

Article On the σ -Length of Maximal Subgroups of Finite σ -Soluble Groups

Abd El-Rahman Heliel ^{1,2,*}, Mohammed Al-Shomrani¹ and Adolfo Ballester-Bolinches³

- ¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; malshamrani@kau.edu.sa
- ² Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- ³ Departament de Matemàtiques, Universitat de València, Dr. Moliner 50, Burjassot, 46100 València, Spain; Adolfo.Ballester@uv.es
- * Correspondence: aahsalem1@kau.edu.sa

Received: 22 September 2020; Accepted: 2 December 2020; Published: 4 December 2020

Abstract: Let $\sigma = {\sigma_i : i \in I}$ be a partition of the set \mathbb{P} of all prime numbers and let *G* be a finite group. We say that *G* is σ -primary if all the prime factors of |G| belong to the same member of σ . *G* is said to be σ -soluble if every chief factor of *G* is σ -primary, and *G* is σ -nilpotent if it is a direct product of σ -primary groups. It is known that *G* has a largest normal σ -nilpotent subgroup which is denoted by $F_{\sigma}(G)$. Let *n* be a non-negative integer. The *n*-term of the σ -Fitting series of *G* is defined inductively by $F_0(G) = 1$, and $F_{n+1}(G)/F_n(G) = F_{\sigma}(G/F_n(G))$. If *G* is σ -soluble, there exists a smallest *n* such that $F_n(G) = G$. This number *n* is called the σ -nilpotent length of *G* and it is denoted by $l_{\sigma}(G)$. If \mathfrak{F} is a subgroup-closed saturated formation, we define the σ - \mathfrak{F} -length $n_{\sigma}(G,\mathfrak{F})$ of *G* as the σ -nilpotent length of the \mathfrak{F} -residual $G^{\mathfrak{F}}$ of *G*. The main result of the paper shows that if *A* is a maximal subgroup of *G* and *G* is a σ -soluble, then $n_{\sigma}(A,\mathfrak{F}) = n_{\sigma}(G,\mathfrak{F}) - i$ for some $i \in \{0, 1, 2\}$.

Keywords: finite group; σ -solubility; σ -nilpotency; σ -nilpotent length

1. Introduction

All groups considered in this paper are finite.

Skiba [1] (see also [2]) generalised the concepts of solubility and nilpotency by introducing σ -solubility and σ -nilpotency, in which σ is a partition of \mathbb{P} , the set of all primes. Hence $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, with $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

In the sequel, σ will be a partition of the set of all primes \mathbb{P} .

A group *G* is called σ -*primary* if all the prime factors of |G| belong to the same member of σ .

Definition 1. A group *G* is said to be σ -soluble if every chief factor of *G* is σ -primary. *G* is said to be σ -nilpotent if it is a direct product of σ -primary groups.

We note in the special case that σ is the partition of \mathbb{P} containing exactly one prime each, the class of σ -soluble groups is just the class of all soluble groups and the class of σ -nilpotent groups is just the class of all nilpotent groups.

Many normal and arithmetical properties of soluble groups and nilpotent groups still hold for σ -soluble and σ -nilpotent groups (see [2]) and, in fact, the class \mathcal{N}_{σ} of all σ -nilpotent groups behaves in σ -soluble groups as nilpotent groups in soluble groups. In addition, every σ -soluble group has a conjugacy class of Hall σ_i -subgroups and a conjugacy class of Hall σ_i -subgroups, for every $\sigma_i \in \sigma$.

Recall that a class of groups \mathfrak{F} is said to be a *formation* if \mathfrak{F} is closed under taking epimorphic images and every group *G* has a smallest normal subgroup with quotient in \mathfrak{F} . This subgroup is called

the \mathfrak{F} -residual of G and it is denoted by $G^{\mathfrak{F}}$. A formation \mathfrak{F} is called *subgroup-closed* if $X^{\mathfrak{F}}$ is contained in $G^{\mathfrak{F}}$ for all subgroups X of every group G; \mathfrak{F} is *saturated* if it is closed under taking Frattini extensions.

