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Abstract: This paper deals with the approximate solution of the following functional equation

f ( 7
√

x7 + y7) = f (x) + f (y),

where f is a mapping from R into a normed vector space. We show stability results of this equation
in quasi-β-Banach spaces and (β, p)-Banach spaces. We also prove the nonstability of the previous
functional equation in a relevant case.

Keywords: radical functional equation; septic functional equation; Hyers-Ulam stability; quasi-β-Banach
spaces; (β, p)-Banach spaces
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1] in 1940 for the
Cauchy equation

f (x + y) = f (x) + f (y). (1)

Each solution of (1) is called additive. This problem was partially solved by Hyers [2] in 1941. Some years
later, Aoki [3] and Bourgin [4] treated the stability problem with unbounded Cauchy difference. In 1978,
Th.M. Rassias [5] thus provided a generalization of the Hyers theorem for unbounded Cauchy differences.
On the other hand, Rassias [6] dealt with the case of Cauchy differences controlled by a product of different
powers of norms. Likewise, Forti [7] and Găvruţa [8] generalized these results to arbitrary unbounded
Cauchy differences. Hyers-Ulam stability for the linear functional equation in single variable is, in a clear
way and in detail, treated in [9]. We also mention the papers [10–12] concerning the application of different
fixed point theorems to the theory of Hyers-Ulam stability.

It is easy to see that the functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), (2)

admits as a solution the function f (x) = cx2, where c is an arbitrary constant. Accordingly, Eq. (2) is called
quadratic functional equation. In the same spirit, solutions of (2) are called quadratic functions. Likewise,
we can built function f (x) = cxm with m ∈ N ∣ m > 2 as solutions of a linear functional equations in the
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same spirit of (2). These functional equations are called cubic, quartic, quintic and so on (see [13–15] for
more details). In particular, Shen and Chen [16] studied the general solutions of the functional equation

f (x + 4y) − 7 f (x + 3y) + 21 f (x + 2y) − 35 f (x + y) + 35 f (x) − 21 f (x − y)

+ 7 f (x − 2y) − f (x − 3y) = 5040 f (y),
(3)

on commutative groups. Note that the function f (x) = cx7 satisfies (3), thus Eq. (3) is a septic functional
equation. Accordingly, each solution of Eq. (3) is called a septic function.

Quite recently, considerable attention has been paid to the stability of radical function equations (see,
e.g., [17–19]). More precisely, the functional equation

f (
√

x2 + y2) = f (x) + f (y), (4)

f being a mapping from R into a normed vector space, is called a radical quadratic functional equation.
Kim et al. [20,21] studied the following generalizations of Eq. (4)

f (
√

ax2 + by2) = a f (x) + b f (y), (5)

f (
√

ax2 + by2) + f (
√

∣ax2 − by2∣) = 2a2 f (x) + 2b2 f (y), (6)

where a, b ∈ R≥0. The same authors proved the generalized Ulam stability for (5) and (6), similar in
spirit to Găvruţa [8]. In particular, the authors generalized the concept of Ulam stability by more general
mappings. Moreover, Cho et al. [22] proved the generalized Hyers-Ulam stability for (5) and (6) both in
quasi-β-Banach spaces and (β, p)-Banach spaces.

Ding and Xu [23] provided a further generalization of (4) by the following inhomogeneous functional
equation

f (
√

ax2 + by2) = a f (x) + b f (y) +D(x, y), (7)

where f is a mapping on the set of real numbers, a, b ∈ R≥0 and D(x, y) is a given function. Furthermore,
Ding and Xu showed stability and hyperstability properties for Eq. (7) by Brzdek and Cieplinski’s fixed
point theorems in 2-Banach spaces.

We note that Eq. (4) allows a natural and straightforward generalization as follows:

f ( n
√

xn
+ yn

) = f (x) + f (y), (8)

f being a mapping from R into a normed vector space and n ∈ N ∣ n ≥ 2. In last years, several authors dealt
with the cases n = 3, 4, 5, 6 in Eq. (8). For more details we refer the reader to [24–27]. In particular, EL-Fassi
treated the case n = 5 providing stability results in quasi-β-Banach spaces.

