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Abstract: This article is devoted to some polar properties of quadrics in the projective Klingenberg
spaces over a local ring which is a linear algebra generated by one nilpotent element. In this case,
polar subspaces are described; the notion “degree of neighborhood” is used for the geometric
description of polar subspaces of quadrics. The polarity induced by a quadric is also studied.
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1. Introduction

Projective Klingenberg spaces (PKS) are incidence structures whose homomorphic image is a
projective space over a field. W. Klingenberg [1] started studying these structures (originally projective
planes with homomorphisms) as a special case of ring geometry in the mid-20th Century; PKS of a
general dimension n, n ≥ 2 was introduced by H.H. Lück [2]. In the 1980s, F. Machala [3] introduced
projective Klingenberg spaces over local rings. The arithmetical fundament of such spaces is a
free finite dimensional A-module over a local ring A (A-space in the sense of B.R. McDonald [4]).
Projective geometry is also related to the theory of geodesic mappings (see, e.g., in [5]).

In the case of PKS over certain local rings (plural algebras [6]), we may study in more detail
the structure of PKS and we can find some special properties—some of these are presented in [7],
where “linear subsets” of KPS were described, while this article is devoted to some polar properties of
quadrics in KPS over plural algebra. We present some geometric interpretation of certain “algebraic”
properties of quadrics and quadratic forms in such case.

Now, to make the paper self-contained, we remind some properties of KPS over the following
local algebra A.

Definition 1. [6] A plural algebra of order m over a field T is every linear algebra A on T having as a vector
space over T a basis:

{1, η, η2, . . . , ηm−1} with ηm = 0. (1)

Remark 1. It follows from Definition 1 that any element α of A may be uniquely expressed in the form

α=
m−1

∑
j=0

ajη
j.

A is a local ring with the maximal ideal a=ηA and all proper ideals of A are just η jA, 1 ≤ j ≤ m.
Evidently, {0} = ηm A ⊂ ηm−1 A ⊂ · · · ⊂ η1 A ⊂ η0 A = A.

Furthermore, A has following properties,
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1. the ring A is isomorphic to the factor ring of polynomials T[x]/(xm),
2. the ring A is isomorphic to the ring of all m×m matrices over T of the following form,

b0 b1 . . . bm−1

0
. . . . . .

...
...

. . . b0 b1

0 . . . 0 b0

 .

Definition 2. An incidence structure (plane, space) is understood to be any triple (P, H, I), where P, H 6= ∅,
I ⊆ P× H. Elements of the set P are called points, elements of the set H are called hyperplanes, and I is called
the incidence relation; instead of (X,H) ∈ I we will also write X IH.

If P=(P, H, I) and P ′=(P′, H′, I′) are incidence structures then a homomorphism of P to P ′ is
understood to be any mapping µ : P ∪ H → P′ ∪ H′ such that Im µ|P ⊆ P′, Im µ|H ⊆ H′ and
∀X ∈ P, ∀H ∈ H : (X I H)⇒ (µ(X) I′ µ(H)).

According to [8], let us define the following.

Definition 3. A projective Klingenberg space of dimension n, n ≥ 2, is an incidence structure P=(P, H, I)
with a homomorphism µ of P onto an n-dimensional projective space P0=(P0, H0, I0) such that

1. If X1, . . . , Xk, 1 ≤ k ≤ n, are points in P such that µ(X1), . . . , µ(Xk) are independent in P0, then there
exists a hyperplaneH in H such that X1, . . . , Xk I H. This hyperplane is unique if k = n.

2. This condition is dual of the condition 1.
3. If X1, . . . , Xn−1∈P andH1,H2∈H are such that µ(X1), . . . , µ(Xn−1) are independent, µ(H1), µ(H2) are

independent and X1, . . . , Xn−1 I H1,H2, then Y IH1,H2 and X1, . . . , Xn−1 IH imply Y IH.

Definition 4. Points X, Y ∈ P are called neighbors, if µ(X) = µ(Y). Otherwise, we speak of
non-neighbor points.