A class of groups \mathfrak{F} is said to be a *Fitting class* if \mathfrak{F} is closed under taking normal subgroups and every group *G* has a largest normal subgroup in \mathfrak{F} . This subgroup is called the \mathfrak{F} -*radical* of *G*.

The following theorem which was proved in [1] (Corollary 2.4 and Lemma 2.5) turns out to be crucial in our study.

Theorem 1. \mathcal{N}_{σ} is a subgroup-closed saturated Fitting formation.

The \mathcal{N}_{σ} -radical of a group *G* is called the σ -*Fitting subgroup* of *G* and it is denoted by $F_{\sigma}(G)$. Clearly, $F_{\sigma}(G)$ is the product of all normal σ -nilpotent subgroups of *G*. If σ is the partition of \mathbb{P} containing exactly one prime each, then $F_{\sigma}(G)$ is just the Fitting subgroup of *G*.

If *G* is σ -soluble, then every minimal normal subgroup *N* of *G* is σ -primary so that *N* is σ -nilpotent and it is contained in $F_{\sigma}(G)$. In particular, $F_{\sigma}(G) \neq 1$ if $G \neq 1$.

Let *n* be a non-negative integer. The *n*-term of the σ -Fitting series of *G* is defined inductively by $F_0(G) = 1$, and $F_{n+1}(G)/F_n(G) = F_{\sigma}(G/F_n(G))$. If *G* is σ -soluble, there exists a smallest *n* such that $F_n(G) = G$. This number *n* is called the σ -nilpotent length of *G* and it is denoted by $l_{\sigma}(G)$ (see [3,4]). The nilpotent length l(G) of a group *G* is just the σ -nilpotent length of *G* for σ the partition of \mathbb{P} containing exactly one prime each.

The σ -nilpotent length is quite useful in the structural study of σ -soluble groups (see [3,4]), and allows us to extend some known results.

The central concept of this paper is the following:

Definition 2. Let \mathfrak{F} be a saturated formation. The σ - \mathfrak{F} -length $n_{\sigma}(G,\mathfrak{F})$ of a group G is defined as the σ -nilpotent length of the \mathfrak{F} -residual $G^{\mathfrak{F}}$ of G.

Applying [5] (Chapter IV, Theorem (3.13) and Proposition (3.14)) (see also [3] (Lemma 4.1)), we have the following useful result.

Proposition 1. The class of all σ -soluble groups of σ -length at most *l* is a subgroup-closed saturated formation.

It is clear that the \mathfrak{F} -length $n_{\mathfrak{F}}(G)$ of a group G studied in [6] is just the σ - \mathfrak{F} -length of G for σ the partition of \mathbb{P} containing exactly one prime each, and the σ -nilpotent length of G is just the σ - \mathfrak{F} -length of G for $\mathfrak{F} = \{1\}$.

Ballester-Bolinches and Pérez-Ramos [6] (Theorem 1), extending a result by Doerk [7] (Satz 1), proved the following theorem:

Theorem 2. Let \mathfrak{F} be a subgroup-closed saturated formation and M be a maximal subgroup of a soluble group G. Then $n_{\mathfrak{F}}(M) = n_{\mathfrak{F}}(G) - i$ for some $i \in \{0, 1, 2\}$.

Our main result shows that Ballester-Bolinches and Pérez-Ramos' theorem still holds for the σ - \mathfrak{F} -length of maximal subgroups of σ -soluble groups.

Theorem A. Let \mathfrak{F} be a saturated formation. If A is a maximal subgroup of a σ -soluble group G, then $n_{\sigma}(A,\mathfrak{F}) = n_{\sigma}(G,\mathfrak{F}) - i$ for some $i \in \{0,1,2\}$.

