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Abstract: In the study of water transference in soil according to Darcy law, the knowledge
of hydrodynamic characteristics, formed by the water retention curve θ(ψ), and the hydraulic
conductivity curve K(ψ) are of great importance. The first one relates the water volumetric content (θ)
with the water-soil pressure (ψ); the second one, the hydraulic conductivity (K) with the water-soil
pressure. The objective of this work is to establish relationships between both curves using concepts
of probability theory and fractal geometry in order to reduce the number of unknown functions.
The introduction of four definitions used at the literature of the pore effective radius that is involve
in the general model has permitted to establish four new specials models to predict the relative
hydraulic conductivity. Some additional considerations related to the definitions of flow effective
area and the tortuosity factor have allow us to deduce four classical models that are extensively used
in different studies. In particular, we have given some interpretations of its empirical parameters in
the fractal geometry context. The resulting functions for hydrodynamic characteristics can be utilized
in many studies of water movement in the soil.

Keywords: areal porosity; volumetric porosity; fractal area-volume relationship; tortuosity factor;
joint probability

1. Introduction

Darcy’s law [1] establishes that the water flow in porous media is proportional to the hydraulic
gradient; the proportionality coefficient is denoted hydraulic conductivity (K). The law, discovered in
the context of water flow in saturated soils, has since been generalized to flow in unsaturated soil [2].
In saturated soils, conductivity is independent of water pressure, whereas in unsaturated soils it is a
highly nonlinear function of pressure (ψ), or volumetric water content (θ) [3–8].

The saturated hydraulic conductivity, denoted KS, is at most a function of spatial coordinates.
In unsaturated soils the hydraulic conductivity is a function of water pressure K(ψ) as well as spatial
coordinates. In such cases the soil-water retention curve θ(ψ) is needed to relate volumetric water
content to soil-water pressure. The two curves θ(ψ) and K(ψ) are known as the soil hydrodynamic
characteristics and are important to the study of mass and transfers such as infiltration, drainage and
evaporation, and groundwater recharge [2,9–12].

The aim of the present work is to establish relationships between the soil-water retention curve
and hydraulic conductivity curve, using concepts of probability theory and fractal geometry in order
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to reduce the amount of unknown functions in the unsaturated soil zone. Soil here is considered as
a set of Lebesgue measure different than zero. This does not consider sets which porosity is a unity,
such as Menger sponge, which may not represent natural soil.

2. Materials and Methods

2.1. A General Model of Hydraulic Conductivity

A conceptual model for the hydraulic conductivity based on Poiseuille law of water flow in
capillary tubes has been proposed at the literature [13–18]. The model has the general form:

K = fCf

∫
Ω

(R/T)2dω (1)

where Ω represents the water flow area divided by total area of the exposed face [13]; f = ρw g/η is the
fluidity, ρw is water density, η is the dynamical viscosity coefficient, g is the gravitational acceleration;
R is the pore radius; the non-dimensional coefficient (Cf) take in account the irregular shape of the
pore perimeter, for a circular pore Cf = 1/8; if R is taken as the hydraulic radius then Cf is called Koseny
coefficient [19] with Cf = 1/2 for a circle; T is the tortuosity factor defined as T = dzf/dz ≥ 1, where z
is the rectilinear path of water particles following macroscopic direction of the movement and zf is
the actual path of water particles [20]; ω is the water flow effective area relative to total area of soil or
partial effective areal porosity.

The effective area definition is established by Fuentes et al. [14–18] from the probabilistic idea of
Childs and Collis–George [21] and fractal geometry concepts. After a perpendicular cut to macroscopic
trajectory of water we obtain two faces, which are located at z and z + dz positions (Figure 1); the radii
of pores of the z-face are denoted by r and those of the z + dz-face are denoted by ρ. A water particle
in a pore of z-face can continue its trajectory by the same pore or by other pore of equal or different
radius. The introduction of the joint probability of the two faces at intermediate point z + 1/2 dz allows
the modeling of these possibilities.

