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Abstract: In this survey paper, we start with a discussion of the general fractional derivative (GFD)
introduced by A. Kochubei in his recent publications. In particular, a connection of this derivative
to the corresponding fractional integral and the Sonine relation for their kernels are presented.
Then we consider some fractional ordinary differential equations (ODEs) with the GFD including the
relaxation equation and the growth equation. The main part of the paper is devoted to the fractional
partial differential equations (PDEs) with the GFD. We discuss both the Cauchy problems and the
initial-boundary-value problems for the time-fractional diffusion equations with the GFD. In the final
part of the paper, some results regarding the inverse problems for the differential equations with the
GFD are presented.
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1. Introduction

In functional analysis, the integral operators with the weakly singular kernels have been an
important topic for research for many years. They are defined in the form

(T f )(t) =
∫

Ω
K(t, τ) f (τ) dτ, (1)

where Ω is an open subset of Rn and the kernel K = K(t, τ) is a real or complex valued continuous
function on Ω×Ω\D, D = {(t, t) : t ∈ Ω} being the diagonal of Ω×Ω that satisfies the condition

|K(t, τ)| ≤ c
|t− τ|α with α < n. (2)

In case Ω is a bounded domain, the operator (1) is called the Schur integral operator. It is compact
from C(Ω) to C(Ω) [1]. If, additionally, α < n

q , 1
p + 1

q = 1, 1 ≤ p < +∞, then (1) is a Hilbert-Schmidt

operator that is compact from Lp(Ω) to C(Ω).
In Fractional Calculus (FC), the operators of type (1) with special weakly singular kernels are

studied on both bounded and unbounded domains. For instance, the classical left-hand sided
Riemann-Liouville fractional integral of order α ∈ R+ of a function f on a finite or infinite interval
(a, b) is defined as follows:
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(Iα
a+ f ) (t) =

1
Γ(α)

t∫
a

(t− τ)α−1 f (τ) dτ, t ∈ (a, b). (3)

In the case α = 0, this integral is interpreted as the identity operator(
I0
a+ f

)
(t) = f (t) (4)

because of the relation ([2])
lim

α→0+
(Iα

a+ f ) (t) = f (t), (5)

that is valid in particular for f ∈ L1(a, b) in every Lebesgue point of f , i.e., almost everywhere on (a, b).
Evidently, the Riemann-Liouville fractional integral is a generalization of the well-known formula

for the n-fold definite integral

(In
a+ f ) (t) =

∫ t

a
dτ
∫ t

a
dτ· · ·

∫ t

a
f (τ) dτ =

1
(n− 1)!

∫ t

a
(t− τ)n−1 f (τ) dτ, n ∈ N.

In a certain sense, this generalization is unique. In the case of a finite interval (without any
restriction of generality, we fix the interval (0, 1)), the following result was proved in [3]:

Let E be the space Lp(0, 1), 1 ≤ p < +∞, or C[0, 1]. Then there exists precisely one family
Iα, α > 0 of operators on E satisfying the following conditions:

(CM1) (I1 f )(t) =
∫ t

0 f (τ) dτ, f ∈ E (interpolation condition),
(CM2) (Iα Iβ f )(t) = (Iα+β f )(t), α, β > 0, f ∈ E (index law),
(CM3) α→ Iα is a continuous map of R+ into the space L(E) of the linear bounded operators from

E to E for some Hausdorff topology on L(E), weaker than the norm topology (continuity),
(CM4) f ∈ E and f (t) ≥ 0 (a.e. for E = Lp(0, 1))⇒ (Iα f )(t) ≥ 0 (a.e. for E = Lp(0, 1)) for all α > 0

(non-negativity).

That family is given by the Riemann-Liouville Formula (3) with a = 0 and b = 1. From the present
viewpoint ([4]), the conditions (CM1)–(CM4) are very natural for any definition of the fractional
integrals defined on a finite interval. As proved in [3], they are also sufficient for uniqueness of the
family of the Riemann-Liouville fractional integrals. Thus, in this sense, the Riemann-Liouville
fractional integrals are the only “right” one-parameter fractional integrals defined on a finite
one-dimensional interval.

The problem regarding the “right” fractional derivatives is more delicate and has no unique
solution. Presently, the main approach for introducing the fractional derivatives is to define
them as the left-inverse operators to the fractional integrals ([4–6]). However, even for the
Riemann-Liouville fractional integral, there exist infinitely many different families of operators that
fulfill this property ([6]). In particular, for 0 < α ≤ 1, the Riemann-Liouville fractional derivative

(Dα
RL f )(t) =

d
dt
(I1−α

0+ f )(t), (6)

the Caputo fractional derivative

(Dα
C f )(t) = (I1−α

0+
d f
dτ

)(t), (7)

and the Hilfer fractional derivative

(Dα
H f )(t) = (Iβ(1−α)

0+
d

dτ
I(1−α)(1−β)
0+ f )(t), 0 ≤ β ≤ 1 (8)

are the left-inverse operators to the Riemann-Liouville fractional integral on the suitable nontrivial
spaces of functions including the space of the absolutely continuous functions on [0, 1], i.e.,
the Fundamental Theorem of FC holds true ([6]):
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(Dα
X Iα

0+ f )(t) = f (t), t ∈ [0, 1], X ∈ {RL, C, H}. (9)

Moreover, in [6], infinitely many other families of the fractional derivatives in the sense
of Formula (9) called the nth level fractional derivatives were introduced. Let the parameters
γ1, γ2, . . . , γn ∈ R satisfy the conditions

0 ≤ γk and α + sk ≤ k with sk :=
k

∑
i=1

γi, k = 1, 2, . . . , n. (10)

The nth level fractional derivative of order α, 0 < α ≤ 1 and type γ = (γ1, γ2, . . . , γn) is defined
as follows:

(Dα,(γ)
nL f )(t) =

(
n

∏
k=1

(Iγk
0+

d
dτ

)

)
(In−α−sn

0+ f )(t). (11)

This derivative satisfies the Fundamental Theorem of FC, i.e., the relation

(Dα,(γ)
nL Iα

0+ f )(t) = f (t), t ∈ [0, 1] (12)

holds true on a nontrivial space of functions (see [6] for details).
To keep an overview of these and many other fractional derivatives, it is very natural to consider

some general integro-differential operators of convolution type and to clarify the question under what
conditions can they be interpreted as a kind of the fractional derivatives. In particular, one expects that
for these derivatives and the appropriate defined fractional integrals the Fundamental Theorem of
FC holds true. Moreover, for the sake of possible applications, one wants to keep some fundamental
properties of solutions to the differential equations with these derivatives. In particular, the property
of complete monotonicity of solutions to the appropriate relaxation equation or the positivity of
the fundamental solution to the Cauchy problem for the fractional diffusion equation with the
time-derivatives of this type.