In this paper, we consider the following functional equation:

f ( 7
√

x7 + y7) = f (x) + f (y), (9)

f being a mapping from R into a normed vector space. We prove that Eq. (9) is septic. Furthermore, we
treat the Hyers-Ulam stability for (9) in quasi-β-Banach spaces and (β, p)-Banach spaces. Our results have
many potential applications in information theory, dynamical systems, computer graphics, etc. (see, e.g.,
[28–31]).
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Let us recall the definition of quasi-β-Banach space and (β, p)-Banach space because in the sequel we
will deal with the stability of (9) in these function spaces.

Definition 1 ([24,25]). Fix a real number β with 0 < β ≤ 1. Let F denote either R or C and let X be a vector
space over F. A quasi-β-norm on X is a function ∥⋅∥ ∶ X → R such that

(i) ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0,
(ii) ∥λx∥ = ∣λ∣

β
∥x∥,

(iii) ∥x + y∥ ≤ C (∥x∥ + ∥y∥),

where C ≥ 1 is a constant, for all x, y ∈ X and λ ∈ F.

Note that in Definition 1 the constant C is independent of x, y ∈ X. The pair (X, ∥⋅∥) is called a
quasi-β-normed space if ∥⋅∥ is a quasi-β-norm on X. The smallest constant C is called modulus of concavity
of ∥⋅∥. A quasi-β-norm induces a locally bounded topology on X and conversely (see [32] for more details).
A complete quasi-β-normed space is called a quasi-β-Banach space. If, in addition, we have

∥x + y∥p
≤ ∥x∥p

+ ∥y∥p , 0 < p ≤ 1, for all x, y ∈ X, (10)

then a quasi-β-norm ∥⋅∥ is called a (β, p)-norm. A quasi-β-Banach space (X, ∥⋅∥) is thus called a
(β, p)-Banach space if ∥⋅∥ is a (β, p)-norm on X.

Remark 1. Definition 1 and (10) show that quasi-β-Banach spaces and (β, p)-Banach spaces are a
generalization of quasi-Banach spaces and p-Banach spaces [32,33], respectively.

Definition 1 for β = 1 gives the usual concepts of quasi-norm and p-norm. Of course, any p-norm is a
quasi-norm with C = 21/p−1. Up to equivalence, the converse is true and called the Aoki-Rolewicz theorem
[4,34].

2. Solution of Eq. (9)

Our aim in this section is to find the general solution of Eq. (9). This is relevant to deal with the
stability of Eq. (9). In order to get this result, we simply proceed by induction. Here and subsequently, Z∗
denotes the set of nonzero integers and N0 = N∪ {0}.

Theorem 1. Let V be a real vector space and f ∶ R → V be a function which fulfils Eq. (9). Then f is a septic
function.

Proof. By choosing x = y = 0 in (9), we see at once that f (0) = 0. Replacing y = −x in (9), we obtain
f (−x) = − f (x) for all x ∈ R. Likewise, replacing y = x in (9), we have that f ( 7√2x) = 2 f (x) for all x ∈ R.
Setting y =

7√2x in (9), the equality f ( 7√2x) = 2 f (x) implies that f ( 7√3x) = 3 f (x) for all x ∈ R.
By induction, we get f ( 7√kx) = k f (x) for all x ∈ R and k ∈ Z. Accordingly,

f (
x

7√k
) =

f (x)
k
⇒ f ( 7

√
m
k

x) =
m
k

f (x),

for all x ∈ R and k, m ∈ Z∗. Therefore,
f ( 7√rx) = r f (x), (11)
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for all x ∈ R and r ∈ Q. The proof is completed by showing that the function f fulfils Eq. (3). In fact, from
(9) and (11) we get

f (x + 4y) + 21 f (x + 2y) + 35 f (x) + 7 f (x − 2y)

= f (x + 4y) + f ( 7√21(x + 2y)) + f ( 7√35x) + f ( 7√7(x − 2y))

= f ( 7
√

(x + 4y)7 + 21(x + 2y)7 + 35x7 + 7(x − 2y)7) ,

(12)

and similarly

7 f (x + 3y) + 35 f (x + y) + 21 f (x − y) + f (x − 3y) + 5040 f (y)

= f ( 7
√

7(x + 3y)7 + 35(x + y)7 + 21(x − y)7 + (x − 3y)7 + 5050y7) ,
(13)

for all x, y ∈ R. Comparing (12) and (13) implies that f is septic, as desired.