Figure 1. A cross section in the perpendicular macroscopic direction of the water flow. In the z-face the
different pore radius are represented by r and in the z + dz-face the different pore radius are represented
by ρ, where dz is the pore size order.

We consider a completely saturated soil. Childs and Collis–George [21] assume that the pore
size distribution f(r) is the same at both faces and that dθ(r) = f(r)dr is the water content in the pore
interval containing r, (r − 1/2 dr, r + 1/2 dr), and dθ(ρ) = f(ρ)dρ is the water content in the pore interval
containing ρ, (ρ − 1/2 dρ, ρ + 1/2 dρ), at the other face. The completely random joint probability of
all the pores represented by these intervals is equal to the product of these probabilities, provided
that dz is of the order of a pore size and less than a characteristic particle size. The product of dθ(r)
and dθ(ρ) represents the flow effective area dω(r,ρ) = dθ(r)dθ(ρ) = f(r)dr f(ρ)dρ, which integration
over whole pore domain gives the total effective flow area µ = φφ = φ2, where µ represents also a
total effective areal porosity and φ the total volumetric porosity. In a parallel capillary system, a water
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particle moves always in the same capillary and the effective area is equal to volumetric porosity
dω(r) = dθ(r) = f(r)dr, which integration gives µ = φ [22].

In probabilistic terms, the Purcell model represents a complete correlation between the two
faces, whereas the Childs and Collis–George model represents a complete decorrelation, these models
represent the possible extreme behaviors. Mualem and Dagan [13] show that the Purcell model can be
formally deduced from the Childs and Collis–George model if the flow effective area is defined as
dω(r, ρ) = f(r)dr δ(ρ − r) dρ, where δ indicates the Dirac delta.

An intermediate approach between the Purcell and Childs and Collis–George models is proposed
by Millington and Quirk [23]. These authors suppose that, if the areal porosity at each face isφs, then the
effective areal porosity at intermediate point is µ = φsφs where s = 1/2 represent the Purcell model
and s = 1 the Childs and Collis–George model. Further, since φ2s

≤ φ, Millington and Quirk proposed
to add the larger solid area (1 − φ)s to φ2s, in order to obtain the total area, that is (1 − φ)s + φ2s = 1.
In most studies about soil structure, it is studied as a fractal object [16,17,24–28]. In this context,
we’ll offer an interpretation of the relationship (1 − φ)s + φ2s = 1.

In Euclidean geometry we have V ∝ L3 and A ∝ L2, where V, A, and L are the volume, area
and length in an object, respectively; for example in a sphere V = 4/3πr3, A = 4πr2, L = r; since
L ∝ V1/3 we have A ∝ V2/3. Using the Mandelbrot [29] area–volume relationship in fractal geometry we
have A ∝ VD/E, where D is the particle surface fractal dimension or the particle-pore interface fractal
dimension and E = 3 is the Euclidean dimension of the space where the object is embedded.

In a cross section, the total area is the sum of the solid cross-sectional area and the pore
cross-sectional area. If µs = 1 − µ is the solid cross-sectional area relative to the total area (call it
the areal solidity), and φs = 1 − φ is the solid volume relative to soil volume (call it volumetric
solidity), then µs = φs

s, or 1 − µ = (1 − φ)s, where s = D/E is the fractal dimension relative to Euclidean
dimension. Following the probabilistic idea, the areal and volumetric porosities relationship resulting
is µ = φsφs = φ2s; s = 1/2 corresponds to Purcell model and s = 1 to Childs and Collis–George model.
Notice that the solid area takes the exponent s rather than 1-s; this is because µs = φs

s is Hausdorff
measure of the solid phase. The exponent 1-s is important in the calculus of the parallel body volume
of a fractal [30].

