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Abstract: In this paper, the authors consider the construction of one class of perturbed problems
to the Dirichlet problem for the elliptic equation. The operators of both problems are isospectral,
which makes it possible to construct solutions to the perturbed problem using the Fourier method.
This article focuses on the Dirichlet problem for the elliptic equation perturbed by the selected
variable. We established the spectral properties of the perturbed operator. In this work, we found the
eigenvalues and eigenfunctions of the perturbed task operator. Further, we proved the completeness,
minimal spanning system, and Riesz basis system of eigenfunctions of the perturbed operator. Finally,
we proved the theorem on the existence and uniqueness of the solution to the boundary value problem
for a perturbed elliptic equation.

Keywords: differential equations; perturbed problem; isospectrality; Dirichlet problem; Riesz basis;
spectral properties

1. Introduction

A number of new theoretical and practical problems of scientific knowledge lead to mathematical
models, which are described by boundary value problems for differential equations. An important
contribution to the development of various directions of the theory of differential-operator and
differential-functional equations was made by V. Azbelev [1], A. Antonevich, A. Bitsadze [2],
M. Gorbaczuk [3,4], A. Mishkis [5], A. Nakhushev, V. Romanko, A. Skubachevsky [6,7], S. Yakubov [8,9],
and other authors.

The problem of equivalence (similarity) of differential and integral Voltaire operators was studied
in the works of J. Delsart, B. Levitan, V. Marchenko, A. Povzner, and M. Phage [10]. Furthermore,
mathematical models and analytical approaches were investigated by scientists [11–15]. Transformation
operators have a significant role in the application of the methods of the inverse problem of scattering
theory. An approach to the study of similarity was developed by A. Baskakov [16] for some classes
of unbounded operators. A. Aibeche [17] found conditions that guarantee the solvability of abstract
differential equations of the elliptic type with the operator in the boundary conditions.

The first-order linear problems with involution and periodic boundary conditions were studied
by A. Aibeche, N. Amroune, and S. Maingot [18]. Different cases for which the Green’s function
can be obtained explicitly were studied and the results on the existence and uniqueness solution
were presented.

The mixed problem for an elliptic equation with involution was investigated by A. Ashyralyev, and
A. Sarsenbi [19,20]. These authors resolved this task of reducing the boundary value problem for the
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abstract elliptic equation in a Hilbert space with a self-adjoint positive definite operator. Operator tools
permit obtaining stability and coercive stability estimates in Holder norms, in t, for the solution.

A. Cabada and F. Tojo [21] present an innovative result concerning the existence, uniqueness,
and maximal regularity of the strict solution of the elliptic equations class with nonlocal boundary conditions.

The isospectrality of differential operators is an important object of research in inverse problems
of spectral geometry in the study of the M. Katz problem and has an important application for the
analysis of the problem of thermal conductivity and wave processes. The authors of [22] considered
two inverse problems for the wave equation with involution and presented the results on the existence
and uniqueness of the solutions to these problems.

The work of [23] proves that the system of eigenfunctions is complete and minimal in L2(0, 1),
but is not the basis. For a rational system, r is indicated as the method of choosing associated functions
for which the system of root functions of the problem is an unconditional basis in L2(0, 1). Through
applying the method of the separation of variables, the works of P. Kalenyuk and Ya. Baranetsky [24–31]
studied nonlocal problems with a multiple spectrum and a system of eigenvalues. The operators of
these problems were investigated as isospectral perturbations of the operators of the corresponding
periodic problems.

The conditions for the existence and uniqueness of a solution to nonlocal multipoint problems
for differential-operator equations and partial differential equations were established and the spectral
properties of the operators of these problems were studied.

Proposed by P. Kalenyuk, Ya. Baranetsky’s [23] method allowed building and investigating
nonlocal problems, the pointwise spectrum of which coincided with the pointwise spectrum of the
corresponding non-perturbated problem, which was better studied, and establishing the completeness
and basicity of the system of eigenfunctions of these problems.

In further works of Ya. Baranetsky [22], using the same method, the author investigated
perturbations of boundary conditions of Dirichlet-type problems for linear elliptic and hypoelliptic
differential equations with partial derivatives and differential-operator equations, which left the
pointwise spectrum, completeness, and minimal spanning of the system of eigenfunctions of the
problem unchanged. Further, this method was used to study the operators of the Dirichlet problem
with the same spectrum, which arise when the Laplace equation is perturbed by differential operators
of an infinite order. It turned out that within this method, there are no perturbations of differential
equations by differential operators of a finite order, which leaves the pointwise spectrum, completeness,
and minimal spanning of the system of eigenfunctions of the operator of the Dirichlet problem
unchanged. Naturally, there are problems when constructing and analyzing perturbations that leave
the pointwise spectrum of linear differential equations in an even order by differential-functional
equations of an order not higher than the order of the basic equation, and when studying the properties
of solutions to the Dirichlet problem for these equations.

