Article

On the σ-Length of Maximal Subgroups of Finite σ-Soluble Groups

Abd El-Rahman Heliel ${ }^{1,2, *(\mathbb{D}}$, Mohammed Al-Shomrani ${ }^{1}$ and Adolfo Ballester-Bolinches ${ }^{3}$ (D)
1 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; malshamrani@kau.edu.sa
2 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
3 Departament de Matemàtiques, Universitat de València, Dr. Moliner 50, Burjassot, 46100 València, Spain; Adolfo.Ballester@uv.es
* Correspondence: aahsalem1@kau.edu.sa

Received: 22 September 2020; Accepted: 2 December 2020; Published: 4 December 2020

Abstract

Let $\sigma=\left\{\sigma_{i}: i \in I\right\}$ be a partition of the set \mathbb{P} of all prime numbers and let G be a finite group. We say that G is σ-primary if all the prime factors of $|G|$ belong to the same member of σ. G is said to be σ-soluble if every chief factor of G is σ-primary, and G is σ-nilpotent if it is a direct product of σ-primary groups. It is known that G has a largest normal σ-nilpotent subgroup which is denoted by $F_{\sigma}(G)$. Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by $F_{0}(G)=1$, and $F_{n+1}(G) / F_{n}(G)=F_{\sigma}\left(G / F_{n}(G)\right)$. If G is σ-soluble, there exists a smallest n such that $F_{n}(G)=G$. This number n is called the σ-nilpotent length of G and it is denoted by $l_{\sigma}(G)$. If \mathfrak{F} is a subgroup-closed saturated formation, we define the σ - \mathfrak{F}-length $n_{\sigma}(G, \mathfrak{F})$ of G as the σ-nilpotent length of the \mathfrak{F}-residual $G^{\mathfrak{F}}$ of G. The main result of the paper shows that if A is a maximal subgroup of G and G is a σ-soluble, then $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(G, \mathfrak{F})-i$ for some $i \in\{0,1,2\}$.

Keywords: finite group; σ-solubility; σ-nilpotency; σ-nilpotent length

1. Introduction

All groups considered in this paper are finite.
Skiba [1] (see also [2]) generalised the concepts of solubility and nilpotency by introducing σ-solubility and σ-nilpotency, in which σ is a partition of \mathbb{P}, the set of all primes. Hence $\mathbb{P}=\bigcup_{i \in I} \sigma_{i}$, with $\sigma_{i} \cap \sigma_{j}=\varnothing$ for all $i \neq j$.

In the sequel, σ will be a partition of the set of all primes \mathbb{P}.
A group G is called σ-primary if all the prime factors of $|G|$ belong to the same member of σ.
Definition 1. A group G is said to be σ-soluble if every chief factor of G is σ-primary. G is said to be σ-nilpotent if it is a direct product of σ-primary groups.

We note in the special case that σ is the partition of \mathbb{P} containing exactly one prime each, the class of σ-soluble groups is just the class of all soluble groups and the class of σ-nilpotent groups is just the class of all nilpotent groups.

Many normal and arithmetical properties of soluble groups and nilpotent groups still hold for σ-soluble and σ-nilpotent groups (see [2]) and, in fact, the class \mathcal{N}_{σ} of all σ-nilpotent groups behaves in σ-soluble groups as nilpotent groups in soluble groups. In addition, every σ-soluble group has a conjugacy class of Hall σ_{i}-subgroups and a conjugacy class of Hall σ_{i}^{\prime}-subgroups, for every $\sigma_{i} \in \sigma$.

Recall that a class of groups \mathfrak{F} is said to be a formation if \mathfrak{F} is closed under taking epimorphic images and every group G has a smallest normal subgroup with quotient in \mathfrak{F}. This subgroup is called
the \mathfrak{F}-residual of G and it is denoted by $G^{\mathfrak{F}}$. A formation \mathfrak{F} is called subgroup-closed if $X^{\mathfrak{F}}$ is contained in $G^{\mathfrak{F}}$ for all subgroups X of every group $G ; \mathfrak{F}$ is saturated if it is closed under taking Frattini extensions.