The r-parallel body of a set F is defined by Pr(F) =
{
x ∈ <E :

∣∣∣x− y
∣∣∣≤ r, y ∈ F

}
where <E is the

E-cartesian product of real numbers and represents soil (both pores and solids), F is the solids and
<

E
− F the pores. Clearly, F is contained in Pr(F). The volume of a parallel body is obtained as the

product of the cover set’s volume, crE where c is a form coefficient (c = 1 if all covers are parallelepipeds),
and the number of covers; therefore: volE(Pr) = NrcrE. Considering that Nr ∝ r−D when r→ 0 ,
we obtain volE(Pr) ∝ rE−D. It must be noted that the body parallel volume of the solids is not the same
as the porous volume; it would, however, be the same if porosity tends to unity and if F were dense
in<E.

Since µs + µ = 1, the relationship between the relative fractal dimension and the total volumetric
porosity is defined implicitly by the equation:

(1 − φ)s + φ2s = 1 (2)

where s = D/E. It can be shown that µ ≤φ, s→1/2 when φ→0, and s→1 when φ→1, in other words
1/2 < s < 1 when 0 < φ < 1.

From mass additive property we deduce the relationship ρt = ρs φs + ρv φ, where ρt is the total
density of soil, ρs the density of solids, and ρv the density of pores; if this last one is considered
null, we get the classic φ = 1 − ρt/ρs formula for estimating porosity, where ρt becomes the total
density of dry soil. The comparison with Equation (2) allows us to deduce that ρs/ρt = φs−1

s and
ρv/ρt = φ2s−1. The first could also be written as ρs/ρt = φs−1

s /φs, which is the quotient of Hausdorff
measure and Lebesgue measure of solids. The second one can be interpreted as the quotient of the
pores Hausdorff measure and the pores parallel body volume if we write ρv/ρt = φs/φ1−s. It can be
shown that φs ≤ φ

1−s
s / and φ ≤ φ1−s.
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Clearly the relation s(φ) defined by Equation (2) cannot by applied, for instance, to Menger sponge,
where φ= 1 and s = log20/3log3 � 0.9089; in other words, this relationship cannot be applied to any
abstract sets where Lebesgue measure is zero (φs = 0) and s < 1. Because relation s(φ) established a
one-to-one relationship between porosity and the fractal dimension of solid pore interphase, it may not
work for certain types of soils. However, their implications in the modeling of hydraulic conductivity
are being investigated.

For the modeling of the hydraulic conductivity of unsaturated soils we accept the classic hypothesis
that the water is contained in saturated pores with radius r, where 0 < r < R, for a given water content
θ(R). Consequently, the effective area of flux, or partial area porosity, is the generalization of µ = φs φs:

dω(r, ρ) = dθs(r)dθs(ρ) (3)

As concerns the tortuosity factor, it was demonstrated in Fuentes et al. [17] that R is the pore radius
measured perpendicularly to actual trajectory of the water particles (zf) and Rs is its projection in the
macroscopic direction (z), consequently Rs/R = dz/dzf = 1/T. According to the probabilistic idea
we have Rs ∝ RsRs = R2s, which we can write as an equality Rs/Rso = (R/Ro)

2s with Rso = Ro/To,
where Ro is a reference radius and To the associated tortuosity factor. The pore radius-tortuosity factor
relationship resulting is:

T(R) = To(Ro/R)δ (4)

where 0 < δ = 2s− 1 < 1.
The general hydraulic conductivity model results of the introduction of the Equations (2) and (4)

in the Equation (1):

K = f
Cf

T2
oR2(2s−1)

o

∫
Ω

R4s(r, ρ)dθs(r)dθs(ρ) (5)

The saturated hydraulic conductivity (Ks) is obtained from Equation (5), replace Ω by the total
pore domain ΩT.