2. Proof of Theorem A

Proof. Suppose that the result is false. Let *G* be a counterexample of the smallest possible order. Then *G* has a maximal subgroup *A* such that $n_{\sigma}(A, \mathfrak{F}) \neq n_{\sigma}(G, \mathfrak{F}) - i$ for every $i \in \{0, 1, 2\}$. Since $A^{\mathfrak{F}}$ is contained in $G^{\mathfrak{F}}$ because \mathfrak{F} is subgroup-closed, we have that $G^{\mathfrak{F}} \neq 1$. Moreover, $n_{\sigma}(A, \mathfrak{F}) \leq n_{\sigma}(G, \mathfrak{F}) = n$ and $n \geq 1$. We proceed in several steps, the first of which depends heavily on the fact that the \mathfrak{F} -residual is epimorphism-invariant.

Step 1. If N is a normal σ -nilpotent subgroup of G, then N is contained in A, $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(A/N, \mathfrak{F})$ and $n_{\sigma}(G/N, \mathfrak{F}) = n - 1$.

Let *N* be a normal σ -nilpotent subgroup of *G*. Applying [7] (Chapter II, Lemma (2.4)), we have that $G^{\mathfrak{F}}N/N = (G/N)^{\mathfrak{F}}$. Consequently, either $n_{\sigma}(G/N,\mathfrak{F}) = n$ or $n_{\sigma}(G/N,\mathfrak{F}) = n - 1$.

Assume that *N* is not contained in *A*. Then G = AN and so $G/N \cong A/A \cap N$. Observe that either $n_{\sigma}(A/A \cap N, \mathfrak{F}) = n_{\sigma}(G/N, \mathfrak{F}) = n$ or $n_{\sigma}(A/A \cap N, \mathfrak{F}) = n_{\sigma}(G/N, \mathfrak{F}) = n - 1$. Therefore $n - 1 \le n_{\sigma}(A, \mathfrak{F}) \le n$. Consequently, either $n_{\sigma}(A, \mathfrak{F}) = n$ or $n_{\sigma}(A, \mathfrak{F}) = n - 1$, contrary to assumption.

Therefore, *N* is contained in *A*. The minimal choice of *G* implies that $n_{\sigma}(A/N, \mathfrak{F}) = n_{\sigma}(G/N, \mathfrak{F}) - i$ for some $i \in \{0, 1, 2\}$, and so either $n_{\sigma}(A/N, \mathfrak{F}) = n - i$ or $n_{\sigma}(A/N, \mathfrak{F}) = n - i - 1$. Suppose that $n_{\sigma}(A, \mathfrak{F}) \neq n_{\sigma}(A/N, \mathfrak{F})$. Then $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(A/N, \mathfrak{F}) + 1$. Hence either $n_{\sigma}(A, \mathfrak{F}) = n - i + 1$ or $n_{\sigma}(A, \mathfrak{F}) = n - i$. In the first case, i > 0 because $n \ge n_{\sigma}(A, \mathfrak{F})$. Hence $n_{\sigma}(A, \mathfrak{F}) = n - j$ for some $j \in \{0, 1, 2\}$, which contradicts our supposition. Consequently, $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(A/N, \mathfrak{F})$.

Suppose that $n_{\sigma}(G/N, \mathfrak{F}) = n$. The minimality of *G* yields $n_{\sigma}(A/N, \mathfrak{F}) = n - i$ for some $i \in \{0, 1, 2\}$. Therefore $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(G, \mathfrak{F}) - i$ for some $i \in \{0, 1, 2\}$. This is a contradiction since we are assuming that *G* is a counterexample. Consequently, $n_{\sigma}(G/N, \mathfrak{F}) = n - 1$.

Step 2. Soc(*G*) *is a minimal normal subgroup of G which is not contained in* $\Phi(G)$ *, the Frattini subgroup of G*. Assume that *N* and *L* are two distinct minimal normal subgroups of *G*. Then, by Step 1, $n_{\sigma}(G/L, \mathfrak{F}) = n - 1$. Since the class of all σ -soluble groups of σ - \mathfrak{F} -length at most n - 1 is a saturated formation by Proposition 1 and $N \cap L = 1$, it follows that $n_{\sigma}(G, \mathfrak{F}) = n - 1$. This contradiction proves that N = Soc(G) is the unique minimal normal subgroup of *G*.