A class of groups \mathfrak{F} is said to be a Fitting class if \mathfrak{F} is closed under taking normal subgroups and every group G has a largest normal subgroup in \mathfrak{F}. This subgroup is called the \mathfrak{F}-radical of G.

The following theorem which was proved in [1] (Corollary 2.4 and Lemma 2.5) turns out to be crucial in our study.

Theorem 1. \mathcal{N}_{σ} is a subgroup-closed saturated Fitting formation.
The \mathcal{N}_{σ}-radical of a group G is called the σ-Fitting subgroup of G and it is denoted by $F_{\sigma}(G)$. Clearly, $F_{\sigma}(G)$ is the product of all normal σ-nilpotent subgroups of G. If σ is the partition of \mathbb{P} containing exactly one prime each, then $F_{\sigma}(G)$ is just the Fitting subgroup of G.

If G is σ-soluble, then every minimal normal subgroup N of G is σ-primary so that N is σ-nilpotent and it is contained in $F_{\sigma}(G)$. In particular, $F_{\sigma}(G) \neq 1$ if $G \neq 1$.

Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by $F_{0}(G)=1$, and $F_{n+1}(G) / F_{n}(G)=F_{\sigma}\left(G / F_{n}(G)\right)$. If G is σ-soluble, there exists a smallest n such that $F_{n}(G)=G$. This number n is called the σ-nilpotent length of G and it is denoted by $l_{\sigma}(G)$ (see $[3,4]$). The nilpotent length $l(G)$ of a group G is just the σ-nilpotent length of G for σ the partition of \mathbb{P} containing exactly one prime each.

The σ-nilpotent length is quite useful in the structural study of σ-soluble groups (see $[3,4]$), and allows us to extend some known results.

The central concept of this paper is the following:
Definition 2. Let \mathfrak{F} be a saturated formation. The σ - \mathfrak{F}-length $n_{\sigma}(G, \mathfrak{F})$ of a group G is defined as the σ-nilpotent length of the \mathfrak{F}-residual $G^{\mathfrak{F}}$ of G.

Applying [5] (Chapter IV, Theorem (3.13) and Proposition (3.14)) (see also [3] (Lemma 4.1)), we have the following useful result.

Proposition 1. The class of all σ-soluble groups of σ-length at most l is a subgroup-closed saturated formation.
It is clear that the \mathfrak{F}-length $n_{\mathfrak{F}}(G)$ of a group G studied in [6] is just the σ - \mathfrak{F}-length of G for σ the partition of \mathbb{P} containing exactly one prime each, and the σ-nilpotent length of G is just the σ - \mathfrak{F}-length of G for $\mathfrak{F}=\{1\}$.

Ballester-Bolinches and Pérez-Ramos [6] (Theorem 1), extending a result by Doerk [7] (Satz 1), proved the following theorem:

Theorem 2. Let \mathfrak{F} be a subgroup-closed saturated formation and M be a maximal subgroup of a soluble group G. Then $n_{\mathfrak{F}}(M)=n_{\mathfrak{F}}(G)-i$ for some $i \in\{0,1,2\}$.

Our main result shows that Ballester-Bolinches and Pérez-Ramos' theorem still holds for the σ-F-length of maximal subgroups of σ-soluble groups.

Theorem A. Let \mathfrak{F} be a saturated formation. If A is a maximal subgroup of a σ-soluble group G, then $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(G, \mathfrak{F})-i$ for some $i \in\{0,1,2\}$.

2. Proof of Theorem A

Proof. Suppose that the result is false. Let G be a counterexample of the smallest possible order. Then G has a maximal subgroup A such that $\left.n_{\sigma}(A, \mathfrak{F}) \neq n_{\sigma}(G, \mathfrak{F})\right)-i$ for every $i \in\{0,1,2\}$. Since $A^{\mathfrak{F}}$ is contained in $G^{\mathfrak{F}}$ because \mathfrak{F} is subgroup-closed, we have that $G^{\mathfrak{F}} \neq 1$. Moreover,
$n_{\sigma}(A, \mathfrak{F}) \leq n_{\sigma}(G, \mathfrak{F})=n$ and $n \geq 1$. We proceed in several steps, the first of which depends heavily on the fact that the \mathfrak{F}-residual is epimorphism-invariant.