2.2. Classical Models of Hydraulic Conductivity

Classic models reported in literature may be deduced from the proposed general
model, provided that certain hypotheses are introduced. From Equation (3) we can deduce
dω(r, ρ) = s2[θ(r)]s−1[θ(ρ)]s−1dθ(r)dθ(ρ), with 0 < r < R and 0 < ρ < R. Assuming that the
multiplicative function of the θ(r) and θ(ρ) differentials can be replaced by a medium value,
which clearly depends on a superior limit, we have:

dω(r, ρ; R) = [θ(R)]2s−2dθ(r)dθ(ρ) (6)

where the s2 term has been eliminated to satisfy:

R∫
0

R∫
0

dω(r, ρ; R) = ω = θ2s (7)

Likewise, tortuosity will depend only on the major radius, that of θ(R). We know that for a small
R θ(R) = φ(R/Ro)λ, where Ro is the radius of a reference pore and λ > 0 is an index of pores (Brooks
and Corey, 1964). From Equation (4) we obtain that:

T(R) = To

[
φ

θ(R)

]γ
with γ =

δ

λ
(8)

In several articles [24,25] has been suggested that partial volumetric porosity is proportional to the
volume of the parallel body, which means that θ(R)∝RE-D, where the fractal dimension D is estimated
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from soil-water retention curve, a result that’s valid when porosity tends to unity. If that’s the case,
we get:

λ = E−D (9)

Considering Equations (6) and (8), Equation (1) becomes:

K = f
Cf

T2
o
φ2s−2

[
θ

φ

]p∫
Ω

[R(r, ρ)]2dθ(r)dθ(ρ) with p = (2s− 2) + (2γ) (10)

In the power p, the first addend represents the global effects of the correlation among pores,
whereas the second represents the global effects caused by the tortuosity of flow trajectories.

For each relation between the effective radius R(r,ρ) and the radii r and ρ we can deduce a special
model of the hydraulic conductivity. We will obtain four models corresponding to four relations
R(r,ρ) utilized in models of the hydraulic conductivity reported at the literature: (i) ‘small pore’ model
R(r,ρ) = min(r,ρ) used by Childs and Collis–George [21]; (ii) ‘geometric pore’ model R(r, ρ) =

√
rρ used

by Mualem [31]; (iii) ‘neutral pore’ model R(r,ρ) = either r or ρ corresponding to Burdine (1953) model;
and iv) ‘large pore’ model R(r,ρ) = max(r,ρ) used by Fuentes [14]. Following the general indications of
Brutsaert [32] for the integration of the Equation (10), the resulting special models are:

Small pore model: R(r, ρ) = min(r, ρ).

K(θ) = f
2Cf

T2
o
φ2s−2

[
θ

φ

]p θ∫
0

[θ− ϑ]r2dϑ (11)

This is the model of Childs and Collis–George [21], with a correction factor [θ/φ]p.
Geometric pore model: R(r, ρ) =

√
rρ.

K(θ) = f
Cf

T2
o
φ2s−2

[
θ

φ

]p

θ∫
0

rdϑ


2

(12)

This model presents the structure of Mualem’s model [31] with p = 1/2.
Neutral pore model: R(r, ρ) = either r or ρ.

K(θ) = f
Cf

T2
o
φ2s−1

[
θ

φ

]p+1 θ∫
0

r2dϑ (13)

This model presents the structure of Burdine’s model [33] with p = 1.
Large pore model: R(r, ρ) = max(r, ρ).

K(θ) = f
2Cf

T2
o
φ2s−2

[
θ

φ

]p θ∫
0

r2ϑdϑ (14)

Childs and Collis–George [21] suppose that the resistance to the flow is determined by the
small pore. Whereas Fuentes [14] proposes that, to deduce the opposite behavior, the conductance
is determined by the pore of greater size [17]. Mualem [31] gives a little more weight to the large
pore by proposing the geometric mean. The Burdine model is deduced when the pores sizes have the
same weight.
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The classic models are reported for relative hydraulic conductivity [Kr(θ)] and they are in function
of the retention curveψ(θ). These are obtained from Equations (11)–(14) with the rule Kr(θ) = K(θ)/K(θs),
and the introduction of the Young–Laplace–Jurin law for the capillary rise phenomena:

ψ = −
`2L
R

cos(αc) (15)

where the scale or capillary number (`L) is defined by `L =
√

2σ/ρwg [34], σ is the interfacial tension,
`L � 0.386 cm at 20 ◦C; αc is the contact angle formed between the air–water interface and the solid
particles, assumed generally constant and equal to zero.