Assume that *N* is contained in $\Phi(G)$. Since $n_{\sigma}(G/N, \mathfrak{F}) = n - 1$ and the class of all σ -soluble groups of σ - \mathfrak{F} -length at most n - 1 is a saturated formation by Proposition 1, we have that $n_{\sigma}(G, \mathfrak{F}) = n - 1$, a contradiction. Therefore *N* is not contained in $\Phi(G)$ as desired.

According to Step 2, we have that N = Soc(G) is a minimal normal subgroup of G which is not contained in $\Phi(G)$. Hence G has a core-free maximal subgroup, M say. Then G = NM and, by [5] (Chapter A, (15.2)), either N is abelian and $C_G(N) = N$ or N is non-abelian and $C_G(N) = 1$. Since G is σ -soluble, it follows that N is σ -primary. Thus, N is a σ_i -group for some $\sigma_i \in \sigma$.

Step 3. Let *H* be a subgroup of *G* such that $N \subseteq H$. Then $F_{\sigma}(H) = O_{\sigma_i}(H)$.

Since *N* is contained in $F_{\sigma}(H)$, it follows that every Hall σ'_i -subgroup of $F_{\sigma}(H)$ centralises *N*. Since $C_H(N) = N$ or $C_H(N) = 1$, we conclude that $F_{\sigma}(H)$ is a σ_i -group, i.e., $F_{\sigma}(H) = O_{\sigma_i}(H)$.

Step 4. *We have a contradiction.*

Let $X = F_{\sigma}(G)$, and $T/X = F_{\sigma}(G/X)$. Suppose that T is not contained in A. Then G = AT, $G/T \cong A/A \cap T$, and $n_{\sigma}(G/T, \mathfrak{F}) = n_{\sigma}(A/A \cap T, \mathfrak{F})$. By Step 1, $n_{\sigma}(G/X, \mathfrak{F}) = n - 1$. Hence $n_{\sigma}(G/T, \mathfrak{F}) \in \{n-2, n-1\}$. Now, $X \subseteq A$ and $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(A/X, \mathfrak{F})$ by Step 1. Consequently, $n_{\sigma}(A/A \cap T, \mathfrak{F}) \in \{n_{\sigma}(A, \mathfrak{F}) - 1, n_{\sigma}(A, \mathfrak{F})\}$. This means that $n_{\sigma}(A, \mathfrak{F}) = n - j$ for some $j \in \{0, 1, 2\}$. This contradiction yields $T \subseteq A$.

By Step 3, we have that $X = O_{\sigma_i}(G)$. Assume that E/X and F/X are the Hall σ_i -subgroup and the Hall σ'_i -subgroup of T/X respectively. Then $T/X = E/X \times F/X$ and E and F are normal subgroups of G. Since X and E/X are σ_i -groups, it follows that E is a σ_i -group and hence $E \subseteq X$. In particular, T/X is a σ'_i -group.

On the other hand, $F_{\sigma}(A) = O_{\sigma_i}(A)$ by Step 3. Consequently $F_{\sigma}(A)/X \subseteq C_A(T/X)$. Applying [1] (Corollary 11), we conclude that $C_A(T/X) \subseteq T/X$. Therefore $X = F_{\sigma}(A)$.

By Step 1, $n_{\sigma}(A, \mathfrak{F}) = n_{\sigma}(A/X, \mathfrak{F})$. Now $n_{\sigma}(A/X, \mathfrak{F}) = l_{\sigma}(A^{\mathfrak{F}}X/X)$. Since $A^{\mathfrak{F}}/A^{\mathfrak{F}} \cap X = A^{\mathfrak{F}}/F_{\sigma}(A^{\mathfrak{F}})$, it follows that $n_{\sigma}(A/X, \mathfrak{F}) = n_{\sigma}(A, \mathfrak{F}) - 1$ which yields the desired contradiction. \Box

3. Applications

As it was said in the introduction, the \mathfrak{F} -length $n_{\mathfrak{F}}(G)$ of a group G which is defined in [6] is just the σ - \mathfrak{F} -length of G for σ the partition of \mathbb{P} containing exactly one prime each, and the σ -nilpotent length of G is just the σ - \mathfrak{F} -length of G for $\mathfrak{F} = \{1\}$. Therefore the following results are direct consequences of our Theorem A.