In the theory of the abstract Volterra integral equations in the Banach spaces, the evolution
equations including the integro-differential operators of convolution type

(Dk u)(t) =
d
dt

∫ t

0
k(t− τ)u(τ) dτ, t ∈ [0, T], 0 < T ≤ +∞ (13)

have been a subject for research for more than a half century. In particular, in [7] (see also the references
therein), the abstract Volterra integral equations including the operators (13) with the completely
positive kernels k ∈ L1(0, T) have been studied. This class of the kernels can be characterized as
follows: A function k ∈ L1(0, T) is completely positive on [0, T] if and only if there exist a ≥ 0 and
l ∈ L1(0, T), non-negative and non-increasing, satisfying the relation

a k(t) +
∫ t

0
k(t− τ)l(τ) dτ = 1, t ∈ (0, T]. (14)

In particular, the completely monotone kernels are completely positive. The notion of completely
positive kernels originated from the “positivity preserving property” that is valid for the corresponding
Volterra integral equations in the case of the Banach space X = R with the usual norm.

In [8,9], the properties of the appropriate defined weak solutions to the linear and quasi-linear
evolutionary partial integro-differential equations of second order with the time-operators of type (13)
in the form

(Dk u)(t) =
d
dt

∫ t

0
k(t− τ)(u(τ)− u0) dτ, t ∈ R+ (15)

were addressed in the case of the kernels k ∈ Lloc(R+) that satisfy the following conditions:
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(Z1) The kernel k is non-negative and non-increasing on R+,
(Z2) There exists a kernel l ∈ Lloc(R+) such that

∫ t
0 k(t− τ)l(τ) dτ = 1, t ∈ R+.

An important example of a kernel k that satisfies the conditions (Z1)–(Z2) is the following
generalization of the Riemann-Liouville kernel ([8]):

k(t) = h1−α(t) exp(−µ t), µ ≥ 0, 0 < α < 1, (16)

where

hβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0. (17)

For this kernel k, the kernel l from the property (Z2) takes the form

l(t) = hα(t) exp(−µ t) + µ
∫ t

0
hα(τ) exp(−µ τ) dτ, t > 0. (18)

However, in [8,9] and in earlier publications, the operators of type (13) were not interpreted as
a kind of the generalized fractional derivatives. In particular, no construction of the corresponding
fractional integral was presented and no conditions that ensure the physically relevant properties
of solutions to the time-fractional differential equations including these derivatives were suggested.
Both tasks along with a series of other useful properties were addresses in [10–13], where a very
nice theory of the general fractional derivative of type (13) was developed and applied for studying
properties of the ordinary and partial differential equations with this derivative. In this survey,
we present some selected results obtained in these and other related publications.

The rest of the paper is organized as follows. In Section 2, we introduce the GFD and the related
fractional integral and discuss some of their basic properties. Section 3 is devoted to the Cauchy
problems for the fractional ODEs with the GFD. In particular, the fractional relaxation equation and
properties of its solution and the fractional growth equation and long time asymptotic of its solution
are considered [10,11,13]. Moreover, existence and uniqueness of solutions to the Cauchy problem for
the nonlinear fractional ODEs with the GFD and their continuous dependence on the problem data are
also addressed following [14]. In Section 4, we present some results regarding the fractional PDEs with
the GFD. We start with the Cauchy problem for the linear fractional diffusion equation and address its
well-posedness with the focus on an interpretation of its fundamental solution as a probability density
function [10,11]. Then we proceed with a treatment of the initial-boundary-value problems for the
time-fractional diffusion equation including the GFD. Based on a suitable estimate for the GFD of a
function at its maximum point, a weak maximum principle for the general time-fractional diffusion
equation with the GFD is deduced. Then, following [15], the maximum principle is employed to show
uniqueness of the strong and the weak solutions to the initial-boundary-value problems for the general
time-fractional diffusion equations. Existence of a weak solution in the sense of Vladimirov [16] is
also discussed. Finally, some important results from the recent publications [17–19] regarding inverse
problems for the fractional differential and integral equations with the GFD are shortly presented.

2. General Fractional Derivative and Integral

Following [10], in this paper we consider the GFD of the Riemann-Liouville type in the form
(compare to (13))

(DRL
k f )(t) =

d
dt

∫ t

0
k(t− τ) f (τ) dτ (19)

and of the Caputo type in the form

(DC
k f )(t) =

∫ t

0
k(t− τ) f ′(τ) dτ, (20)
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where k is a non-negative locally integrable function. For an absolutely continuous function f satisfying
f ′ ∈ L1

loc(R+), the relation (compare to (15))

(DC
k f )(t) = (DRL

k ( f − f (0)))(t) = (DRL
k f )(t)− k(t) f (0) =

d
dt

∫ t

0
k(t− τ) f (τ) dτ − k(t) f (0) (21)

between the Caputo and Riemann-Liouville types of GFDs holds true. In [10], the Caputo type GFD
was introduced in form (21) that is well defined for a lager class of functions (in particular, for absolutely
continuous functions) compared to the definition (20) that requires the inclusion f ′ ∈ L1

loc(R+).
In what follows, we mainly address the GFD of the Caputo type in the sense of the right-hand side of
Formula (21).

The Riemann-Liouville and Caputo fractional derivatives defined by (6) and (7), respectively,
are particular cases of the GFDs (19) and (20) with the kernel

k(t) = h1−α(t), 0 < α < 1, (22)

the power function hβ being defined by (17). Other important particular cases of (19) and (20) are
the multi-term fractional derivatives and the fractional derivatives of the distributed order. They are
generated by (19) and (20) with the kernels

k(t) =
n

∑
k=1

ak h1−αk (t), 0 < α1 < · · · < αn < 1, ak ∈ R, k = 1, . . . , n (23)

and

k(t) =
∫ 1

0
h1−α(t) dρ(α), (24)

where ρ is a Borel measure on [0, 1].
Even if the operators (19) and (20) have been employed in the theory of the abstract Volterra

integral equations for many years, the main advantage of the Kochubei’s approach was to establish a
connection of these operators to FC and to introduce a special class of the kernels that ensures both
existence of the corresponding fractional integrals and physically relevant properties of the fractional
differential equations with these time-fractional derivatives. Moreover, the results presented in [10]
and in the subsequent publications were derived using a completely different technique, namely the
theory of the complete Bernstein functions ([20]).

