novel global
firefly algorithm. Eng. Comput. 2018, 34, 621–635. [CrossRef]

27. Abdel-Basset, M.; Zhou, Y. An elite opposition-flower pollination algorithm for a 0-1 knapsack problem.
Int. J. Bio-Inspired Comput. 2018, 11, 46–53. [CrossRef]

28. Yi, J.-H.; Wang, J.; Wang, G.-G. Improved probabilistic neural networks with self-adaptive strategies for
transformer fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1–13. [CrossRef]

29. Mao, W.; He, J.; Li, Y.; Yan, Y. Bearing fault diagnosis with auto-encoder extreme learning machine:
A comparative study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 231, 1560–1578. [CrossRef]

30. Mao, W.; Feng, W.; Liang, X. A novel deep output kernel learning method for bearing fault structural
diagnosis. Mech. Syst. Signal Process. 2019, 117, 293–318. [CrossRef]

31. Duan, H.; Zhao, W.; Wang, G.; Feng, X. Test-sheet composition using analytic hierarchy process and hybrid
metaheuristic algorithm TS/BBO. Math. Probl. Eng. 2012, 2012, 1–22. [CrossRef]

32. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2019, 49, 542–555. [CrossRef] [PubMed]

33. Rong, M.; Gong, D.; Zhang, Y.; Jin, Y.; Pedrycz, W. Multidirectional prediction approach for dynamic
multiobjective optimization problems. IEEE Trans. Cybern. 2019, 49, 3362–3374. [CrossRef] [PubMed]

34. Gong, D.; Sun, J.; Miao, Z. A Set-Based Genetic Algorithm for Interval Many-Objective Optimization
Problems. IEEE Trans. Evol. Comput. 2018, 22, 47–60. [CrossRef]

35. Gong, D.; Sun, J.; Ji, X. Evolutionary algorithms with preference polyhedron for interval multi-objective
optimization problems. Inf. Sci. 2013, 233, 141–161. [CrossRef]

36. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in
expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [CrossRef]

37. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms:
The univariate case. Appl. Math. Comput. 2018, 318, 245–259. [CrossRef]

38. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. Operational zones for comparing metaheuristic and
deterministic one-dimensional global optimization algorithms. Math. Comput. Simul. 2017, 141, 96–109.
[CrossRef]

39. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput.
2012, 29, 464–483. [CrossRef]

40. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
41. Dorigo, M.; Stutzle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
42. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Earthworm optimization algorithm: A bio-inspired metaheuristic

algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [CrossRef]

http://dx.doi.org/10.1109/TCYB.2014.2356200
http://dx.doi.org/10.1007/s00521-015-1874-3
http://dx.doi.org/10.1007/s00521-013-1392-0
http://dx.doi.org/10.1049/iet-ipr.2017.0939
http://dx.doi.org/10.1007/s11227-016-1806-8
http://dx.doi.org/10.1016/j.ins.2018.10.005
http://dx.doi.org/10.1016/j.future.2018.06.008
http://dx.doi.org/10.1109/TCYB.2019.2908485
http://www.ncbi.nlm.nih.gov/pubmed/31034428
http://dx.doi.org/10.1109/ACCESS.2018.2809445
http://dx.doi.org/10.1007/s00366-017-0562-6
http://dx.doi.org/10.1504/IJBIC.2018.090080
http://dx.doi.org/10.1177/1687814015624832
http://dx.doi.org/10.1177/0954406216675896
http://dx.doi.org/10.1016/j.ymssp.2018.07.034
http://dx.doi.org/10.1155/2012/712752
http://dx.doi.org/10.1109/TCYB.2017.2780274
http://www.ncbi.nlm.nih.gov/pubmed/29990274
http://dx.doi.org/10.1109/TCYB.2018.2842158
http://www.ncbi.nlm.nih.gov/pubmed/29994141
http://dx.doi.org/10.1109/TEVC.2016.2634625
http://dx.doi.org/10.1016/j.ins.2013.01.020
http://dx.doi.org/10.1038/s41598-017-18940-4
http://dx.doi.org/10.1016/j.amc.2017.05.014
http://dx.doi.org/10.1016/j.matcom.2016.05.006
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1504/IJBIC.2018.093328

Mathematics 2020, 8, 149 30 of 32

43. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Elephant herding optimization. In Proceedings of the 2015 3rd
International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December
2015; pp. 1–5.