The construction and study of perturbation classes of operators of the Dirichlet problem for
ordinary differential equations of the second order, differential-operator equations of an even order,
and elliptic equations of the second order, which leave the pointwise spectrum, completeness,
and minimal spanning of the system of eigenfunctions unchanged, are focused on in the works of [24–31].
In these works, the authors investigated the spectral properties of the considered operators and obtained
the eigenfunctions of the operators of perturbed problems and elements of biorthogonal systems.

The basicity of Riesz systems of eigenfunctions of operators of perturbed problems proves the
similarity of these operators to operators of non-perturbated tasks. The unambiguous solvability of the
researched problems is established. We obtained the form of solutions to perturbed problems and their
estimation. The importance of this work lies in its application to the various fields of mathematics and
physics and in the ability to explore new problems based on fundamental problems.
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2. Materials and Methods

The general method proposed by P. Kalenyuk and J. Baranetsky [30,31] for the study of boundary
and nonlocal problems is based on the discovery and description of classes of operators, which is
a perturbation of classical problems and leaves the point spectrum of the initial problem operator
unchanged, i.e., isospectral. This method allows us to consider perturbed problems not as independent
problems, but to use all the properties and proven facts for the classical problem. The isospectrality
of these operators makes it possible to build solutions to the perturbed problem by the Fourier
method. This method develops in two directions. The first direction considers the problem where the
perturbations of the operator are reflected in the boundary conditions.

The perturbations of the Dirichlet-type boundary problems for the differential-operator equations
were researched in the works of [27–31]. In the scientific works of P. Kaleniuk and Ya. Baranetski [30],
nonlocal problems of differential-operator equations and partial differential equations with many
variables and the system of eigenfunctions were investigated. They considered the operators of
these problems to be isospectral perturbations (changing the boundary conditions) of the operators of
corresponding nonlocal multipoint problems whose properties had been well studied. We studied
that by also specifying the conditions of existence and uniqueness of solutions to these tasks,
spectral properties of the respective operators can be obtained.

In the second direction, problems are considered where the perturbations of the operator are
reflected in the equation. Such perturbations (changes in equations and no changes in boundary
conditions) are constructed and analyzed, which leaves the point spectrum unchanged. The operators of
such problems are self-adjoint and are divided into parts according to the invariant spaces Hsj, s, j = 0, 1.
Spaces Hsj, s, j = 0, 1 are induced by the involution operator Iyu(x, y) ≡ u(x, 1− y)Ixu(x, y) ≡ u(1− x, y),
u ∈ L2(K) for the selected variable.

In particular, in the scientific works of [24–31], the authors investigated the problems of
perturbations of even-order linear differential equations by functional-order differential equations not
higher than the order of the basic equation. We explored the properties of Dirichlet-type problems for
these equations, also determining the conditions of existence and uniqueness of solutions to these tasks.

3. Results

Let K =
{
(x, y) ∈ R2 : 0 < x, y < 1

}
, Γ ≡ ∂K; L2(K)—the set of really valued functions

defined and square integrable functions (with respect to the Lebesgue measure) in the K;
H—separable Hilbert space, H(As) = {h ∈ H : Ash ∈ H}, s ≥ 0, Dα = Dα1

x Dα2
y , |α| = α1 + α2,

α1,α2 = 0, 1, 2, W2
2(K) =

{
u ∈ L2(K), D2

xu ∈ L2(K), D2
yu ∈ L2(K)

}
with the norm

∥∥∥u(x, y)
∥∥∥2

W2
2(K)

=∥∥∥u(x, y)
∥∥∥2

L2(K)
+

∥∥∥D2
xu(x, y)

∥∥∥2
L2(K)

+
∥∥∥D2

yu(x, y)
∥∥∥2

L2(K)
. Let A2 be the task operator: A2u(x) = −D2

xu(x),

u(0) = u(1) = 0 and H
(
A

3
2
)
⊂ W

3
2
2 (0, 1)

∥∥∥ϕ∥∥∥2

W
3
2
2 (0,1)

=
∥∥∥ϕ∥∥∥2

L2(0,1) +
∥∥∥∥A

3
2ϕ

∥∥∥∥2

L2(0,1)
, W

3
2
2 (0, 1)—the

Soboleva–Sobodeckoho space [32].
We consider operators Ĩxu(x, y) ≡ u(1− x, y), Ĩyu(x, y) ≡ u(x, 1− y), and u ∈ C

(
K
)
, and their

expansion Ix, Iy to space L2(K), Ĩx ⊂ Ix, Ĩy ⊂ Iy E : L2(K)→ L2(K) is the identity operator, psx ≡
1
2

(
E + (−1)sIx

)
, p jy ≡

1
2

(
E + (−1) jIy

)
, s, j = 0, 1, psj ≡

1
4

(
E + (−1)sIx

)(
E + (−1) jIy

)
, s, j = 0, 1.

Define space Hsj ≡

{
u ∈ L2(K) : (Ix)

s
(
Iy
) j

u ≡ (−1)s+ ju, s, j = 0, 1
}
,

Msj(L2(K)) ≡
{
R : L2(K)→ L2(K) : RIx = (−1)sR, RIy = (−1) jR

}
, s, j = 0, 1.