3. Hyers-Ulam stability of Eq. (9) in quasi-β-Banach spaces

This section is devoted to the Hyers-Ulam stability of Eq. (9) in quasi-β-Banach spaces. In the same
spirit of [24], we introduce the definition of γ-approximately radical septic function.

Let X be a quasi-β-Banach space. A γ-approximately radical septic function is a function f ∶ R→ X
such that

∥ f ( 7
√

x7 + y7) − f (x) − f (y)∥ ≤ γ(x, y), (14)

for all x, y ∈ R and where γ is a nonnegative real function on R2.

Theorem 2. Let X be a quasi-β-Banach space. Moreover, let f be a γ-approximately radical septic function and
Γ ∶ R2 → [0,∞) be a function such that

Γ(x, y) ∶=
∞
∑
i=0

(
C
2β

)

i
γ (

7
√

2ix,
7
√

2iy) < ∞, (15)

and
γ (

7√2kx, 7√2ky)

2kβ

k→∞
ÐÐÐ→ 0,

for all x, y ∈ R. Then Eq. (9) has a unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤
C
2β

Γ(x, x), (16)

for all x ∈ R.

Proof. We divide the proof into two parts (existence and uniqueness). Inequality (14) for y = x gives

∥ f ( 7√2x) − 2 f (x)∥ ≤ γ(x, x), (17)

and therefore
XXXXXXXXXXX

f ( 7√2x)
2

− f (x)
XXXXXXXXXXX

≤
γ(x, x)

2β
, (18)
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for all x ∈ R. We have

XXXXXXXXXXX

f ( 7√2l x)
2l −

f ( 7√2mx)
2m

XXXXXXXXXXX

=

XXXXXXXXXXXXXXX

m−1

∑
i=l

⎛
⎜
⎝

f ( 7√2ix)

2i −
f ( 7√2i+1x)

2i+1

⎞
⎟
⎠

XXXXXXXXXXXXXXX

≤

m−1

∑
i=l

1
2βi

XXXXXXXXXXXXXX

f (
7
√

2ix) −
f ( 7√2i+1x)

2

XXXXXXXXXXXXXX

(18)
≤

C
2β

m−1

∑
i=l

(
C
2β

)

i
γ (

7
√

2ix,
7
√

2ix) , m, l ∈ N0, m > l,

(19)

for all x ∈ R. Note that (15) and (19) entail that {2−k f ( 7√2kx)} is a Cauchy sequence on the whole real line.
Moreover, X is quasi-β-Banach space thus the previous sequence converges over the entire real line. This
allows us to define a function L ∶ R→ X by

L(x) ∶= lim
k→∞

f ( 7√2kx)

2k ,

for all x ∈ R. We thus get

∥L (
7
√

x7 + y7) − L(x) − L(y)∥ = lim
k→∞

2−βk
∥ f (

7
√

2k 7
√

x7 + y7) − f (
7
√

2kx) − f (
7
√

2ky)∥

≤ lim
k→∞

2−βkγ (
7
√

2kx,
7
√

2ky) = 0,

and so
L (

7
√

x7 + y7) = L(x) + L(y), (20)

for all x, y ∈ R. From (20), we deduce that L is a septic function. In addition to this, letting m →∞ in (19)
with l = 0 we conclude that L satisfies (16) near f .

We are now in a position to show the uniqueness of L. Hence, let us consider a septic function
S ∶ R→ X which also satisfies both (9) and (16). Since S is a solution of (9), it follows that S (

7√2kx) = 2k S(x)
for all x ∈ R and k ∈ N0. As a consequence,

XXXXXXXXXXXXXX

f ( 7√2kx)

2k − S(x)

XXXXXXXXXXXXXX

= 2−kβ
∥ f (

7
√

2kx) − S (
7
√

2kx)∥

≤
C

2(k+1)β
Γ (

7
√

2kx,
7
√

2kx) , x ∈ R.

which for k →∞ gives S(x) = L(x) for all x ∈ R. The proof is achieved.