Step 1. If N is a normal σ-nilpotent subgroup of G, then N is contained in $A, n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(A / N, \mathfrak{F})$ and $n_{\sigma}(G / N, \mathfrak{F})=n-1$.

Let N be a normal σ-nilpotent subgroup of G. Applying [7] (Chapter II, Lemma (2.4)), we have that $G^{\mathfrak{F}} N / N=(G / N)^{\mathfrak{F}}$. Consequently, either $n_{\sigma}(G / N, \mathfrak{F})=n$ or $n_{\sigma}(G / N, \mathfrak{F})=n-1$.

Assume that N is not contained in A. Then $G=A N$ and so $G / N \cong A / A \cap N$. Observe that either $n_{\sigma}(A / A \cap N, \mathfrak{F})=n_{\sigma}(G / N, \mathfrak{F})=n$ or $n_{\sigma}(A / A \cap N, \mathfrak{F})=n_{\sigma}(G / N, \mathfrak{F})=n-1$. Therefore $n-1 \leq$ $n_{\sigma}(A, \mathfrak{F}) \leq n$. Consequently, either $n_{\sigma}(A, \mathfrak{F})=n$ or $n_{\sigma}(A, \mathfrak{F})=n-1$, contrary to assumption.

Therefore, N is contained in A. The minimal choice of G implies that $n_{\sigma}(A / N, \mathfrak{F})=n_{\sigma}(G / N, \mathfrak{F})-i$ for some $i \in\{0,1,2\}$, and so either $n_{\sigma}(A / N, \mathfrak{F})=n-i$ or $n_{\sigma}(A / N, \mathfrak{F})=n-i-1$. Suppose that $n_{\sigma}(A, \mathfrak{F}) \neq n_{\sigma}(A / N, \mathfrak{F})$. Then $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(A / N, \mathfrak{F})+1$. Hence either $n_{\sigma}(A, \mathfrak{F})=n-i+1$ or $n_{\sigma}(A, \mathfrak{F})=n-i$. In the first case, $i>0$ because $n \geq n_{\sigma}(A, \mathfrak{F})$. Hence $n_{\sigma}(A, \mathfrak{F})=n-j$ for some $j \in\{0,1,2\}$, which contradicts our supposition. Consequently, $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(A / N, \mathfrak{F})$.

Suppose that $n_{\sigma}(G / N, \mathfrak{F})=n$. The minimality of G yields $n_{\sigma}(A / N, \mathfrak{F})=n-i$ for some $i \in\{0,1,2\}$. Therefore $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(G, \mathfrak{F})-i$ for some $i \in\{0,1,2\}$. This is a contradiction since we are assuming that G is a counterexample. Consequently, $n_{\sigma}(G / N, \mathfrak{F})=n-1$.

Step 2. $\operatorname{Soc}(G)$ is a minimal normal subgroup of G which is not contained in $\Phi(G)$, the Frattini subgroup of G.
Assume that N and L are two distinct minimal normal subgroups of G. Then, by Step 1, $n_{\sigma}(G / L, \mathfrak{F})=n-1$. Since the class of all σ-soluble groups of σ - \mathfrak{F}-length at most $n-1$ is a saturated formation by Proposition 1 and $N \cap L=1$, it follows that $n_{\sigma}(G, \mathfrak{F})=n-1$. This contradiction proves that $N=\operatorname{Soc}(G)$ is the unique minimal normal subgroup of G.

Assume that N is contained in $\Phi(G)$. Since $n_{\sigma}(G / N, \mathfrak{F})=n-1$ and the class of all σ-soluble groups of $\sigma-\mathfrak{F}$-length at most $n-1$ is a saturated formation by Proposition 1, we have that $n_{\sigma}(G, \mathfrak{F})=n-1$, a contradiction. Therefore N is not contained in $\Phi(G)$ as desired.