Let us remind the reader of a definition of a (coordinate) projective Klingenberg space over the ring
A (according to Machala [3]). For n ≥ 3, any projective Klingenberg space is isomorphic to a certain
projective Klingenberg space over a local ring. In the case of planes, it is true only for Desarguesian ones.

Through this paper, by the symbol [G] we will denote the linear span of a set G; the symbol 〈x〉
will denote the coset determined by an element x.

Definition 5. Let A be a local ring and a be its maximal ideal. Let us denote M=An+1, n ≥ 2, M̄=M/aM.
Then, an incidence structure PA such that

1. points in PA are just all submodules [x] ⊆ M such that 〈x〉 is a nonzero element of M̄,
2. hyperplanes in PA are just all submodules [u1,u2 . . .un] ⊆ M such that 〈u1〉, 〈u2〉, . . . , 〈un〉 are

linearly independent elements of M̄,
3. the incidence relation is an inclusion,

is called an n-dimensional projective Klingenberg space over the ring A.
For any point X = [x] of PA, an element x is called an arithmetical representative of the point X.

The module M is called the arithmetical fundament of the space PA, any of basis of M is called an arithmetical
basis of PA.

Let us remark that the homomorphic image of PA is defined to be the n-dimensional projective
space P0 over the field A/a (with an arithmetical fundament M̄). The respective homomorphism µ is
defined by

∀X, X=[x], x∈M : µ(X) = [〈x〉].
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The following definition is natural.

Definition 6. Let PA be an n-dimensional projective Klingenberg space and M be its arithmetical fundament.
Let a submodule K of M be given. A set

K = {X ∈ PA, X=[x] : x ∈ K} (2)

is called a k-dimensional subspace in PA, 0 ≤ k ≤ n−1, if K = [u1,u2 . . .uk+1], where 〈u1〉,
〈u2〉, . . . , 〈uk+1〉 are linearly independent elements of M̄.

The submodule K is called an arithmetical fundament of the subspace K.

Using this definition, we have that points and hyperplanes (according to Definition 5) correspond
to the cases k = 0 and k = n− 1, respectively.

Through the the rest of the paper, we study an n-dimensional PKS PA over a plural algebra A (the
generator of A is denoted by η) with arithmetical fundament denoted by M (Definition 5). Obviously,
the module M is an A-space.
Now, subspaces of PA may be characterized as follows:

Theorem 1. [9] LetPA be a projective Klingenberg space. Then k-dimensional subspaces ofPA, 0 ≤ k ≤ n− 1,
are just all subsets (2) such that K is a (k+1)-dimensional A-subspace in M.

(Let us remark, that Theorem 1 holds not only for KPSs over the plural algebra A, it follows
from [9] (cf. the proof of Lemma 1) that it holds true also in cases, when in the respective A-module M
(arithmetical fundament of PA), any linearly independent system of elements of M can be completed
to a basis of M.)

Definition 7. [9] Let X=[x] and Y=[y] be points of a projective Klingenberg space PA and let r be a
non-negative integer satisfying:

(ηm−rx ∈ [y]) ∧ (ηm−r−1x 6∈ [y] ∨ r = m).

The number r is called the degree of neighborhood of the points X and Y.

Remark 2. For a couple of non-neighbor points we have r = 0, for neighbor but distinct points 1 ≤ r ≤ m− 1
and for identical points r = m.

Definition 8. [7] Let X be a point and K be a subset of points of a projective Klingenberg space. We say
that r is a degree of neighborhood of X and K if there exists at least one point Y ∈ K such that the degree of
neighborhood of points X, Y is equal to r and the degree of neighborhood of X and any point of K is not greater
than r.

Remark 3. If K is a subspace of PA and K is an arithmetical fundament of K, then the degree of neighborhood
of a point X=[x] and subspace K is equal to r if and only if

(ηm−rx ∈ K) ∧ (ηm−r−1x 6∈ K ∨ r = m).