In a similar way we obtain the following result.

Theorem 3. Let X be a quasi-β-Banach space. Moreover, let f be a γ-approximately radical septic function and
Λ ∶ R2 → [0,∞) be a function such that

Λ(x, y) ∶=
∞
∑
i=0

(2βC)
i γ(

x
7√2i+1

,
y

7√2i+1
) < ∞,
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and

2kβ γ(
x

7√2k
,

y
7√2k

)
k→∞
ÐÐÐ→ 0,

for all x, y ∈ R. Then Eq. (9) has a unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤ C Λ(x, x), (21)

for all x ∈ R.

Proof. Replacing x by
x

7√2
in (17), the proof runs as in Theorem 2. For the sake of completeness, we only

sketch the proof here thus leaving the details to the reader.
Clearly,

∥ f (x) − 2 f (
x

7√2
)∥ ≤ γ(

x
7√2

,
x

7√2
) . (22)

Therefore, we have

∥2l f (
x

7√2l
)− 2m f (

x
7√2m

)∥ =

XXXXXXXXXXXXXXX

m−1

∑
i=l

(2i f (
x

7√2i
)− 2i+1 f (

x
7√2i+1

))

XXXXXXXXXXXXXXX

≤

m−1

∑
i=l

2βi
∥ f (

x
7√2i

)− 2 f (
x

7√2i+1
)∥

(22)
≤ C

m−1

∑
i=l

(2βC)
i

γ(
x

7√2i+1
,

x
7√2i+1

) , m, l ∈ N0 ∶ m > l,

for all x ∈ R. As a consequence, the sequence {2k f (
x

7√2k
)} converges over the entire real line. This allows

us to define a function L ∶ R→ X by

L(x) ∶= lim
k→∞

2k f (
x

7√2k
) ,

for all x ∈ R. Hence
L (

7
√

x7 + y7) = L(x) + L(y),

for all x ∈ R. This prove the existence of the solution L satisfying both (9) and (21). Now, let us consider a
septic function S ∶ R→ X which also satisfies both (9) and (21). The uniqueness of L follows noting that

S(
x

7√2k
) = 2−k S(x) for all x ∈ R and k ∈ N0.

Theorems 2 and 3 imply the stability for approximate functions controlled by powers of norms, as
stated in the following two corollaries.

Corollary 1. Let X be a quasi-β-Banach space. Moreover, let f ∶ R→ X be a function such that

∥ f ( 7
√

x7 + y7) − f (x) − f (y)∥ ≤

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ε (∣x∣r ∣y∣s) , r + s < 7(β − log2 C),

ε (∣x∣r + ∣y∣s) , r, s < 7(β − log2 C),

ε (∣x∣r ∣y∣s + ∣x∣r+s + ∣y∣r+s) , r + s < 7(β − log2 C),

(23)
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for all x, y ∈ R, with r, s, ε ∈ R≥0. Then Eq. (9) has a unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εC
2β −C 7√2r+s

∣x∣r+s, r + s < 7(β − log2 C),

εC (
∣x∣r

2β −C 7√2r
+

∣x∣s

2β −C 7√2s
) , r, s < 7(β − log2 C),

3εC
2β −C 7√2r+s

∣x∣r+s, r + s < 7(β − log2 C),

(24)

for all x ∈ R.

Proof. With the same notation of Theorem 2, we have

γ(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ε (∣x∣r ∣y∣s) , r + s < 7(β − log2 C),

ε (∣x∣r + ∣y∣s) , r, s < 7(β − log2 C),

ε (∣x∣r ∣y∣s + ∣x∣r+s + ∣y∣r+s) , r + s < 7(β − log2 C).

for all x, y ∈ R. Thus the proof falls naturally into three cases.
First case: γ(x, y) = ε (∣x∣r ∣y∣s).