Classic models also consider the residual water content θr, defined by Brooks and Corey [35]
as K(θr) = 0. This can be incorporated in the precedent models replacing θ by the effective water
content θef = θ − θr, and φ by the effective volumetric porosity φef = φ − θr. The exponent s must be
calculated by replacing φ with effective porosity (φef) in Equation (3); θr is added to solid particles,
i.e., φsef = 1 − φef = φs + θr. In the classical conductivity models, the porosity φ is replaced by the
volumetric water content to natural saturation θs, when entrapped air is considered.

The power p that appears in models (11)–(14) has been considered as an empiric parameter.
This power (p = p1 + p2) is the result of the effects of correlation between pores, [θ(R)] p1 with
p1 = 2s − 2, and tortuosity T2(R) = T2

o[φ/θ(R)] p2 with p2 = 2(2s− 1)/λ. To know the order of
magnitude of the power p2 we assume that the particle surface fractal dimension is roughly equal to
the fractal dimension estimated from the soil-water retention curve, i.e., from Equation (9) λ � 3(1 − s),
hence p2 � 2(2s − 1)/3(1 − s). In consequence, the value of p may be estimated from porosity, some of
which are shown in Table 1.

Table 1. Predicted values of the exponent p of the classical hydraulic conductivity models, which
results from the effect of the pore correlation (p1) and the tortuosity factor (p2), for some values of the
total volumetric porosity.

φ S = D/3 p1 p2 p = p1 + p2

0 1/2 −1 0 −1
0.3671 2/3 −2/3 2/3 0

1/2 0.6942 −0.6115 0.8470 0.2355
0.6180 0.7202 −0.5596 1.0494 0.4898

1 1 0 ∞ ∞

The approximate value of p ≈ 1/2 was obtained by Mualem [31] from the calibration of Equation
(12) over the experimental data of 45 soils reported in different works, with total volumetric porosity
in the range of 0.4 < φ < 0.7. According to Table 1, these soils may be represented by a soil with an
average porosity of roughly 0.6.

3. Results and Discussion

3.1. Some New Models of Hydraulic Conductivity

We may obtain new hydraulic conductivity models from the general model established by
Equation (5), without the introductions of those hypotheses established in Equations (6) and (8) to
deduce the classic conductivity models, which may be restricted.

Each of the R(r,ρ) relationships mentioned above corresponds to a specific model of hydraulic
conductivity. And again, following Brutsaert [32] for the integration of the Equation (5), the resulting
special models are:
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Small pore model: R(r, ρ) = min(r, ρ)

K(R) = f
2Cf

T2
oR2(2s−1)

o

R∫
0

[θs(R) − θs(r)] r4sdθs(r) (16)

Geometric pore model: R(r, ρ) =
√

rρ.

K(R) = f
Cf

T2
oR2(2s−1)

o


R∫
0

r2sdθs(r)


2

(17)

Neutral pore model: R(r, ρ) = r or R(r, ρ) = ρ.

K(R) = f
Cf

T2
oR2(2s−1)

o

θs(R)


R∫
0

r4sdθs(r)

 (18)

Large pore model: R(r, ρ) = max(r, ρ).

K(R) = f
2Cf

T2
oR2(2s−1)

o

R∫
0

r4sθs(r)dθs(r) (19)

Note that the Equations (17) and (18) can be generalized assuming R(r, ρ) = rαρ1−α,
where 0 ≤ α ≤ 1; the Equation (17) follow with α = 1/2 and the Equation (18) with α = 0 or α
= 1.

To obtain specific functions from new special models is necessary to provide the function θ(R).
This can be obtained from the soil-water retention curve θ(ψ), relating the soil-water content to
soil-water pressure, and the Laplace law, defined by the Equation (15).