The kernels of the GFDs (19) and (21) considered in [10] satisfy the following conditions:

(K1) The Laplace transform k̃ of k,

k̃(p) = (L k)(p) =
∫ ∞

0
k(t) e−pt dt

exists for all p > 0,
(K2) k̃(p) is a Stieltjes function,
(K3) k̃(p)→ 0 and pk̃(p)→ ∞ as p→ ∞,
(K4) k̃(p)→ ∞ and pk̃(p)→ 0 as p→ 0.

In what follows, we denote the set of the kernels that satisfy the conditions (K1)–(K4) by K. As we
see, the condition of type (Z2) (Sonine condition) does not belong to the set of the conditions (K1)–(K4).
However, it is one of the consequences of these conditions and especially of the strong condition
(K2). Roughly speaking, a function defined on R+ is a Stieltjes function if it can be represented as a
restriction of the Laplace transform of a completely monotone function to the real positive semi-axis.
Any completely monotone function is non-negative and thus any Stieltjes function is completely
monotone as the Laplace transform of a non-negative function. For the strict definition and properties
of the Stieltjes functions see e.g., [20,21]. The kernel functions (22) and (23) as well as the function (24)



Mathematics 2020, 8, 2115 6 of 20

under some suitable conditions on the measure ρ belong to the class K. In [10], another example of a
function k ∈ K was introduced in terms of its Laplace transform k̃(p) = p−1 log(1 + pβ), 0 < β < 1.

As shown in [10], for each k ∈ K, there exists a completely monotone function κ such that the
Sonine condition holds true:

(k ∗ κ)(t) =
∫ t

0
k(t− τ)κ(τ) dτ = 1. (25)

Henceforth by

(Ik f )(t) =
∫ t

0
κ(t− τ) f (τ) dτ (26)

we denote a general fractional integral (GFI) with the kernel κ associated with the kernel k of the GFD
by means of the relation (25).

The notion of the GFI is justified by the following Fundamental Theorem of FC:

Theorem 1 ([10]). If f is a locally bounded measurable function on R+, then

(DC
k Ik f )(t) = f (t). (27)

If f is absolutely continuous on [0,+∞), then

(Ik DC
k f )(t) = f (t)− f (0). (28)

The Formula (27) and the relation (21) between the GFDs of the Caputo and the Riemann-Liouville
types lead to the identity

(DRL
k Ik f )(t) = f (t), (29)

i.e., the Riemann-Liouville GFD is also a left inverse operator to the GFI defined by (26).
In the case of the Riemann-Liouville and the Caputo fractional derivatives that are particular cases

of the GFDs (19) and (20), respectively, with the power function kernel k defined by (22), the kernel κ

in the GFI (25) is also the power function κ(t) = hα(t) and thus in this case the GFI (26) is nothing else
as the conventional Riemann-Liouville fractional integral.

As shown in [22], the functions that satisfy the Sonine condition (25) cannot be continuous at the
point t = 0 and thus the “new fractional derivatives” with the continuous kernels introduced recently
in the FC literature do not belong to the class of the GFDs that are discussed in this paper.

In the next sections, we consider other physically relevant properties of the GFD including
complete monotonicity of the solutions to the fractional relaxation equation with this derivative,
positivity of the fundamental solution to the Cauchy problem for the fractional diffusion equation
with the time-derivative in form of the GFD, and a maximum principle for the initial-boundary-value
problems for the fractional diffusion equation with this derivative.

3. Fractional ODEs with the GFD

3.1. Fractional Relaxation Equation

In this subsection, we consider the fractional relaxation equation

(DC
k u)(t) = −λu(t), λ > 0, t > 0 (30)

subject to the initial condition
u(0) = 1. (31)

As discussed in [23] (see also references therein), in the framework of the linear viscoelasticity
models, the solutions to the relaxation equations are expected to be completely monotone. Only in this
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case the relaxation processes can be interpreted as superpositions of (infinitely many) elementary, i.e.,
exponential, relaxation processes. For the fractional relaxation equation with the GFD of the Caputo
type, the following result holds true:

Theorem 2 ([10]). Let the kernel k of the Caputo type GFD belong to the class K.
Then the Cauchy problem (30), (31) has a unique solution uλ = uλ(t), continuous on [0, +∞), infinitely

differentiable and completely monotone on R+.

We remind the readers that a function u : R+ → R is called completely monotone if the conditions

(−1)nu(n)(t) ≥ 0, t > 0, n = 0, 1, 2 . . . (32)

hold true.
In the case of the Cauchy problem (30), (31) with the Caputo fractional derivative (7), the solution

can be expressed in terms of the Mittag-Leffler function

uλ(t) = Eα,1(−λtα),

where Eα,β stands for the two-parameters Mittag-Leffler function that is defined by the following
convergent series:

Eα,β(z) =
∞

∑
k=0

zk

Γ(α k + β)
, α > 0, β, z ∈ C. (33)

It is worth mentioning that the fractional relaxation equations with the Riemann-Liouville
fractional derivative (6) and the Hilfer derivative (8) have the solutions

uλ(t) = tα−1 Eα,α(−λtα),

and
uλ(t) = tα+γ1−1 Eα,α+γ1(−λtα),

respectively, provided that we set suitable initial conditions. These solutions are continuous, infinitely
differentiable and completely monotone on R+, but have an integrable singularity at the point t = 0.
As to the relaxation equation with the nth level fractional derivative (11), its solution is given by the
following theorem:

Theorem 3 ([24]). The fractional relaxation equation

(Dα,(γ)
nL u)(t) = −λ u(t), λ > 0, t > 0 (34)

subject to the initial conditions(
n

∏
i=k+1

(
Iγi
0+

d
dt

)
In−α−sn
0+ u

)
(0) = uk, k = 1, . . . , n (35)

has a unique solution, continuous and infinitely differentiable on R+, given by the formula

u(t) =
n

∑
k=1

uk tα+sk−k Eα,α+sk−k+1(−λtα), sk =
k

∑
i=1

γi. (36)
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If the initial conditions are non-negative (uk ≥ 0, k = 1, . . . , n in (35)) and the inequalities

k− 1 ≤ sk =
k

∑
i=1

γi, k = 1, . . . , n (37)

hold true, the solution (36) is completely monotone on R+.