We see that

∥ f (x) − L(x)∥ ≤
C
2β

Γ(x, x) =
C
2β

∞
∑
i=0

(
C
2β

)

i
γ (

7
√

2ix,
7
√

2ix)

=
C
2β

∞
∑
i=0

(
C
2β

)

i
ε (∣

7
√

2ix∣
r
∣

7
√

2ix∣
s
)

=
C
2β

ε ∣x∣r+s
∞
∑
i=0

(
C
2β

)

i
(

7√2r+s)
i
,

(25)

for all x ∈ R. Notice that the condition r + s < 7(β − log2 C) implies the convergence of the last series in (25).
Accordingly,

∥ f (x) − L(x)∥ ≤
ε C

2β −C 7√2r+s
∣x∣r+s.

Second case: γ(x, y) = ε (∣x∣r + ∣y∣s).
We have that

∥ f (x) − L(x)∥ ≤
C
2β

Γ(x, x) =
C
2β

∞
∑
i=0

(
C
2β

)

i
γ (

7
√

2ix,
7
√

2ix)

=
C
2β

∞
∑
i=0

(
C
2β

)

i
ε (∣

7
√

2ix∣
r
+ ∣

7
√

2ix∣
s
)

=
C
2β

ε
⎛
⎜
⎝
∣x∣r

∞
∑
i=0

(
C
2β

)

i
(

7√2r)
i
+ ∣x∣s

∞
∑
i=0

(
C
2β

)

i
(

7√2s)
i⎞
⎟
⎠

,

(26)
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for all x ∈ R. As in the first case, the conditions r, s < 7(β − log2 C) imply the convergence of the last two
series in (26). Therefore,

∥ f (x) − L(x)∥ ≤ ε C (
∣x∣r

2β −C 7√2r
+

∣x∣s

2β −C 7√2s
) .

Third case: γ(x, y) = ε (∣x∣r ∣y∣s + ∣x∣r+s + ∣y∣r+s).
Likewise, we get

∥ f (x) − L(x)∥ ≤
C
2β

Γ(x, x) =
C
2β

∞
∑
i=0

(
C
2β

)

i
γ (

7
√

2ix,
7
√

2ix)

=
C
2β

∞
∑
i=0

(
C
2β

)

i
3ε ∣

7
√

2ix∣
r+s

,

(27)

for all x ∈ R. On the other hand, the condition r + s < 7(β − log2 C) entails the convergence of the last series
in (27). As a consequence,

∥ f (x) − L(x)∥ ≤ 3εC (
∣x∣r+s

2β −K 7√2r+s
) .

Corollary 2. Let X be a quasi-β-Banach space. Moreover, let f ∶ R→ X be a function such that

∥ f ( 7
√

x7 + y7) − f (x) − f (y)∥ ≤

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ε (∣x∣r ∣y∣s) , r + s > 7(β + log2 C),

ε (∣x∣r + ∣y∣s) , r, s > 7(β + log2 C),

ε (∣x∣r ∣y∣s + ∣x∣r+s + ∣y∣r+s) , r + s > 7(β + log2 C),

(28)

for all x, y ∈ R, with r, s, ε ∈ R≥0. Then Eq. (9) has a unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε C
7√2r+s − 2β C

∣x∣r+s, r + s > 7(β + log2 C),

ε C (
∣x∣r

7√2r − 2β C
+

∣x∣s
7√2s − 2β C

) , r, s > 7(β + log2 C),

3 ε C
7√2r+s − 2β C

∣x∣r+s, r + s > 7(β + log2 C),

(29)

for all x ∈ R.

Proof. Following the same notation of Theorem 2, we have

γ(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ε (∣x∣r ∣y∣s) , r + s > 7(β + log2 C),

ε (∣x∣r + ∣y∣s) , r, s > 7(β + log2 C),

ε (∣x∣r ∣y∣s + ∣x∣r+s + ∣y∣r+s) , r + s > 7(β + log2 C),

for all x, y ∈ R. The rest of the proof runs as in Corollary 1.
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Remark 2. Corollaries 1 and 2 show that 7(β ± log2 C) play a relevant role in the stability of functional Eq.
(9). In particular, it is worth noticing that β − log2 C ≤ 1 and β + log2 C > 0. Accordingly, this means that
functional Eq. (9) has two septic solutions in ]0, 7], each of them is unique in the sense of (23), (24) and
(28), (29).