44. Wang, G.-G.; Deb, S.; Gao, X.-Z.; Coelho, L.d.S. A new metaheuristic optimization algorithm motivated by
elephant herding behavior. Int. J. Bio-Inspired Comput. 2016, 8, 394–409. [CrossRef]

45. Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memetic Comput. 2018, 10, 151–164. [CrossRef]

46. Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

47. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memetic Comput. 2018, 10, 177–198. [CrossRef]

48. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

49. Liu, F.; Sun, Y.; Wang, G.-G.; Wu, T. An artificial bee colony algorithm based on dynamic penalty and chaos
search for constrained optimization problems. Arab. J. Sci. Eng. 2018, 43, 7189–7208. [CrossRef]

50. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation
2001, 76, 60–68. [CrossRef]

51. Wang, G.-G.; Gandomi, A.H.; Zhao, X.; Chu, H.E. Hybridizing harmony search algorithm with cuckoo search
for global numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]

52. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014.
[CrossRef]

53. Wang, G.-G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover
operator. Oper. Res. Int. J. 2018, 18, 731–755. [CrossRef]

54. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

55. Sun, Y.; Jiao, L.; Deng, X.; Wang, R. Dynamic network structured immune particle swarm optimisation with
small-world topology. Int. J. Bio-Inspired Comput. 2017, 9, 93–105. [CrossRef]

56. Gandomi, A.H.; Alavi, A.H. Multi-stage genetic programming: A new strategy to nonlinear system modeling.
Inf. Sci. 2011, 181, 5227–5239. [CrossRef]

57. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.
Numer. Simul. 2012, 17, 4831–4845. [CrossRef]

58. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in
biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]

59. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A multi-stage krill herd algorithm for global numerical
optimization. Int. J. Artif. Intell. Tool 2016, 25, 1550030. [CrossRef]

60. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants,
hybrids and applications. Artif. Intell. Rev. 2019, 51, 119–148. [CrossRef]

61. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274,
17–34. [CrossRef]

62. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy
mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]

63. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.
[CrossRef]

64. Wang, X.; Zhang, X.J.; Cao, X.; Zhang, J.; Fen, L. An improved genetic algorithm based on immune principle.
Minimicro Syst. 1999, 20, 120.

65. Li, J.; Li, Y.-x.; Tian, S.-s.; Zou, J. Dynamic cuckoo search algorithm based on Taguchi opposition-based search.
Int. J. Bio-Inspired Comput. 2019, 13, 59–69. [CrossRef]

66. Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1,
330–343. [CrossRef]

67. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve
structural optimization problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]

68. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Zhang, Z.; Alavi, A.H. Chaotic cuckoo search. Soft Comput. 2016, 20,
3349–3362. [CrossRef]

http://dx.doi.org/10.1504/IJBIC.2016.081335
http://dx.doi.org/10.1007/s12293-016-0212-3
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1007/s12293-017-0241-6
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1007/s13369-017-3049-2
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s00500-014-1502-7
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1007/s12351-016-0251-z
http://dx.doi.org/10.1504/IJBIC.2017.083100
http://dx.doi.org/10.1016/j.ins.2011.07.026
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.apm.2013.10.052
http://dx.doi.org/10.1142/S021821301550030X
http://dx.doi.org/10.1007/s10462-017-9559-1
http://dx.doi.org/10.1016/j.ins.2014.02.123
http://dx.doi.org/10.1016/j.neucom.2015.11.018
http://dx.doi.org/10.1016/j.neucom.2013.08.031
http://dx.doi.org/10.1504/IJBIC.2019.097728
http://dx.doi.org/10.1504/IJMMNO.2010.035430
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1007/s00500-015-1726-1

Mathematics 2020, 8, 149 31 of 32

69. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

70. Mlakar, U.; Fister, I.; Fister, I. Hybrid self-adaptive cuckoo search for global optimization. Swarm Evol.
Comput. 2016, 29, 47–72. [CrossRef]

71. Li, X.; Wang, J.; Yin, M. Enhancing the performance of cuckoo search algorithm using orthogonal learning
method. Neural Comput. Appl. 2013, 24, 1233–1247. [CrossRef]