Let us recall (see [10]) that any linear form ϕ : M → A may be written in the form ϕ = ηh ϕ0,
where ϕ0 is a linear form with Imϕ0 6⊂a and h, 0≤h≤m, is uniquely determined integer (called the
order of the linear form ϕ).
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Theorem 2. [7] Let PA be a projective Klingenberg space. Let ϕ be an arbitrary linear form on M of order k.
Then, the set

H = {X ∈ PA, X = [x] : x ∈ Ker ϕ}

is formed by all points with the degree of neighborhood at least m−k to a certain hyperplaneH0 of PA. If ϕ0 is a
form of zero order such that ϕ = ηk ϕ0, then

H0 = {X ∈ PA, X = [x] : x ∈ Ker ϕ0}.

2. Quadrics in Projective Klingenberg Spaces

The notions of bilinear and quadratic forms will be used in the usual sense.
A quadratic form determines a quadric. Any quadratic form on an A-space over the algebra A

has two important algebraic characteristics—an order (Definition 9) and a characteristic (Definition 11).
Naturally, these notions may be assigned to a quadric (determined by a given quadratic form).
Then, there is a question how these algebraic properties may be described from a geometric point of
view. Geometric interpretations of them will be found in this section.

Let Φ : M × M → A be a symmetric bilinear form on the A-space M. Then, Φq denotes the
quadratic form M → A determined by the form Φ (polar bilinear form of the quadratic form Φq),
i.e., ∀x ∈ M : Φq(x) = Φ(x,x).

The image of any bilinear and quadratic form has the following algebraic characterization (cf. [11]).

Definition 9. A nonzero bilinear form Φ : M×M→ A is called a bilinear form of order k, 0 ≤ k ≤ m− 1, if

(Im Φ ⊆ ηk A) ∧ (Im Φ 6⊂ ηk+1 A); (3)

the order of a zero bilinear form is defined to be equal to m.
By the order of a quadratic form we mean the order of its polar bilinear form.

Theorem 3. [11] If Φ is a bilinear form of order k, then there exists at least one bilinear form Φ0 of zero order
such that Φ = ηkΦ0.

The notion of a quadric in KPS PA will be defined in the natural way.

Definition 10. Let a quadratic form Φq on M be given. Then, the set QΦq defined by

QΦq = {X ∈ PA, X = [x] : Φq(x) = 0}

is called a quadric in PA (determined by the quadratic f orm Φq).

In [11], the existence of a basis of M polar with respect to arbitrary quadratic form is proved
(the notion of polar basis is used in the usual sense, i.e., it is any basis of M so that the matrix of given
quadratic form with respect to this basis is diagonal). If a quadric QΦq is given, then a basis of M polar
with respect to Φq is called an arithmetical basis of PA polar with respect to the quadric QΦq .

In what follows, we will consider that A is a complex plural algebra, i.e., T = C (Definition 1).
As for every unit α ∈ A there exists a unit β ∈ A with α = β2, any polar basis may be “normalized”
and the following theorem holds.

Theorem 4. Let Φq be a quadratic form on M. Then, there exists at least one basis U of M such that the matrix
of Φ with respect to U is equal to Diag(a00, a11, . . . ann) with

∀i = 0, . . . , n : aii ∈ {1, η, η2, . . . , ηm−1, 0}.
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Definition 11. [11] Let Φq be a quadratic form on M and let U be a basis of M polar with respect to Φ. Let us
define a set of integers p0, . . . , pm−1 as follows,

pk = card({u ∈ U : Φq(u) ∈ ηk A\ηk+1 A}), 0 ≤ k ≤ m− 1.

Then Ch(Φ,U ) = (p0, ..., pm−1) is called a characteristic of the quadratic form Φq with respect to the
basis U .

In [11], it is proved that for arbitrary bases U , V is polar with respect to the same quadratic form
Φq it holds: Ch(Φ,U ) = Ch(Φ,V) (invariance of the characteristic). Further, it may be shown that two
quadratic forms Φq, Ψq determine the same quadric in PA if and only if there exists a unit α ∈ A\a
such that Φq = αΨq. Therefore, the following definition is correct.