From Equations (16)–(19) we can obtain the corresponding models to calculate the relative
hydraulic conductivity from the retention curve:

K(Θ)

Ks
=

Θ∫
0

(Θs
− ϑs)

ϑs−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ

/ 1∫
0

(1− ϑs)
ϑs−1∣∣∣ψ(ϑ)∣∣∣4s

dϑ (20)

K(Θ)

Ks
=


Θ∫
0

ϑs−1∣∣∣ψ(ϑ)∣∣∣2s dϑ
/ 1∫

0

ϑs−1∣∣∣ψ(ϑ)∣∣∣2s dϑ


2

(21)

K(Θ)

Ks
= Θs


Θ∫
0

ϑs−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ

/ 1∫
0

ϑs−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ

 (22)

K(Θ)

Ks
=

Θ∫
0

ϑ2s−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ

/ 1∫
0

ϑ2s−1∣∣∣ψ(ϑ)∣∣∣4s
dϑ (23)

where Θ = (θ− θr)/(θs − θr) is an effective degree of saturation.
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3.2. Applications

3.2.1. Brooks and Corey Equation

The equation proposed by Brooks and Corey [35] to represent the soil-water retention curve is:

Θ = (ψcr/ψ)λ (24)

if ψ < ψcr, and Θ = 1 if ψcr ≤ ψ; where ψcr is a critical pressure and λ > 0 is an index of the pore
distribution. The assumption λ = E − D [24,25] is not used here.

The introduction of the Equation (24) in the Equations (20)–(23) gives the same expression for the
relative hydraulic conductivity:

K(Θ)/Ks = Θ2s(2/λ+1) (25)

The saturated hydraulic conductivity is given by:

Ks = fCf(θs − θr)
2s(Ro/To)

2Λ (26)

where we have defined Ro = λL

(
λL/

∣∣∣ψcr

∣∣∣). The factor Λ is different for each model: small pore

Λs = 1/[2(2/λ+ 1/2)(2/λ+ 1)]; geometricpore Λg = 1/(2/λ+ 1)2; neutralpore ΛN = 1/[2(2/λ+ 1/2)];
and large pore ΛL = 1/(2/λ+ 1). The following inequalities are satisfied Λs < Λg < ΛN < ΛL,
the equalities are given at extremes (λ→ 0, ∞ ). When λ→ 0 we have: Λs = λ2/8 < Λg = λ2/4 <
ΛN = λ/4 < ΛL = λ/2.

The corresponding saturated hydraulic conductivity value satisfies the inequalities:
Kss < Ksg < KsN < KsL.

3.2.2. Generalized Power Function

One of the larger groups of models used to represent the soil–water retention curve is the following
power function [36]:

ψ = ψdΘ−1/λ
(
1−Θ1/m

)1/n
(27)

where ψd is a pressure scale; m > 0, n > 0 and λ > 0 are three form parameters.
In Equation (27), we can note when Θ→ 0 we obtain the Brooks and Corey [35] equation, and when

λ = mn we obtain the van Genuchten equation [37]:

Θ(ψ) =
[
1 + (ψ/ψd)

n
]−m

(28)

Introducing the Equation (27) in the Equations (20)–(23) we obtain, respectively:

K(Θ)

Ks
=

ΘsBI
(
Θ1/m; 4sm/λ+ sm, 1− 4s/n

)
− BI

(
Θ1/m; 4sm/λ+ 2sm, 1− 4s/n

)
B(4sm/λ+ sm, 1− 4s/n) − B(4sm/λ+ 2sm, 1− 4s/n)

(29)

K(Θ)/Ks =
[
βI

(
Θ1/m; 2sm/λ+ sm, 1− 2s/n

)]2
(30)

K(Θ)/Ks = ΘsβI

(
Θ1/m; 4sm/λ+ sm, 1− 4s/n

)
(31)

K(Θ)/Ks = βI

(
Θ1/m; 4sm/λ+ 2sm, 1− 4s/n

)
(32)

where βI(x; p, q) = BI(x; p, q)/B(p, q), BI(x; p, q) is the incomplete beta function of variable x and
parameters p > 0 and q > 0 and B(p,q) = BI(1:p,q) is the complete beta function.