72. Ouaarab, A.; Ahiod, B.; Yang, X.-S. Discrete cuckoo search algorithm for the travelling salesman problem.
Neural Comput. Appl. 2013, 24, 1659–1669. [CrossRef]

73. Wang, Y.-H.; Li, T.-H.S.; Lin, C.-J. Backward Q-learning: The combination of Sarsa algorithm and Q-learning.
Eng. Appl. Artif. Intell. 2013, 26, 2184–2193. [CrossRef]

74. Alexandridis, A.; Chondrodima, E.; Sarimveis, H. Cooperative learning for radial basis function networks
using particle swarm optimization. Appl. Soft Comput. 2016, 49, 485–497. [CrossRef]

75. Rakhshani, H.; Rahati, A. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm. Appl. Soft
Comput. 2017, 52, 771–794. [CrossRef]

76. Samma, H.; Lim, C.P.; Saleh, J.M. A new reinforcement learning-based memetic particle swarm optimizer.
Appl. Soft Comput. 2016, 43, 276–297. [CrossRef]

77. Abed-alguni, B.H. Action-selection method for reinforcement learning based on cuckoo search algorithm.
Arab. J. Sci. Eng. 2017, 43, 6771–6785. [CrossRef]

78. Ma, H.-S.; Li, S.-X.; Li, S.-F.; Lv, Z.-N.; Wang, J.-S. An improved dynamic self-adaption cuckoo search
algorithm based on collaboration between subpopulations. Neural Comput. Appl. 2018, 31, 1375–1389.
[CrossRef]

79. Li, X.; Yin, M. Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. 2015, 298,
80–97. [CrossRef]

80. Yang, B.; Miao, J.; Fan, Z.; Long, J.; Liu, X. Modified cuckoo search algorithm for the optimal placement of
actuators problem. Appl. Soft Comput. 2018, 67, 48–60. [CrossRef]

81. Li, J.; Li, Y.-X.; Tian, S.-S.; Xia, J.-L. An improved cuckoo search algorithm with self-adaptive knowledge
learning. Neural Comput. Appl. 2019. [CrossRef]

82. Cheng, J.; Wang, L.; Xiong, Y. Ensemble of cuckoo search variants. Comput. Ind. Eng. 2019, 135, 299–313.
[CrossRef]

83. Long, W.; Cai, S.; Jiao, J.; Xu, M.; Wu, T. A new hybrid algorithm based on grey wolf optimizer and cuckoo
search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 2020, 203, 112243.
[CrossRef]

84. Zhang, Z.; Ding, S.; Jia, W. A hybrid optimization algorithm based on cuckoo search and differential evolution
for solving constrained engineering problems. Eng. Appl. Artif. Intell. 2019, 85, 254–268. [CrossRef]

85. Zhang, X.; Li, X.-T.; Yin, M.-H. Hybrid cuckoo search algorithm with covariance matrix adaption evolution
strategy for global optimisation problem. Int. J. Bio-Inspired Comput. 2019, 13, 102–110. [CrossRef]

86. Tang, H.; Xue, F. Cuckoo search algorithm with different distribution strategy. Int. J. Bio-Inspired Comput.
2019, 13, 234–241. [CrossRef]

87. Ong, P.; Zainuddin, Z. Optimizing wavelet neural networks using modified cuckoo search for multi-step
ahead chaotic time series prediction. Appl. Soft Comput. 2019, 80, 374–386. [CrossRef]

88. Kamoona, A.M.; Patra, J.C. A novel enhanced cuckoo search algorithm for contrast enhancement of gray
scale images. Appl. Soft Comput. 2019, 85, 105749. [CrossRef]

89. Naidu, M.N.; Boindala, P.S.; Vasan, A.; Varma, M.R. Optimization of Water Distribution Networks Using
Cuckoo Search Algorithm. In Advanced Engineering Optimization Through Intelligent Techniques; Springer:
Singapore, 2020.