3.1. A counterexample of nonstability

We now provide an example showing the nonstability of Eq. (9) in Corollary 1. More precisely, we
prove that Eq. (9) is not stable for r = s = 7 with β = C = 1 for γ(x, y) = ε (∣x∣r + ∣y∣s). Note that in (23) the
conditions r, s < 7(β − log2 C) do not hold, thus making the solution unstable.

Remark 3. Under the hypotheses of Theorem 1, Eq. (9) implies that

f (q
n
7 x) = qn f (x), q ∈ Q, n ∈ Z,

for all x ∈ R. If moreover f is continuous on R, we have that f (x) = x7 f (1) for all x ∈ R.

Example 1. Let ϕ ∶ R→ R be a function defined as follows:

ϕ(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

α, x ≥ 1,

α x7, ∣x∣ < 1,

−α, x ≤ −1,

(30)

with α > 0 being a constant. Moreover, let f ∶ R→ R be a function such that

f (x) ∶=
∞
∑
k=0

ϕ(2kx)
27k ,

for all x ∈ R. Under the above assumptions, f satisfies the following inequality

∣ f ( 7
√

x7 + y7) − f (x) − f (y)∣ ≤
3α ⋅ 221

127
(∣x∣7 + ∣y∣7) , (31)

for all x, y ∈ R but in general there is no septic function L ∶ R→ R such that

∣ f (x) − L(x)∣ ≤ λ∣x∣7, (32)

for all x ∈ R, with λ > 0 being a constant.

First, note that the boundness of f follows from (30). In fact, ∣ϕ(x)∣ ≤ α for all x ∈ R implies that

∣ f (x)∣ ≤
128
127

α on the entire real line.

We now proceed to prove that f satisfies inequality (31). Obviously, (31) holds for x = y = 0. Now we

distinguish two case. For ∣x∣7 + ∣y∣7 ≥
1
27 we see that

∣ f ( 7
√

x7 + y7) − f (x) − f (y)∣ ≤ 3α
128
127

.
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Thus (31) holds in ∣x∣7 + ∣y∣7 ≥
1
27 . Now suppose that 0 < ∣x∣7 + ∣y∣7 <

1
27 . It is straightforward to see that

there is a n ∈ N0 such that
1

27(n+2)
≤ ∣x∣7 + ∣y∣7 <

1
27(n+1)

. (33)

This implies that 27n ∣x∣7 <
1
27 and 27n ∣y∣7 <

1
27 . Thus,

2kx

2ky

2k 7
√

x7 + y7

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

∈] − 1, 1[, k = 0, 1,⋯, n − 1,

and so
ϕ (2k 7

√

x7 + y7) − ϕ (2kx) − ϕ (2ky) = 0, k = 0, 1,⋯, n − 1.

By (33), we have that

∣ f ( 7
√

x7 + y7) − f (x) − f (y)∣ =

RRRRRRRRRRRRRR

∞
∑
k=0

ϕ (2k 7
√

x7 + y7)

27k −

∞
∑
k=0

ϕ (2kx)
27k −

∞
∑
k=0

ϕ (2ky)
27k

RRRRRRRRRRRRRR

≤

∞
∑
k=0

2−7k
∣ϕ (2k 7

√

x7 + y7) − ϕ (2kx) − ϕ (2ky)∣

≤ 3α

∞
∑
k=n

2−7k
≤

3α ⋅ 221

127
(∣x∣7 + ∣y∣7) ,

for all x, y ∈ R such that 0 < ∣x∣7 + ∣y∣7 <
1
27 . Therefore, we conclude that f satisfies inequality (31) for all

x, y ∈ R.
We only need to show that Eq. (9) is not stable for r = s = 7 and β = C = 1 for γ(x, y) = ε (∣x∣r + ∣y∣s)

with r, s < 7(β − log2 C). Suppose that there is a septic function L ∶ R→ R for which (32) holds. Note that
continuity of f on the entire real line implies that L is continuous at the origin. Likewise, the boundness of
f on R entails that L is bounded in any open interval containing the origin. Thus L(x) = a x7 for any x ∈ R
and for a suitable constant a ∈ R, which follows from Remark 3. As a consequence,

∣ f (x)∣ ≤ (λ + ∣a∣) ∣x∣7, (34)

for all x ∈ R. On the other hand, we can take l ∈ N0 such that αl > λ + ∣a∣. It is worth noting that x ∈ ]0, 2−l[

implies that 2kx ∈]0, 1[ for all k = 0, 1,⋯, l − 1. Accordingly,

∣ f (x)∣ ≥
l−1

∑
k=0

α (2kx)
7

27k = αlx7
> (λ + ∣a∣) ∣x∣7, x ∈ ]0, 2−l

[ .