In [10], an important probabilistic interpretation of Theorem 2 has been provided. Let D(t) be a
subordinator of the Lévy process with the Laplace exponent Ψ = Ψ(s) ([25]):

E
[
e−sD(t)

]
= e−tΨ(s),

where Ψ is a Bernstein function ([20]) with the representation

Ψ(s) = bs +
∫ +∞

0
(1− e−sτ)Φ(dτ),

where b ≥ 0 is the drift coefficient and Φ is the Lévy measure, such that either b > 0, or Φ(R+) = +∞,
or both.

Because the process D is strictly increasing, it possesses an inverse function

E(t) = inf{r > 0 : D(r) > t}.

Now we consider a Poisson process N(t) with the intensity λ. It is known that N(E(t)) is a
renewal process with the waiting times Jn and

P[Jn > t] = E
[
e−λE(t)

]
. (38)

As shown in [10], if the restriction Ψ = Ψ(p), p > 0 of the Laplace exponent Ψ = Ψ(s) to the real
semi-axes R+ is a complete Bernstein function that satisfies the conditions (K3) and (K4), then the
right-hand side of Formula (38) can be interpreted as the solution to the Cauchy problem (30), (31).
According to Theorem 2, it is continuous on [0, +∞) and completely monotone.

3.2. Fractional Growth Equation

In this subsection, some of the results derived in [13] are shortly addressed. We consider the
fractional growth equation with the GFD of Caputo type

(DC
k u)(t) = λu(t), λ > 0, t > 0 (39)

subject to the initial condition
u(0) = 1. (40)

In the case of the conventional growth equation, the solution is uλ(t) = exp(λ t). The problem (39),
(40) with the Caputo fractional derivative (7) is solved by the function uλ(t) = Eα,1(λtα) that is known
to be of exponential growth as t → +∞ ([26]). It turns out that the solution to the problem (39), (40)
with the GFD with a kernel k ∈ K (k fulfills the conditions (K1)–(K4)) is also of exponential growth as
t→ +∞.

For formulation of the corresponding result, the notation

Φ(p) = p k̃(p)

is introduced, k̃ being the Laplace transform of k. Because k̃ is a Stieltjes function, Φ is a Bernstein
function and Φ′ is completely monotone ([20]). The made assumptions ensure that Φ is strictly
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monotone and thus for every λ > 0 there exists a unique p0 = p0(λ) such that Φ(p0) = λ.
Then we have the following result regarding the asymptotic of the unique solution uλ of the Cauchy
problem (39), (40) as t→ +∞.

Theorem 4 ([13]). Let k ∈ K and the condition∫ +∞

1

dp
p Φ(p)

< +∞ (41)

hold true. Then the solution uλ of the Cauchy problem (39), (40) has the following exponential
asymptotic behavior:

uλ(t) =
λ

Φ′(p0(λ))p0(λ)
ep0(λ) t + o

(
ep0(λ) t

)
, t→ +∞. (42)

In the case of the Cauchy problem (39), (40) with the Caputo derivative (7), the function Φ takes
the form Φ(p) = pα and p0(λ) = λ1/α. The condition (41) is evidently fulfilled and Formula (42) takes
the form

uλ(t) =
1
α

eλ
1
α t + o

(
eλ

1
α t
)

,

that corresponds to the main term of the asymptotic of the Mittag-Leffler function uλ(t) = Eα,1(λtα) as
t→ +∞ (see e.g., [26]).

Another important particular case is the Cauchy problem (39), (40) with the distributed order
derivative (the GFD with the kernel (24)). It turns out that under some standard assumptions Theorem 4
is applicable also in this case (see [13] for details).

3.3. The Cauchy Problem for a Nonlinear Fractional ODE

Following [14], in this subsection, we address a nonlinear fractional differential equation with the
GFD of the Caputo type

(DC
k u)(t) = f (t, u(t)), t > 0 (43)

subject to the initial condition
u(0) = u0 ∈ R. (44)

In what follows, we again assume that the kernel k of DC
k defined by (21) belongs to the class K,

i.e., that the conditions (K1)–(K4) are fulfilled.
For derivation of results regarding existence and uniqueness of the solution to the Cauchy

problem (43), (44), we first transform it into an integral equation by applying the GFI (26). Let L > 0
and f : [0, L]×R→ R be a continuous function. Then the Cauchy problem (43), (44) is equivalent to
the integral equation

u(t) = u0 +
∫ t

0
κ(t− τ) f (τ, u(τ)) dτ, t > 0, (45)

where the kernel function κ is determined by the relation (25).
The sufficient conditions for existence of the local and global solutions to the integral Equation (45)

and thus to the Cauchy problem (43), (44) are provided in the following two theorems.

Theorem 5 ([14]). Let L, Q > 0, f be a continuous function on the closed domain G = {(t, τ) : 0 ≤ t ≤
L, |τ − u0| ≤ Q}, and l ∈ (0, L] satisfy the inequality

max
(t,τ)∈G

| f (t, τ)|
∫ l

0
κ(τ) dτ ≤ Q.

Then the Cauchy problem (43), (44) has a solution absolutely continuous on the interval [0, l].
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Theorem 6 ([14]). Let L > 0 and f : [0, L]×R→ R be a continuous function that satisfies the inequality

| f (t, τ)| ≤ b0 + b1|τ|p, 0 ≤ t ≤ L, τ ∈ R

with b0, b1 > 0 and 0 < p ≤ 1.
Then the Cauchy problem (43), (44) has a solution absolutely continuous on the interval [0, L].

As a corollary from Theorem 6, we get the following result: Let f : [0, +∞) × R → R be a
continuous function that satisfies the inequality

| f (t, τ)| ≤ b0 + b1|τ|p, 0 ≤ t < +∞, τ ∈ R

with b0, b1 > 0 and 0 < p ≤ 1. Then the Cauchy problem (43), (44) has a global solution absolutely
continuous on [0, +∞).

As to uniqueness of the solution, it was proved under some stronger conditions compared to the
ones required for its existence.

Theorem 7 ([14]). Let L > 0 and f : [0, L]×R → R be a continuous function that satisfies the Lipschitz
condition with respect to its second variable

| f (t, s)− f (t, τ)| ≤ b|s− τ|, 0 ≤ t ≤ L, s, τ ∈ R, b > 0. (46)

Then the Cauchy problem (43), (44) has a unique absolutely continuous solution on the interval [0, L].

As before, the result formulated in Theorem 7 can be extended to the case of the infinite interval
[0, +∞): Let f : [0, +∞)×R→ R be a continuous function that satisfies the Lipschitz condition

| f (t, s)− f (t, τ)| ≤ b|s− τ|, 0 ≤ t < +∞, s, τ ∈ R, b > 0.