Definition 12. Let a quadric Q in PA be given. Let Φq be a quadratic form with Q = QΦq and Ch(Φ,U ) be
a characteristic of Φq with respect to an arbitrary arithmetical basis U of PA polar with respect to Q. Then,
the characteristic Ch(Φ,U ) is called a characteristic of the quadric Q and it is denoted by Ch(Q).

The correctness of the following definition follows from the note before the Definition 12.

Definition 13. Let a quadric Q = QΦq in PA be given. Then, an order of the polar bilinear form Φ is called an
order of the quadric Q.

Remark 4. Let Q = QΦq be a quadric in PA and k be its order. Then, there exist elements u,v ∈ M with
Φ(u,v) ∈ ηk A\ηk+1 A. Are they representatives of some points ofPA? As any element from A-space M may be
written by x = ∑m−1

i=0 η jxj, where x0, . . . ,xm−1∈M0, M0 ∼= M/aM (see [10]), we have that u,v ∈ M\aM
(the opposite case yields, for example, u = ηu′, u′ ∈ M, and we get Φ(u′,v) /∈ ηk A, which contradicts (3)).
It means that U = [u], V = [v] are points of PA (cf. Definition 5).

Let z be an element from M. Then the mapping ϕz : M→ A defined for every x ∈ M by

ϕz(x) = Φ(z,x) (4)

is a linear form on M.
Let us construct to the given quadric Q the set of all linear forms defined by (4), i.e., {ϕz}z∈M (this set is

determined by Q uniquely up to a multiplication by a unit of A). From the consideration in this remark and
from Definition 9, it follows that all of these forms are of order h, h ≥ k, and at least one of them—e.g., ϕu—has
order equal to k.

The following notion is a natural generalization of the notion polar subspace of a quadric and a given
point (as it is known in projective geometry over field).

Definition 14. Let a quadric Q = QΦq in PA be given. Let Y = [y] be a point of PA. Then, the set

π(Q, Y) = {X ∈ PA, X = [x] : Φ(x,y) = 0}

is called a polar submodule of a quadric Q and a point Y.

Remark 5. Let us remind that the notion of submodule of PA is in [7] defined as a set of points of PA
the arithmetical representatives of which belong to a submodule of the arithmetical fundament M of PA.
Let Y = [y] ∈ PA. We clearly see that

π(Q, Y) = {X ∈ PA, X = [x] : x ∈ Ker ϕy}; (5)
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it means that π(Q, Y) is a submodule of PA.

The following Theorems 5 and 6 bring a geometric interpretation of the order of a quadric.

Theorem 5. Let Q be a quadric in PA. The order of Q is equal to zero if and only if there exists a point Y ∈ PA
such that the polar submodule π(Q, Y) is a hyperplane of PA.

Proof. Let Q = QΦq . According to Remark 4, there exists at least one element y ∈ M\aM such that
the order of a linear form ϕy is equal to zero. Let us consider a point Y = [y]. Using Theorem 2,
Remark 2, and relation (5), we get π(Q, Y) = H = H0, whereH0 is a hyperplane of PA and Kerϕy is
its arithmetical fundament.

Theorem 6. Let Q be a quadric in PA. The order of Q is equal to k, 1≤k≤m−1, if and only if

1. there exists a point Y ∈ PA such that the polar submodule π(Q, Y) is formed by all points with the degree
of neighborhood at least m−k to a certain hyperplaneH0 of PA;
if Y = [y] and ϕ0 is a linear form of zero order with ϕy = ηk ϕ0, then for the hyperplane H0 it holds
H0={X ∈ PA, X = [x] : x ∈ Ker ϕ0};

2. there is no point Z ∈ PA such that the polar submodule π(Q, Z) is formed by all points with the degree of
neighborhood at least m−k+1 to some hyperplane of PA.

Proof. Let Q = QΦq . Using Remark 4 and examining the system of linear forms {ϕz}z∈M, we see
that Q is of order k, 1≤k≤m−1, if and only if there exists at least one element y ∈ M\aM such that
the order of a linear form ϕy is equal to k and there is no element z ∈ M such that the order of ϕz is
less than k.