This leads to a contradiction with (34).

4. Hyers-Ulam stability of Eq. (9) in (β, p)-Banach spaces

In this section, we generalize the Hyers-Ulam stability of Eq. (9) in (β, p)-Banach spaces. More
precisely, we state and prove certain stability properties of Eq. (9) in these function spaces.
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First, we need to recall the notion of subhomogeneous function and superhomogeneous function. We
refer the reader to [35,36] for further information on the these definitions and related results.

Fix d, λ ∈ N such that λ > 1. Let ρ ∶ X → Y be a function with domain X and codomain (Y,≤). Moreover,
assume that X and Y are both closed under addition. We say that ρ is a contractively subhomogeneous
function of degree d if there is a real constant θ such that

ρ (λx) ≤ θ λd ρ (x) , 0 < θ < 1, x ∈ X. (35)

Likewise, we say that ρ is an expansively superhomogeneous function of degree d if there is a real constant
θ such that

ρ (λx) ≥
λd

θ
ρ (x) , 0 < θ < 1, x ∈ X. (36)

Note that removing the constant θ in Definition (35) and taking the equality sign, we get the well known
definition of homogeneous function of degree d. In the literature, contractively subhomogeneous (resp.
expansively superhomogeneous) functions of degree 1 are simply called contractively subhomogeneous
(resp. expansively superhomogeneous) functions.

Remark 4. Let l ∈ {−1, 1}. We see at once that

ρ (λlnx) ≤ (λlθ)
n

ρ(x), n ∈ N, x ∈ X,

if ρ is either contractively subhomogeneous (l = 1) or expansively superadditive (l = −1).

Now, we are in position to characterize the Hyers-Ulam stability of Eq. (9) in (β, p)-Banach spaces, as
stated in the following theorems.

Theorem 4. Let X be a (β, p)-Banach space and f ∶ R→ X be a γ-approximately radical septic function. Moreover,
suppose that γ is contractively subhomogeneous in the sense of (35) with 21−7β θ < 1. Then Eq. (9) has a unique
septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤
Γ̂7(x)

p
√

27βp − (2θ)p
, (37)

for all x ∈ R, with

Γ̂n(x) ∶= 27β

n

∑
i=1

(
C
2β

)

i
γ (

7
√

2i−1 x,
7
√

2i−1 x) . (38)

Proof. First, (17) implies that

∥ f (x) −
f (2x)

27 ∥ ≤
Γ̂7(x)

27β
. (39)
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Note that Γ̂7 is contractively subhomogeneous in the sense of (35) with 21−7β θ < 1. Thus, replacing x by
2ix in (39), we have

∥
f (2l x)

27l −
f (2mx)

27m ∥

p

=

XXXXXXXXXXXXXXX

m−1

∑
i=l

⎛

⎝

f (2ix)
27i −

f (2i+1x)

27(i+1)

⎞

⎠

XXXXXXXXXXXXXXX

p

≤

m−1

∑
i=l

1
27iβp

XXXXXXXXXXX

f (2ix) −
f (2i+1x)

27

XXXXXXXXXXX

p

(39)
≤

1
27βp

m−1

∑
i=l

1
27iβp Γ̂7(2ix)p

≤ (
Γ̂7(x)

27β
)

p m−1

∑
i=l

(21−7β θ)
ip

, m, l ∈ N0 ∶ m > l,

(40)

for all x ∈ R. It is worth noting that {2−7k f (2kx)} is a Cauchy sequence. Since X is a (β, p)-Banach space X,
the previous sequence is convergent over the entire real line. This allows us to define a function L ∶ R→ X
by

L(x) ∶= lim
k→∞

f (2kx)
27k ,

for all x ∈ R. Hence

∥L (
7
√

x7 + y7) − L(x) − L(y)∥
p
≤ γ(x, y)p lim

k→∞
(21−7βθ)

kp
= 0,

and so
L (

7
√

x7 + y7) = L(x) + L(y), (41)

for all x, y ∈ R. From (41), we see that L is a septic function. Moreover, letting k →∞ in (40) with l = 0, we
deduce that L satisfies (37) near f .