Then the Cauchy problem (43), (44) has a unique absolutely continuous solution on the interval
[0, +∞).

To address a continuous dependence of solutions to the Cauchy problem (43), (44) on the problem
data, in [14], a Gronwall-type inequality was derived. It is important by itself and we formulate
it below.

Lemma 1 ([14]). Let l, v0, b > 0 and v ∈ C[0, l]. If the inequality

v(t) ≤ v0 + b
∫ t

0
κ(t− τ) v(τ) dτ (47)

holds true for t ∈ [0, l], then
v(t) ≤ u(t), t ∈ [0, l], (48)

where u = u(t) is the solution to the fractional relaxation equation

(DC
k u)(t) = −b u(t) (49)

subject to the initial condition
u(0) = v0. (50)

Based on Lemma 1, in [14], the continuous dependence of the solution to the Cauchy
problem (43), (44) on the problem data was proved.
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Theorem 8 ([14]). Let the conditions of Theorem 7 be fulfilled, u be the solution to the Cauchy problem (43), (44),
and uk be the solution to the Cauchy problem (43), (44) with the initial condition u(0) = u0k. Then

‖u− uk‖C[0,L] → 0 as u0k → u0.

Theorem 9 ([14]). Let the conditions of Theorem 7 be fulfilled for the functions f and g, u be the solution to the
Cauchy problem (43), (44), and v be the solution to the Cauchy problem (43), (44) with the right-hand side g
and with the same initial condition u0. Then

‖u− v‖C[0,L] → 0 as max
(t,τ)∈[0,L]×[−Ω,Ω]

| f (t, τ)− g(t, τ)| → 0,

where Ω is the upper bound of the supremum norm of the solution u.

4. Time-Fractional PDEs with the GFD

In this section, we present some important results concerning the direct and inverse problems for
the time-fractional PDEs with the GFD of the Caputo type.

4.1. Cauchy Problem for the Time-Fractional Diffusion Equation

Following [10], in this subsection we address the properties of solutions to the Cauchy problem
for the general time-fractional diffusion equation in the form

(DC
k u(x, ·))(t)=∆u(x, t) t > 0, x ∈ Rn, u(x, 0) = u0(x), (51)

where u0 is a bounded globally Hölder continuous function on Rn.
In [10], solutions to the Cauchy problem (51) were understood in the following sense: Applying

formally the Laplace transform in the variable t to the equation in (51), we arrive at the equation

pk̃(p)ũ(x, p)− k̃(p)u0(x) = ∆ũ(x, p), p > 0, x ∈ Rn (52)

for the Laplace transform ũ(x, p) of a solution to the Cauchy problem (51). A bounded function
u = u(x, t) is called an LT-solution of (51), if u is continuous in t on [0, +∞) uniformly with respect
to x ∈ Rn, satisfies the initial condition u(x, 0) = u0(x), while its Laplace transform ũ(x, p) is twice
continuously differentiable in x, for each p > 0, and satisfies Equation (52).

Theorem 10 ([10]). Let the kernel k of the GFD of the Caputo type belong to the class K.
Then there exist a non-negative function Z = Z(x, t), t > 0, x ∈ Rn, x 6= 0, locally integrable in t and

infinitely differentiable in x 6= 0 that satisfies the relation∫
Rn

Z(x, t) dx = 1, t > 0, (53)

and for any bounded globally Hölder continuous u0, the function

u(x, t) =
∫
Rn

Z(x− ζ, t) u0(ζ) dζ (54)

is an LT-solution to the Cauchy problem (51).

The function Z = Z(x, t) is what is usually called the fundamental solution to the Cauchy
problem (51), i.e., the one that formally corresponds to the initial condition u(x, 0) = u0(x) = δ(x),
δ being the Dirac delta function. As stated in Theorem 10, the fundamental solution to the Cauchy
problem (51) can be interpreted as a probability density function for each t > 0 and thus the
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time-fractional diffusion Equation (51) with the GFD could be potentially useful for modeling of
the anomalous diffusion processes.

The explicit form of the fundamental solution is as follows ([10]):

Z(x, t) =
∫ +∞

0
(4πs)−n/2e−

|x|2
4s G(s, t) ds, x 6= 0,

where

G(s, t) =
∫ t

0
k(t− τ)µs(dτ)

with the probability measure µs(dτ) that satisfies the relation

e−spk̃(p) =
∫ +∞

0
e−pτµs(dτ).

Under the conditions of Theorem 10, the measure µs(dτ) always exists because the function
p→ e−spk̃(p) is completely monotone on R+ for each s ≥ 0.

For the validity of Theorem 10, the condition k ∈ K is essential. However, it is worth mentioning
that for the well-posedness of the Cauchy problem for the equations with the operators of type DC

k
much weaker conditions than (K1)–(K4) are sufficient (see e.g., [27]). Here we formulate the uniqueness
result for the Cauchy problem (51) in the class of the LT-solutions proved in [10].

Theorem 11 ([10]). Let the kernel k of the GFD of the Caputo type be non-negative, locally integrable, nonzero
on a set of positive measure, and its Laplace transform k̃ = k̃(p) exist for all p > 0.

If u = u(x, t) is a polynomially bounded LT-solution to the Cauchy problem (51) with u0(x) ≡ 0,
then u(x, t) ≡ 0.

In the definition of the LT-solutions, their boundedness was required. However, this definition
makes sense also for the polynomially bounded solutions, i.e., such solutions u = u(x, t) that satisfy
the inequality |u(x, t)| ≤ Pu(|x|), where Pu are some polynomials independent on t.

4.2. Initial-Boundary-Value Problems for the Time-Fractional Diffusion Equation

In this subsection, we present some results regarding the initial-boundary-value problems for the
time-fractional diffusion equation with the GFD of the Caputo type in the form

(DC
k u(x, ·))(t)=D2(u) + D1(u)− q(x)u(x, t) + F(x, t), (x, t) ∈ Ω× (0, T], (55)

subject to the initial condition
u(x, t)

∣∣
t=0 = u0(x), x ∈ Ω̄ (56)

and the boundary condition

u(x, t)
∣∣
(x,t)∈∂Ω×(0,T] = v(x, t), (x, t) ∈ ∂Ω× (0, T]. (57)

In Equations (55)–(57), Ω is a bounded open domain in Rn with a smooth boundary ∂Ω, q ∈ C(Ω̄),
q(x) ≥ 0 for x ∈ Ω̄, and

D1(u) =
n

∑
i=1

bi(x)
∂u
∂xi

, D2(u) =
n

∑
i,j=1

aij(x)
∂2u

∂xi∂xj
. (58)

Moreover we assume that D2 is a uniformly elliptic differential operator.
A function u ∈ S(Ω, T) is called a strong solution to the initial-boundary-value problem (55)–(57)

if it satisfies both Equation (55) and the initial and boundary conditions (56) and (57), respectively.
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By S(Ω, T), we denoted the space of functions u = u(x, t), (x, t) ∈ Ω̄× [0, T] that satisfy the inclusions
u ∈ C(Ω̄× [0, T]), u(·, t) ∈ C2(Ω) for any t > 0, and ∂tu(x, ·) ∈ C(0, T] ∩ L1(0, T) for any x ∈ Ω.