According to Step 2, we have that $N=\operatorname{Soc}(G)$ is a minimal normal subgroup of G which is not contained in $\Phi(G)$. Hence G has a core-free maximal subgroup, M say. Then $G=N M$ and, by [5] (Chapter A, (15.2)), either N is abelian and $\mathrm{C}_{G}(N)=N$ or N is non-abelian and $\mathrm{C}_{G}(N)=1$. Since G is σ-soluble, it follows that N is σ-primary. Thus, N is a σ_{i}-group for some $\sigma_{i} \in \sigma$.

Step 3. Let H be a subgroup of G such that $N \subseteq H$. Then $F_{\sigma}(H)=\mathrm{O}_{\sigma_{i}}(H)$.
Since N is contained in $F_{\sigma}(H)$, it follows that every Hall σ_{i}^{\prime}-subgroup of $F_{\sigma}(H)$ centralises N. Since $\mathrm{C}_{H}(N)=N$ or $\mathrm{C}_{H}(N)=1$, we conclude that $F_{\sigma}(H)$ is a σ_{i}-group, i.e., $F_{\sigma}(H)=\mathrm{O}_{\sigma_{i}}(H)$.

Step 4. We have a contradiction.
Let $X=F_{\sigma}(G)$, and $T / X=F_{\sigma}(G / X)$. Suppose that T is not contained in A. Then $G=A T$, $G / T \cong A / A \cap T$, and $n_{\sigma}(G / T, \mathfrak{F})=n_{\sigma}(A / A \cap T, \mathfrak{F})$. By Step $1, n_{\sigma}(G / X, \mathfrak{F})=n-1$. Hence $n_{\sigma}(G / T, \mathfrak{F}) \in$ $\{n-2, n-1\}$. Now, $X \subseteq A$ and $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(A / X, \mathfrak{F})$ by Step 1 . Consequently, $n_{\sigma}(A / A \cap T, \mathfrak{F}) \in\left\{n_{\sigma}(A, \mathfrak{F})-\right.$ $\left.1, n_{\sigma}(A, \mathfrak{F})\right\}$. This means that $n_{\sigma}(A, \mathfrak{F})=n-j$ for some $j \in\{0,1,2\}$. This contradiction yields $T \subseteq A$.

By Step 3, we have that $X=\mathrm{O}_{\sigma_{i}}(G)$. Assume that E / X and F / X are the Hall σ_{i}-subgroup and the Hall σ_{i}^{\prime}-subgroup of T / X respectively. Then $T / X=E / X \times F / X$ and E and F are normal subgroups of G. Since X and E / X are σ_{i}-groups, it follows that E is a σ_{i}-group and hence $E \subseteq X$. In particular, T / X is a σ_{i}^{\prime}-group.

On the other hand, $F_{\sigma}(A)=\mathrm{O}_{\sigma_{i}}(A)$ by Step 3. Consequently $F_{\sigma}(A) / X \subseteq \mathrm{C}_{A}(T / X)$. Applying [1] (Corollary 11), we conclude that $\mathrm{C}_{A}(T / X) \subseteq T / X$. Therefore $X=F_{\sigma}(A)$.

By Step 1, $n_{\sigma}(A, \mathfrak{F})=n_{\sigma}(A / X, \mathfrak{F})$. Now $n_{\sigma}(A / X, \mathfrak{F})=l_{\sigma}\left(A^{\mathfrak{F}} X / X\right)$. Since $A^{\mathfrak{F}} / A^{\mathfrak{F}} \cap X=$ $A^{\mathfrak{F}} / F_{\sigma}\left(A^{\mathfrak{F}}\right)$, it follows that $n_{\sigma}(A / X, \mathfrak{F})=n_{\sigma}(A, \mathfrak{F})-1$ which yields the desired contradiction.

3. Applications

As it was said in the introduction, the \mathfrak{F}-length $n_{\mathfrak{F}}(G)$ of a group G which is defined in [6] is just the σ - \mathfrak{F}-length of G for σ the partition of \mathbb{P} containing exactly one prime each, and the σ-nilpotent length of G is just the $\sigma-\mathfrak{F}$-length of G for $\mathfrak{F}=\{1\}$.