Now, we proceed to show the uniqueness of L. Let S ∶ R→ X be a septic function which also satisfies
both (9) and (37). From (9), we see that S (

7√2kx) = 2k S(x) ⇒ S (2kx) = 27kS(x) for all x ∈ R and k ∈ N0.

Accordingly, the contractively subhomogeneity of Γ̂7 gives

XXXXXXXXXXX

f (2kx)
27k − S(x)

XXXXXXXXXXX

p

≤
Γ̂7 (2kx)

p

27βp − (2θ)p 2−7βkp
≤

Γ̂7(x)p

27βp − (2θ)p (21−7βθ)kp,

which for k →∞ gives S(x) = L(x) for all x ∈ R. The proof is complete.

Theorem 5. Let X be a (β, p)-Banach space and f ∶ R→ X be a γ-approximately radical septic function. Moreover,
suppose that γ is expansively superhomogeneous in the sense of (36) with 27β−1θ < 1. Then Eq. (9) has a unique
septic solution L ∶ R→ X satisfying

∥ f (x) − S(x)∥ ≤
Γ̂7(x)

p
√

(2θ−1)p − 27βp
,

with Γ̂7 defined as in (38) and for all x ∈ R.

Proof. The theorem can be handled in the same way of Theorem 4. In fact, (39) entails that

∥ f (x) − 27 f (
x
2
)∥ ≤ Γ̂7 (

x
2
) , (42)
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for all x ∈ R. Analysis similar to that in the proof of Theorem 4 shows that

∥27l f (2−l x) − 27m f (2−mx)∥
p
=

XXXXXXXXXXXXXXX

m−1

∑
i=l

(27i f (2−ix) − 27(i+1) f (2−(i+1)x))

XXXXXXXXXXXXXXX

p

≤

m−1

∑
i=l

∥27i f (2−ix) − 27(i+1) f (2−(i+1)x)∥
p

≤

m−1

∑
i=l

27iβp
∥ f (2−ix) − 27 f (2−(i+1)x)∥

p

(42)
≤

m−1

∑
i=l

27iβp Γ̂ (2−(i+1)x)
p
≤ (

Γ̂(x)
27β

)

p m

∑
i=l+1

(27β−1θ)
ip

, m, l ∈ N0 ∶ m > l,

for all x ∈ R. Thus {27k f (2−kx)} is a Cauchy sequence. Taking into account the expansively
superhomogeneity of Γ̂7, the rest of the proof runs as in Theorem 4.

The proof of Theorem 4 enables us to prove the Hyers-Ulam stability for Eq. (9) if γ is contractively
subhomogeneous (or expansively superhomogeneous) of degree d > 1, as stated in the following
two theorems.

Theorem 6. Let X be a (β, p)-Banach space and f ∶ R→ X be a γ-approximately radical septic function. Moreover,
suppose that γ is contractively subhomogeneous of degree 2 in the sense of (35) with 22−7βθ < 1. Then Eq. (9) has a
unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤
Γ̂7(x)

p
√

27βp − (4θ)p
,

with Γ̂7 defined as in (38) and for all x ∈ R.

Theorem 7. Let X be a (β, p)-Banach space and f ∶ R→ X be a γ-approximately radical septic function. Moreover,
suppose that γ is is expansively superhomogeneous of degree 2 in the sense of (36) with 27β−2θ < 1. Then Eq. (9) has
a unique septic solution L ∶ R→ X satisfying

∥ f (x) − L(x)∥ ≤
Γ̂7(x)

p
√

(4θ−1)p − 27βp
,

with Γ̂7 defined as in (38) and for all x ∈ R.
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8. Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math.

Anal. Appl. 1994, 184, 431–436. [CrossRef] [CrossRef]
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