Corollary 1. If A is a maximal subgroup of a σ -soluble group G, then $l_{\sigma}(A) = l_{\sigma}(G) - i$ for some $i \in \{0, 1, 2\}$.

Corollary 2 ([6] (Theorem 1)). If A is a maximal subgroup of a soluble group G and \mathfrak{F} is a saturated formation, then $n_{\mathfrak{F}}(A) = n_{\mathfrak{F}}(G) - i$ for some $i \in \{0, 1, 2\}$.

Corollary 3 ([7] (Satz 1)). If A is a maximal subgroup of a soluble group G, then l(A) = l(G) - i for some $i \in \{0, 1, 2\}$.

4. An Example

In [6], some examples showing that each case of Corollary 2 is possible for the partition σ of \mathbb{P} containing exactly one prime each. We give an example of slight different nature.

Example 1. Assume that $\sigma = \{\{2,3,5,7\}, \{211\}, \{2,3,5,7,211\}'\}$. Let X be a cyclic group of order 7 and let Y be an irreducible and faithful X-module over the finite field of 211 elements. Applying [5] (Chapter B, Theorem (9.8)), Y is a cyclic group of order 211. Let L = [Y]X be the corresponding semidirect product. Consider now $G = A_5 \wr L$ the regular wreath product of A_5 , the alternating group of degree 5, with L. Then $F_{\sigma}(G) = A_5^*$, the base group of G. Then $l_{\sigma}(G) = 3$. Let $A_1 = A_5^*X$. Then A_1 is a maximal subgroup of G and $l_{\sigma}(A_1) = 1$. Let $A_2 = A_5^*Y$. Then A_2 is a maximal subgroup of G and $l_{\sigma}(A_2) = 2$.

Author Contributions: Conceptualization, A.E.-R.H., M.A.-S. and A.B.-B.; methodology, A.E.-R.H., M.A.-S. and A.B.-B.; software, M.A.-S.; validation, A.E.-R.H., M.A.-S. and A.B.-B.; formal analysis, A.E.-R.H., M.A.-S. and A.B.-B.; investigation, A.E.-R.H., M.A.-S. and A.B.-B.; resources, A.E.-R.H., M.A.-S. and A.B.-B.; data curation, A.E.-R.H., M.A.-S. and A.B.-B.; writing—original draft preparation, A.B.-B.; writing—review and editing, A.E.-R.H. and M.A.-S.; visualization, A.E.-R.H., M.A.-S. and A.B.-B.; supervision, A.B.-B.; project administration, A.E.-R.H.; funding acquisition, M.A.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 789-130-1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups. J. Algebra **2015**, 436, 1–16. [CrossRef]
- 2. Skiba, A.N. On some arithmetic properties of finite groups. Note Mat. 2016, 36, 65–89.
- 3. Al-Sharo, K.A.; Skiba, A.N. On finite groups with *σ*-subnormal Schmidt subgroups. *Comm. Algebra* 2017, 45, 4158–4165. [CrossRef]
- 4. Guo, W.; Skiba, A.N. Finite groups whose *n*-maximal subgroups are *σ*-subnormal Schmidt subgroups. *Sci. China Math.* **2019**, *62*, 1355–1372. [CrossRef]
- 5. Doerk, K.; Hawkes, T. Finite Soluble Groups; Walter De Gruyter: Berlin, Germany; New York, NY, USA, 1992.
- 6. Ballester-Bolinches, A.; Pérez-Ramos, M.D. A note on the *F*-length of maximal subgroups in finite soluble groups. *Math. Nachr.* **1994**, *166*, 67–70. [CrossRef]
- Doerk, K. U
 ^ber die nilpotente L
 ^ange maximaler Untergruppen bei endlichen aufl
 ^ben. *Rend. Sem. Mat. Univ. Padova* 1994, 91, 20–21.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).