We can obtain closed-form equations accepting the van Genuchten [37] idea consisting in to
assign integral values to parameter p of the beta function and specially p = 1; this conduces to
impose relationships between the form parameters of the soil–water retention curve. This idea is
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only applicable to models defined by Equations (30)–(32) because the unicity of these relationships.
From Equation (29) we can obtain only closed-form equations of the first or second integral of the
numerator, the result is an incomplete closed-form formula (semi closed-form) of the conductivity.

Small pore model:

K(Θ)

Ks
=

ΘsBI

(
Θ1/m; 1, 1− 4s/n

)
− BI

(
Θ1/m; 1 + sm, 1− 4s/n

)
B(1, 1− 4s/n) − B(1 + sm, 1− 4s/n)

, λ =
4sm

1− sm
(33)

K(Θ)

Ks
=

ΘsBI

(
Θ1/m; 1− sm, 1− 4s/n

)
− BI

(
Θ1/m; 1, 1− 4s/n

)
B(1− sm, 1− 4s/n) − B(1, 1− 4s/n)

, λ =
4sm

1− 2sm
(34)

with n > 4s and BI

(
Θ1/m; 1, 1− 4s/n

)
= (1− 4s/n)−1

[
1−

(
1−Θ1/m

)1−4s/n
]
.

Geometric pore model:

K(Θ)/Ks =
[
1−

(
1−Θ1/m

)1−2s/n
]2

, λ =
2sm

1− sm
(35)

with n > 2s.
Neutral pore model:

K(Θ)/Ks = Θs
[
1−

(
1−Θ1/m

)1−4s/n
]

, λ =
4sm

1− sm
(36)

with n > 4s.
Large pore model:

K(Θ)/Ks = 1−
(
1−Θ1/m

)1−4s/n
, λ =

4sm
1− 2sm

(37)

with n > 4s.
We can note that soil–water retention curves induced by Equations (33) and (34) are equals to

those induces by Equations (36) and (37), respectively.
The use of models (33)–(37) reduces the form parameters number of the soil–water retention curve

defined by Equation (27): the three independent parameters {m, n, λ} are reduced to two parameters
{m, n}.

The form parameters can even be reduced to one. If we assume λ = mn in the Equation (27)
we obtain van Genuchten equation, Equation (28), which makes the function Θ(ψ) explicit where
the form parameters {m, n} are still independent. If we accept the relationships between λ and
m used to obtain Equations (33)–(37), the Equation (27) will have only one form parameter (m).
The corresponding models of the conductivity associated to van Genuchten equation with a form
parameter are the following:

Small pore model:

K(Θ)

Ks
=

ΘsBI

(
Θ1/m; 1, sm

)
− BI

(
Θ1/m; 1 + sm, sm

)
B(1, sm) − B(1 + sm, sm)

, 0 < sm = 1− 4s/n < 1 (38)

K(Θ)

Ks
=

ΘsBI

(
Θ1/m; 1− sm, sm

)
− BI

(
Θ1/m; 1, sm

)
B(1− sm, sm) − B(1, sm)

, 0 < 2sm = 1− 4s/n < 1 (39)

Geometric pore model:

K(Θ)/Ks =
[
1−

(
1−Θ1/m

)sm]2
, 0 < sm = 1− 2s/n < 1 (40)
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Neutral pore model:

K(Θ)/Ks = Θs
[
1−

(
1−Θ1/m

)sm]
, 0 < sm = 1− 4s/n < 1 (41)

Large pore model:

K(Θ)/Ks = 1−
(
1−Θ1/m

)2sm
, 0 < 2sm = 1− 4s/n < 1 (42)

A first evaluation of the predictive capacity of the relative hydraulic conductivity models defined
by Equations (38)–(42), on fifty soils of the GRIZZLY database reported by Haverkamp et al. [38],
was presented by Fuentes et al. [18] with acceptable results.