First we discuss a maximum principle for the time-fractional diffusion Equation (55). For its
validity, we assume that the following conditions for the kernel k of DC

k are satisfied:

(LY1) k ∈ C1(R+) ∩ L1
loc(R+),

(LY2) k(τ) > 0 and k′(τ) < 0 for τ > 0,
(LY3) k(τ) = o(τ−1), τ → 0.

Let us note that the Kochubei’s conditions (K1)–(K4) are not needed for validity of the maximum
principle for the general diffusion Equation (55). However, if the condition (K3) holds true, then it
follows from the Feller-Karamata Tauberian theorem for the Laplace transform ([21]) that the condition
(LY3) is also satisfied.

The maximum principle for the general diffusion Equation (55) is based on an appropriate estimate
of the GFD of a function f at its maximum point. It is given in the following theorem.

Theorem 12 ([28]). Let the conditions (LY1)–(LY3) be fulfilled, a function f ∈ C[0, T] attain its maximum
over the interval [0, T] at the point t0, t0 ∈ (0, T], and f ′ ∈ C(0, T] ∩ L1(0, T).

Then the inequality
(DC

k f )(t0) ≥ k(t0)( f (t0)− f (0)) ≥ 0 (59)

holds true.

In the case of the Caputo fractional derivative, the inequality (59) takes the known form

(Dα
C f )(t0) ≥

t−α
0

Γ(1− α)
( f (t0)− f (0)) ≥ 0. (60)

In what follows, we use the notation

Pk(u) := (DC
k u)(t)− D2(u)− D1(u) + q(x)u(x, t). (61)

Theorem 13 ([28]). Let the conditions (LY1)–(LY3) be fulfilled and a function u ∈ S(Ω, T) satisfy the
inequality

Pk(u) ≤ 0, (x, t) ∈ Ω× (0, T]. (62)

Then the following maximum principle holds true:

max
(x,t)∈ Ω̄×[0,T]

u(x, t) ≤ max{max
x∈Ω̄

u(x, 0), max
(x,t)∈ ∂Ω×[0,T]

u(x, t), 0}. (63)

The maximum principle formulated in Theorem 13 can be applied, among other things,
for derivation of some a priori estimates for the strong solutions of the initial-boundary-value
problem (55)–(57).

Theorem 14 ([28]). Let the conditions (K1)–(K4) and (LY1)–(LY3) be fulfilled and u be a strong solution to the
initial-boundary-value problem (55)–(57).

Then
‖u‖C(Ω̄×[0,T]) ≤ max{M0, M1}+ M f (T), (64)

where
M0 = ‖u0‖C(Ω̄), M1 = ‖v‖C(∂Ω×[0,T]), M = ‖F‖C(Ω×[0,T]), (65)

and

f (t) =
∫ t

0
κ(τ) dτ, (66)
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where the function κ is the kernel of the GFI defined by (25).

The uniqueness of the strong solution to the initial-boundary-value problem (55)–(57) and its
continuous dependence on problem data easily follow from the solution norm estimate (64).

Theorem 15 ([28]). The initial-boundary-value problem (55)–(57) possesses at most one strong solution.
This solution—if it exists—continuously depends on the problem data in the sense that if u and ũ are

strong solutions to the problems with the sources functions F and F̃ and the initial and boundary conditions u0

and ũ0 and v and ṽ, respectively, and
‖F− F̃‖C(Ω̄×[0,T]) ≤ ε,

‖u0 − ũ0‖C(Ω̄) ≤ ε0, ‖v− ṽ‖C(∂Ω×[0,T]) ≤ ε1,

then the norm estimate
‖u− ũ‖C(Ω̄×[0,T]) ≤ max{ε0, ε1} + ε f (T) (67)

holds true, where the function f is defined by (66).

In the rest of this subsection, we address uniqueness and existence of a weak solution to
the initial-boundary-value problem (55)–(57) defined in the sense of Vladimirov [16]: We call
u ∈ C(Ω̄× [0, T]) a weak solution to the initial-boundary-value problem (55)–(57) in the sense of
Vladimirov, if there exist Fk ∈ C(Ω̄ × [0, T]), u0k ∈ C(Ω̄) and vk ∈ C(∂Ω × [0, T]), k = 1, 2, . . .
satisfying (V1) and (V2) below such that

‖uk − u‖C(Ω̄×[0,T]) → 0 as k→ +∞. (68)

(V1) There exist the functions F, u0, and v, such that

‖Fk − F‖C(Ω̄×[0,T]) → 0 as k→ +∞, (69)

‖u0k − u0‖C(Ω̄) → 0 as k→ +∞, (70)

‖vk − v‖C(∂Ω×[0,T]) → 0 as k→ +∞. (71)

(V2) For each k = 1, 2, . . . there exists a strong solution uk = uk(x, t) to the general time-fractional
diffusion equation

(DC
k uk(x, ·))(t) = D2(uk) + D1(uk)− q(x)uk(x, t) + Fk(x, t), (x, t) ∈ Ω× (0, T]. (72)

subject to the initial condition
uk
∣∣
t=0 = u0k(x), x ∈ Ω̄ (73)

and the boundary condition

uk
∣∣
∂Ω×(0,T]=vk(x, t), (x, t)∈∂Ω× (0, T]. (74)

In [28], the correctness of the definition of a weak solution was shown. A weak solution to the
problem (55)–(57) in the sense of Vladimirov is a continuous function, not a distribution. However,
the weak solutions are not required to be smooth.

Any strong solution to the problem (55)–(57) is evidently also its weak solution. If the
problem (55)–(57) possesses a weak solution, then the functions F, u0 and v from the problem
formulation have to belong to the spaces C(Ω̄× [0, T]), C(Ω̄) and C(∂Ω× [0, T]), respectively, as the
limits of the sequences of the continuous functions in the uniform norm.
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The estimate (64) for the strong solutions holds true also for the weak solutions. To show this,
we just let k→ +∞ in the inequality

‖uk‖C(Ω̄T)
≤ max{M0k, M1k}+ Mk f (T), k = 1, 2 . . . (75)

with
M0k := ‖u0k‖C(Ω̄), M1k := ‖vk‖C(∂Ω×[0,T]), Mk := ‖Fk‖C(Ω̄×[0,T]).