Therefore the following results are direct consequences of our Theorem A.
Corollary 1. If A is a maximal subgroup of a σ-soluble group G, then $l_{\sigma}(A)=l_{\sigma}(G)-i$ for some $i \in\{0,1,2\}$.
Corollary 2 ([6] (Theorem 1)). If A is a maximal subgroup of a soluble group G and \mathfrak{F} is a saturated formation, then $n_{\mathfrak{F}}(A)=n_{\mathfrak{F}}(G)-i$ for some $i \in\{0,1,2\}$.

Corollary 3 ([7] (Satz 1)). If A is a maximal subgroup of a soluble group G, then $l(A)=l(G)-i$ for some $i \in\{0,1,2\}$.

4. An Example

In [6], some examples showing that each case of Corollary 2 is possible for the partition σ of \mathbb{P} containing exactly one prime each. We give an example of slight different nature.

Example 1. Assume that $\sigma=\left\{\{2,3,5,7\},\{211\},\{2,3,5,7,211\}^{\prime}\right\}$. Let X be a cyclic group of order 7 and let Y be an irreducible and faithful X-module over the finite field of 211 elements. Applying [5] (Chapter B, Theorem (9.8)), Y is a cyclic group of order 211. Let $L=[Y] X$ be the corresponding semidirect product. Consider now $G=A_{5}$ l L the regular wreath product of A_{5}, the alternating group of degree 5, with L. Then $F_{\sigma}(G)=A_{5}^{*}$, the base group of G. Then $l_{\sigma}(G)=3$. Let $A_{1}=A_{5}^{*} X$. Then A_{1} is a maximal subgroup of G and $l_{\sigma}\left(A_{1}\right)=1$. Let $A_{2}=A_{5}^{*} Y$. Then A_{2} is a maximal subgroup of G and $l_{\sigma}\left(A_{2}\right)=2$.

Author Contributions: Conceptualization, A.E.-R.H., M.A.-S. and A.B.-B.; methodology, A.E.-R.H., M.A.-S. and A.B.-B.; software, M.A.-S.; validation, A.E.-R.H., M.A.-S. and A.B.-B.; formal analysis, A.E.-R.H., M.A.-S. and A.B.-B.; investigation, A.E.-R.H., M.A.-S. and A.B.-B.; resources, A.E.-R.H., M.A.-S. and A.B.-B.; data curation, A.E.-R.H., M.A.-S. and A.B.-B.; writing-original draft preparation, A.B.-B.; writing-review and editing, A.E.-R.H. and M.A.-S.; visualization, A.E.-R.H., M.A.-S. and A.B.-B.; supervision, A.B.-B.; project administration, A.E.-R.H.; funding acquisition, M.A.-S. All authors have read and agreed to the published version of the manuscript.
Funding: This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 789-130-1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Skiba, A.N. On σ-subnormal and σ-permutable subgroups of finite groups. J. Algebra 2015, 436, 1-16. [CrossRef]
2. Skiba, A.N. On some arithmetic properties of finite groups. Note Mat. 2016, 36, 65-89.
3. Al-Sharo, K.A.; Skiba, A.N. On finite groups with σ-subnormal Schmidt subgroups. Comm. Algebra 2017, 45, 4158-4165. [CrossRef]
4. Guo, W.; Skiba, A.N. Finite groups whose n-maximal subgroups are σ-subnormal Schmidt subgroups. Sci. China Math. 2019, 62, 1355-1372. [CrossRef]
5. Doerk, K.; Hawkes, T. Finite Soluble Groups; Walter De Gruyter: Berlin, Germany; New York, NY, USA, 1992.
6. Ballester-Bolinches, A.; Pérez-Ramos, M.D. A note on the \mathfrak{F}-length of maximal subgroups in finite soluble groups. Math. Nachr. 1994, 166, 67-70. [CrossRef]
7. Doerk, K. Ub̈er die nilpotente Länge maximaler Untergruppen bei endlichen auflösbaren Gruppen. Rend. Sem. Mat. Univ. Padova 1994, 91, 20-21.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