The classical version of the models defined by Equations (21) and (22) corresponds to the
Mualem [31] and Burdine [33] models that are defined in Equations (12) and (13). The use of these
models has been proved by different authors [37]. We will show the capacity of prediction of the model
that corresponds to the hypothesis of the large pore defined in Equation (23) and in particular the
close-form equation of the relative hydraulic conductivity defined in Equation (42).

We use three of the five soils that van Genuchten [37] analyzes, holding the values θr and θs that
the author use and the parameter s is estimated from θs. In Table 2 we present some properties of
the three soils. The parameters ψd and m obtained by least squares method corresponding to three
different models are presented in Table 3.

Table 2. Some physical properties of the three analyzed soils.

Soil Name θs
(cm3/cm3)

θr
(cm3/cm3)

Ks
(cm/day) s

Hygiene sandstone 0.250 0.153 108.0 0.642
Touchet Silt Loam G.E.3 0.469 0.190 303.0 0.688
Silt Loam G.E.3 0.396 0.131 4.96 0.673

Table 3. Parameters values of the soil water retention curve of the three analyzed soils corresponding
to three different models, Equations (40)–(42).

Soil Name Geometric Pore Neutral Pore Large Pore

−ψd (cm) m −ψd (cm) m −ψd (cm) m

Hygiene sandstone 146.71 1.3176 142.23 1.1020 129.61 0.6000
Touchet Silt Loam G.E.3 213.94 1.1896 205.17 0.9554 185.86 0.5329
Silt Loam G.E.3 253.28 0.5421 176.75 0.2687 165.63 0.2197

Figures 2–4 present the fitted soil water retention curves, and the predicted relative hydraulic
conductivity curves by the geometric pore, neutral pore and large pore models for the three studied
soils. We can observe that the predictions are good enough in these three soils. In addition, in Figure 5
we illustrate the prediction capability of the small pore model using the relationships between m and n
provides by the neutral pore and large pore models.

The analysis performed on the classical models and the comparison between experimental and
predicted relative hydraulic conductivity with the four special new models allows us to show that the
different models may be used to estimate relative hydraulic conductivity.
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Figure 2. Observed and calculated curves of the soil hydrodynamic characteristics of hygiene sandstone,
Equations (40)–(42).

Figure 3. Observed and calculated curves of the soil hydrodynamic characteristics of Touchet silt loam
G.E.3, Equations (40)–(42).
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Figure 4. Observed and calculated curves of the soil hydrodynamic characteristics of silt loam G.E.3,
Equations (40)–(42).

Figure 5. Observed and calculated curves of the relative hydraulic conductivity with small pore model,
Equations (38) and (39).

4. Conclusions

The proposed hydraulic conductivity model has been deduced using classic probabilistic theory
and fractal geometry concepts in order to approach the flow effective area and the tortuosity of flow
trajectories for each pore radius. The introduction of four definitions used at the literature of the pore
effective radius that is involved in the general model has permitted to establish four new models to
predict the relative hydraulic conductivity.

Some additional considerations related to the definitions of flow effective area and the tortuosity
factor have allow us to deduce four classical models that are extensively used in different studies.
In particular, we have given some interpretations of its empirical parameters in the fractal geometry
context. The power function proposed by Brooks and Corey (1964) to represent the water retention
curve leads to a power function to represent the relative hydraulic conductivity. The difference between
the new models consists in the prediction of the relative hydraulic conductivity.
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We have studied a general power function with three form parameters to represent the water
retention curve reported by Braddock et al. [36], which presents as a special case the equation of Brooks
and Corey [35] with a form parameter and the van Genuchten equation [37] with two form parameters.
With this function we have gotten close-form equations of hydraulic conductivity with two and one
form parameter. The general power function of the soil water retention curve and the close-form
equations of hydraulic conductivity, obtained through special fractal models, may be used for the
study of mass and energy transferences through soil, as infiltration, drainage, evaporation and ground
water recharge.
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