The estimate (64) for the weak solutions is employed to prove the following uniqueness result.

Theorem 16 ([28]). The initial-boundary-value problem (55)–(57) possesses at most one weak solution.
The weak solution—if it exists—continuously depends on the data given in the problem in the sense of the
estimate (67).

In the rest of this subsection, we address the question of existence of a weak solution to the
initial-boundary-value problem (55)–(57) in the case of the homogeneous Equation (55) without the
first order spatial differential operator D1 subject to the initial condition (56) and the homogeneous
boundary condition (57), i.e., we consider the initial-boundary-value problem

(DC
k u(x, ·))(t) = D2(u)− q(x)u(x, t), (x, t) ∈ Ω× (0, T], (76)

u(x, t)
∣∣
t=0 = u0(x), x ∈ Ω̄, (77)

u(x, t)
∣∣
(x,t)∈∂Ω×(0,T] = 0, (x, t) ∈ ∂Ω× (0, T] (78)

under the same conditions on the coefficients of the operator D2 and the function q that we assumed
at the beginning of the subsection. Moreover, we also assume that the kernel k of DC

k is from K, i.e.,
the conditions (K1)–(K4) are satisfied.

First, a formal solution to the initial-boundary-value problem (76)–(78) is constructed in form of
the Fourier series

u(x, t) =
∞

∑
k=1

(u0, Xk)Uk(t) Xk(x), (79)

where Xk, k = 1, 2, . . . are the eigenfunctions corresponding to the eigenvalues λk of the
eigenvalue problem

L(X(x)) = λ X(x), x ∈ Ω, (80)

X(x)
∣∣
x∈∂Ω = 0 (81)

for the operator L, L(x) = −D2(X) + q(x)X(x). Because of the conditions posed on the operator D2

and the function q, the differential operator L is positive definite and self-adjoint. Thus the eigenvalue
problem (80)–(81) has a countable number of the positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with the finite
multiplicities and—if the boundary ∂Ω of Ω is smooth—any function f ∈ ML can be represented
through its Fourier series in the form

f (x) =
∞

∑
k=1

( f , Xk) Xk(x), (82)

where Xk ∈ ML are the eigenfunctions corresponding to the eigenvalues λk:

L(Xk) = λk Xk, k = 1, 2, . . . . (83)

ByML, the space of the functions f that satisfy the boundary condition (81) and the inclusions
f ∈ C1(Ω̄) ∩ C2(Ω), L( f ) ∈ L2(Ω) is denoted.
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As to the functions Uk = Uk(t), they are solutions to the fractional relaxation equations

(DC
k Uk)(t) = −λkUk(t), t > 0, k = 1, 2, . . . (84)

subject to the initial conditions
Uk(0) = 1, k = 1, 2, . . . . (85)

According to Theorem 2 from Section 3, for any λ = λk > 0, k = 1, 2, . . . this initial-value problem
has a unique solution Uk = Uk(t) that belongs to the class C∞(R+) and is a completely monotone
function. In particular, any Uk is non-negative and non-increasing and thus the inequalities

0 ≤ Uk(t) ≤ Uk(0) = 1 (86)

hold true. Let us mention that in the case of the single-term time-fractional diffusion equation with the
Caputo fractional derivative (k(τ) = τ−α

Γ(1−α)
, 0 < α < 1), the solution to the initial-value problem (84),

(85) with λ = λk, k = 1, 2, . . . has the form ([29])

Uk(t) = Eα,1(−λktα). (87)

Under some standard assumptions, the formal solution (79) is a weak solution to the
initial-boundary-value problem (76)–(78) in the sense of Vladimirov.

Theorem 17 ([15]). Let the function u0 in the initial condition (77) be from the spaceML. Then the formal
solution (79) of the problem (76)–(78) is its weak solution in the sense of Vladimirov.

For a survey of other results regarding the maximum principles for the time-fractional PDEs of
different types see the recent publication [30].

4.3. Inverse Problems Involving GFD

The starting point of this subsection is a reconstruction problem for a function based on its values
and the values of its GFD in a neighborhood of the final time ([19]):

IP1. Let 0 < t0 < T < +∞. Given φ, g : (t0, T)→ R, find a function u : (0, T)→ R such that

u(t)|(t0,T) = φ(t), and (DC
k u)(t)|(t0,T) = g(t). (88)

The inverse problems of type IP1 are potentially useful for applications. For instance, in the
framework of the Scott-Blair model of viscoelasticity, the stress is proportional to a time-fractional
derivative of the strain ([23]). In this context, the IP1 means a reconstruction of the strain history based
on the measurements of strain and stress starting from a certain time t0.

In [19], a uniqueness result for the IP1 was proved under the following conditions on the kernel k
of DC

k :

(KJ1) ∃µ ∈ R :
∫ +∞

0 e−µ t|k(t)| dt < +∞,
(KJ2) k is real analytic on R+,
(KJ3) the Laplace transform k̃ of k cannot be meromorphically extended to the whole complex

plane C.

Theorem 18 ([19]). Let the kernel k of DC
k fulfill the conditions (KJ1)–(KJ3). Then the following uniqueness

results for the IP1 hold true:

(i) If u ∈ L1(0, T), k ∗ u ∈W1,1(0, T), and u(t)|(t0,T) = (DC
k u)(t)|(t0,T) = 0, then u = 0,

(ii) If u ∈W1,1(0, T) and u(t)|(t0,T) = (DC
k u)(t)|(t0,T) = 0, then u = 0.
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The results formulated in Theorem 18 were employed in [19] for studying uniqueness of solution
to the following source reconstruction problem for the fractional PDEs with the GFD of Caputo type:

IP2. Let 0 < t0 < T < +∞ and Ω ⊆ Rn. Given φ, Φ : Ω × (t0, T) → R, find the functions
u, F : Ω× (0, T)→ R such that they fulfill the equation

(DC
k B(u))(t) + Dl(u)− A(u) = F(x, t), x ∈ Ω, t ∈ (0, T) (89)

and the relations
u(x, t)|Ω×(t0,T) = φ, and F|Ω×(t0,T) = Φ (90)

hold true.
In the formulation of IP2, Dl = ∑l

j=1 qj
∂j

∂tj is a differential operator of order l with respect to
the time variable t and with qj ∈ R and A and B are some operators that act with respect to the
spatial variable x. Moreover, we assume that D(A) ⊆ C(Ω)→ C(Ω), D(B) ⊆ C(Ω)→ C(Ω) and the
operator B is invertible.