90. Ibrahim, A.M.; Tawhid, M.A. A hybridization of cuckoo search and particle swarm optimization for solving
nonlinear systems. Evol. Intell. 2019, 12, 541–561. [CrossRef]

91. Osaba, E.; del Ser, J.; Camacho, D.; Bilbao, M.N.; Yang, X.-S. Community detection in networks using
bio-inspired optimization: Latest developments, new results and perspectives with a selection of recent
meta-heuristics. Appl. Soft Comput. 2020, 87, 106010. [CrossRef]

92. Rath, A.; Samantaray, S.; Swain, P.C. Optimization of the Cropping Pattern Using Cuckoo Search Technique.
In Smart Techniques for a Smarter Planet; Springer: Cham, Switzerland, 2019; p. 19.

http://dx.doi.org/10.1016/j.swevo.2016.03.001
http://dx.doi.org/10.1007/s00521-013-1354-6
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1016/j.engappai.2013.06.016
http://dx.doi.org/10.1016/j.asoc.2016.08.032
http://dx.doi.org/10.1016/j.asoc.2016.09.048
http://dx.doi.org/10.1016/j.asoc.2016.01.006
http://dx.doi.org/10.1007/s13369-017-2873-8
http://dx.doi.org/10.1007/s00521-018-3512-3
http://dx.doi.org/10.1016/j.ins.2014.11.042
http://dx.doi.org/10.1016/j.asoc.2018.03.004
http://dx.doi.org/10.1007/s00521-019-04178-w
http://dx.doi.org/10.1016/j.cie.2019.06.015
http://dx.doi.org/10.1016/j.enconman.2019.112243
http://dx.doi.org/10.1016/j.engappai.2019.06.017
http://dx.doi.org/10.1504/IJBIC.2019.098403
http://dx.doi.org/10.1504/IJBIC.2019.100150
http://dx.doi.org/10.1016/j.asoc.2019.04.016
http://dx.doi.org/10.1016/j.asoc.2019.105749
http://dx.doi.org/10.1007/s12065-019-00255-0
http://dx.doi.org/10.1016/j.asoc.2019.106010

Mathematics 2020, 8, 149 32 of 32

93. Abdel-Basset, M.; Wang, G.-G.; Sangaiah, A.K.; Rushdy, E. Krill herd algorithm based on cuckoo search for
solving engineering optimization problems. Multimed. Tools Appl. 2017, 78, 3861–3884. [CrossRef]

94. Cao, Z.; Lin, C.; Zhou, M.; Huang, R. Scheduling semiconductor testing facility by using cuckoo search
algorithm with reinforcement learning and surrogate modeling. IEEE Trans. Autom. Sci. Eng. 2019, 16,
825–837. [CrossRef]

95. Hu, H.; Li, X.; Zhang, Y.; Shang, C.; Zhang, S. Multi-objective location-routing model for hazardous material
logistics with traffic restriction constraint in inter-city roads. Comput. Ind. Eng. 2019, 128, 861–876. [CrossRef]

96. Wang, F.; He, X.-s.; Wang, Y. The cuckoo search algorithm based on Gaussian disturbance. J. Xi’an Polytech.
Univ. 2011, 25, 566–569.

97. Wang, F.; Luo, L.; He, X.S.; Wang, Y. Hybrid optimization algorithm of PSO and Cuckoo Search. In Proceedings
of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic
Commerce (AIMSEC), Dengleng, China, 8–10 August 2011; IEEE: Piscataway, NJ, USA, 2011.

98. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential
Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10,
646–657. [CrossRef]

99. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation for
Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]

100. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

101. Zhao, S.A.; Qu, C.W. An Improved Cuckoo Algorithm for Solving the Problem of Logistics Distribution
Center Location. Math. Pract. Theory 2017, 47, 206–213.

102. del Ser, J.; Osaba, E.; Molina, D.; Yang, X.-S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.;
Coello, C.A.C.; Herrera, F. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput.
2019, 48, 220–250. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11042-017-4803-x
http://dx.doi.org/10.1109/TASE.2018.2862380
http://dx.doi.org/10.1016/j.cie.2018.10.044
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1016/j.swevo.2019.04.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Cuckoo Search
	Cuckoo Search Algorithm with Q-Learning and Genetic Operations
	Q-Learning Model
	Step Size Control Model by Using Q-Learning
	Genetic Operation
	Crossover Process
	Mutation Process
	Cuckoo Search Algorithm with Q-Learning Model and Genetic Operator
	Analysis of Algorithm Complexity

	Results
	Optimization of Functions and Parameter Settings
	Comparison with Other CS Variants and Rank Based Analysis
	Statistical Analysis of Performance for the CEC 2013 Test Suite
	Application in the Problem of Logistics Distribution Center Location
	Problem Description
	Analysis of Experimental Results

	Conclusions
	References