Let us consider a point Y = [y]. First, let us construct a linear form ϕ0 of zero order such that
ϕy = ηk ϕ0 (cf. a note before Theorem 2). Then, using the relation (5) and Theorem 2 we obtain a
submoduleH ⊆ PA with π(Q, Y) = H and a hyperplaneH0 = {X ∈ PA, X = [x] : x ∈ Ker ϕ0} such
that π(Q, Y) is formed by the set of points ofH0 and all points of the degree of neighborhood at least
m−k to it.

As there is no linear form ϕz of order less than k, there is no point Z ∈ PA and no hyperplane
of PA such that a submodule π(Q, Z) is formed only by points of degree of neighborhood at least
m−k+1 to a hyperplane.

In the last part of the article we will find the link between the polarity of a KPS induced by a
quadric and a characteristic of the quadric.

Definition 15. Let a quadric Q = QΦq in PA be given. Then, a mapping πQ of the set of points of PA to the
set of submodules of a space PA, which assigns a polar submodule π(Q, Y) to any point Y = [y] ∈ PA is called
a polarity on PA induced by a quadric Q.

There is a natural question whether a polarity may be a bijection of the set of points onto the set
of hyperplanes of PA.

Theorem 7. Let Q be a quadric in PA. A polarity on PA induced by a quadric Q is a bijection of the set of
points of PA onto the set of hyperplanes of PA if and only if Ch(Q) = (n + 1, 0, . . . , 0).

Proof. Let Q = QΦq be a quadric and Y = [y] be a point in PA. Let us choose an arithmetical basis U
of PA. If a point Y has homogeneous coordinates (y0, y1, . . . , yn) over U (a system of homogeneous
coordinates in the space PA is considered in the usual way: a point X ∈ PA has over over U coordinates
(x0, x1, . . . , xn)—which is denoted by X = (x0, x1, . . . , xn)—if and only if X = [x] and an element
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x ∈ M has coordinates (x0, x1, . . . , xn) over U ), then a polar submodule π(Q, Y) is according to (5)
given by the following relation:

∀X=(x0, . . . , xn)∈PA : X ∈ π(Q, Y)⇔ (y0, . . . , yn)(Q,U )(x0, . . . , xn)
T = 0, (6)

where (Q,U ) is a matrix of Φq with respect to a basis U .
LetH be an arbitrary hyperplane in PA. Then, there exists a linear form ϕ of zero order such that

H = {X ∈ PA, X = [x] : x ∈ Ker ϕ} (cf. 2). Thus, a point X=(x0, . . . , xn)∈PA belongs to H if and
only if

n

∑
i=0

aixi = 0, (7)

where a0, . . . , an are coefficients of a linear form ϕ in a basis U .
As ϕ is of zero order, at least one of a0, . . . , an does not belong to the ideal a. Respecting the

fact that an (n + 1)-tuple (y0, y1, . . . , yn) of elements of A may represent homogeneous coordinates of
some point of PA only if at least one yi /∈ a, from (6) and (7) we obtain that there exists a point Y with
H = π(Q, Y) if and only if a matrix (Q,U ) is invertible (the unicity of a point Y is in this case evident).

A matrix over the ring A is invertible if and only if its determinant belongs to A\a.
Using Theorem 4 and Definition 11, we see that the matrix (Q,U ) is invertible if and only if Ch(Q) =

(dim M, 0, . . . , 0).

The notion of the “degree of neighborhood” has shown up as a key one for a pure geometric
description of the set of points conjugated with respect to the given quadric in KPS PA to a given
point( a polar submodule). In general, such set does not have to be a hyperplane, but it is formed by
points with a certain degree of neighborhood to the hyperplane. This “certain degree” is determined
by an algebraic property of an image of the quadratic form associated with the given quadric (an
order of quadric). The polarity of a KPS induced by a quadric does not have to be a bijection of the set
of points of KPS onto the set of hyperplanes. We found a sufficient and necessary condition for the
polarity to be such a bijection.
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