In particular, the time-fractional PDE (89) includes the time-fractional diffusion Equations (51)
and (55) that were considered in the previous subsections of this section.

As shown in [19], IP2 can be reduced to IP1. Indeed, let the pair of functions (u, F) solve the IP2.
The Equation (89) restricted to Ω× (t0, T) has the form (DC

k B(u))(t) + Dl(φ)− A(φ) = Φ(x, t) and
thus the function Bu is a solution to the following inverse problem of IP1 type:

Bu|Ω×(t0,T) = Bφ, and DC
k Bu|Ω×(t0,T) = g, (91)

where
g(x, t) = Φ(x, t) + A(φ)− Dl(φ), x ∈ Ω, t ∈ (t0, T).

The solution (u, F) of IP2 can be explicitly expressed in terms of the solution Bu of the IP1
formulated above as follows: u = B−1 Bu, F = DC

k Bu + Dl(u)− A(u). Accordingly, a uniqueness
result for the IP2 immediately follows from Theorem 18 (see [19] for details).

It is worth mentioning that the inverse problems IP1 and IP2 are severely ill-posed ([19]) and thus
appropriate regularization methods are needed for their numerical treatment.

Next, we consider the following evolutionary integral equation:

u(x, t)=
∫ t

0
κ(t− τ)∆u(x, τ) dτ + f (x, t), x ∈ Rn, t ≥ 0. (92)

Please note that the Cauchy problem (compare to (51))

(DC
k u(x, ·))(t)=∆u(x, t) + F(x, t) t > 0, x ∈ Rn, u(x, 0) = u0(x) (93)

can be reduced to an evolutionary integral equation of type (92) by applying the GFI (26) to both sides
of this equation and by using Formula (28) from Theorem 1:

u(x, t) =
∫ t

0
κ(t− τ)∆u(x, τ) dτ + (IC

k F(x, ·))(t) + u0(x), x ∈ Rn, t ≥ 0, (94)

where the kernel κ is connected with the kernel k of DC
k by means of the relation (25).

In [17], an important inverse problem of kernel identification in the boundary value problems
for an equation associated with the evolutionary integral Equation (92) was addressed. Let Ω ⊂ Rn

be a bounded domain with sufficiently smooth boundary ∂Ω. The direct boundary value problem
formulated in [17] is as follows:



Mathematics 2020, 8, 2115 18 of 20

{
u(x, t) =

∫ t
0 κ(t− τ)∆u(x, τ) dτ + f (x, t), x ∈ Ω, t ∈ [0, T],

Bu(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T],
(95)

where B is a boundary operator of the Dirichlet, Neumann, or Robin type, respectively:

Bν(x) = ν(x), Bν(x) = n(x) · ∇ν(x), Bν(x) = n(x) · ∇ν(x) + θν(x), θ ≥ 0,

n(x) being the unit outer normal of ∂Ω at the point x ∈ Ω.
The inverse problem addressed in [17] is formulated via the so called observation functional

Φ that maps the functions defined on Ω onto R. Usually, the functional Φ is defined in one of the
following ways:

Φ[ν] = ν(x0), Φ[ν] = n(x0) · ∇ν(x0), Φ[ν] =
∫

Ω
µ(x) ν(x) dx,

where x0 ∈ Ω and µ : Ω → R are given. In the case x0 ∈ ∂Ω, the observation functional has to be
different from the boundary operator, i.e., Φ[ν] 6= Bν(x0).

The inverse problem considered in [17] is as follows:

IP3. Given h : (0, T)→ R find a kernel κ such that the solution u of the boundary value problem (95)
satisfies the condition

Φ[u(t, ·)] = h(t), t ∈ (0, T). (96)

In [17], existence, uniqueness, and stability of solutions to the IP3 were studied for a certain class
of kernels (see [17] for details).

Finally, we mention that in [18] two other inverse problems for a time-fractional PDE with the
GFD of Caputo type were addressed. Let Ω ⊂ Rn be a bounded domain with the boundary ∂Ω.
The direct initial-boundary-value problem is formulated as follows:

d
dt (k ∗ (U −Φ))(x, t) = LxU(x, t) + H(x, t), x ∈ Ω, t ∈ (0, T),

U(x, 0) = Φ(x), x ∈ Ω,

B(U − b)(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T),

(97)

where Φ and b are given functions, the operator Lx is a linear second order differential operator with
respect to the variable x in the form

LxU(x, t) =
n

∑
i,j=1

aij(x)
∂2U

∂xi∂xj
+

n

∑
j=1

aj(x)
∂U
∂xj

+ r(x)U(x, t),

and B is a boundary operator of the Dirichlet or Neumann type, respectively:

Bv(x) = v(x) or Bv(x) = ω(x) · ∇v(x)

with ω · n > 0, n being the unite outer normal of ∂Ω at the point x ∈ Ω.
The inverse problems considered in [18] are formulated in terms of the given observation function

Φ at the final time T in the form
U(x, T) = Φ(x), x ∈ Ω. (98)

In [18], the following inverse problems were addressed:
IP4. (inverse source problem). Let

H(x, t) = g(x, t) f (x) + h0(x, t), (99)
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where the components g f and h0 may correspond to different sources or sinks. The factor f is unknown
and has to be reconstructed by means of the data given by the observation function Φ from (98).
The inverse problem consists in determination of a pair of functions ( f , U) that satisfies (97), (98), and (99).

Another inverse problem considered in [18] is determination of the coefficient r in the
operator Lx U:

IP5. Determine a pair of functions (r, U) that satisfies (97) and (98).

In [18], existence, uniqueness, and stability of solutions to IP4 and to IP5 were shown under some
additional conditions posed on the problem data (see [18] for details).

For the surveys of the recent results concerning the inverse problems for the fractional PDEs
including different kinds of the conventional fractional derivatives we refer the readers to [31–33].

Finally we mention that the theory of the fractional PDEs with the GFDs is still far away from
being completed. In particular, the regularity of their solutions is not yet investigated in detail.
Another interesting problem for further research would be to address the abstract fractional evolution
equation in the form

(DC
k u)(t) = Au(t) (100)

subject to the initial condition u(0) = x. In (100), A stands for a linear closed unbounded operator
densely defined in a Banach space X and the initial condition x belongs to the space X. This problem
will be considered elsewhere.
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