Then, for operators Ix, Iy, it holds that

DxIxu = −IxDxu, u ∈W1
2(K); (1)

IxIx = E, IyIy = E, IxIy = IyIx (2)
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If u ∈ H1 j then Dxu ∈ H0 j and if u ∈ H0 j then Dxu ∈ H1 j, (3)

If u ∈ H1 j ∩W2
2(K) then D2

xu ∈ H1 j and if u ∈ H0 j ∩W2
2(K) then D2

xu ∈ H0 j. (4)

Then, for operators psx, p jy, and psj, it holds that:

Operators psx, p jy, and psj are orthoprojectors of a space L2(K), s, j = 0, 1. (5)

Then, L2(K) = ⊕1
s=0 ⊕

1
j=0 Hsj, where Hsj≡ psjL2(K), s, j = 0, 1. (6)

We consider the following problem:

L1u(x, y) ≡ L0u(x, y) + αL1,xu(x, y) = f (x, y), α ∈ R, f ∈ L2(K) (7)

here
L0u(x, y) = −∆u(x, y) = −here

(
D2

xu(x, y) + D2
yu(x, y)

)
,

L1,xu(x, y) = Dxu(x, y) −Dxu(1− x, y)
(8)

 lmu ≡ u(x, y)
∣∣∣
x=0 + (−1)m+1 u(x, y)

∣∣∣
x=1 = ϕm(y),

lm+2u ≡ u(x, y)
∣∣∣
y=0 + (−1)m+1u(x, y)

∣∣∣∣
y=1

= ϕm+2(x),
(9)

where m = 1, 2, and functions ϕ1, ϕ2, ϕ3, ϕ4 ∈W
3
2
2 (0, 1), where it is assumed that

ϕ1(0) + ϕ2(0) = ϕ3(0) + ϕ4(0),
ϕ1(1) + ϕ2(1) = ϕ3(0) −ϕ4(0),
ϕ1(0) −ϕ2(0) = ϕ3(1) + ϕ4(1),
ϕ1(1) −ϕ2(1) = ϕ3(0) −ϕ4(0).

(10)

When α = 0, we obtain a boundary value problem for an elliptic equation. This problem can be
divided into two semi-homogeneous problems, (11), (12) and (13), (14), each of which is well researched,
and it is a well-known fact that each of which has a single solution and holds inequality

L1u(x, y) ≡ L0u(x, y) = f (x, y), α ∈ R, f ∈ L2(K) (11)

m = 1, 2  lmu ≡ u(x, y)
∣∣∣
x=0 + (−1)m+1 u(x, y)

∣∣∣
x=1 = 0,

lm+2u ≡ u(x, y)
∣∣∣
y=0 + (−1)m+1u(x, y)

∣∣∣∣
y=1

= 0,
(12)

and
a
∥∥∥ f

∥∥∥2
L2(K)

≤ ‖w‖2
W2

2(K)
≤ b

∥∥∥ f
∥∥∥2

L2(K)
, a, b > 0

Given that L0 : Hsj → Hsj, s, j = 0, 1 , and operator L0 has the representation L0 = L00
0 ⊕ L01

0 ⊕

L10
0 ⊕ L11

0 (which is easy to show), where Lsj
0 u = L0u, u ∈ Hsj ∩D(L0), s, j = 0, 1.

We construct boundary value problems for each operator. The boundary value problems for each
operator are shown in Figure 1.

L1u(x, y) ≡ L0u(x, y) = 0, α ∈ R, f ∈ L2(K) (13)
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m = 1, 2  lmu ≡ u(x, y)
∣∣∣
x=0 + (−1)m+1 u(x, y)

∣∣∣
x=1 = ϕm(y),

lm+2u ≡ u(x, y)
∣∣∣
y=0 + (−1)m+1u(x, y)

∣∣∣∣
y=1

= ϕm+2(x),
(14)

∥∥∥u(x, y)
∥∥∥2

W2
2(K)
≤ C1

2∑
j=1

∥∥∥ϕ j
∥∥∥2

W
3
2
2 (0,1)

+ C2
4∑

j=3

∥∥∥ϕ j
∥∥∥2

W
3
2
2 (0,1)

, C1, C2 = const

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 14 

 

Given that → =0 : , , 0,1sj sjL H H s j , and operator 0L  has the representation 

= ⊕ ⊕ ⊕00 01 10 11
0 0 0 0 0L L L L L  (which is easy to show), = ∈ ∩ =0 00where , ( ), , 0,1.sj

sjL u L u u H D L s j  

We construct boundary value problems for each operator. The boundary value problems for 
each operator are shown in Figure 1. 

 

Figure 1. Boundary value problems for operators 0 , , 0,1sjL і j = . 

( )≡ = α ∈ ∈1 20 , R,L u(x, y) L u(x, y) 0 f L K  (13)

m = 1, 2  

( ) ( ) ( )

( ) ( ) ( )

1
0 1

1
2 20 1

, 1 , ( ),

, 1 , ( ),

+
= =

+
+ += =

 ≡ + − =



≡ + − =


ϕ

ϕ

m
m mx x

m
m my y

l u u x y u x y y

l u u x y u x y x
 (14)

( ) 2
2

2

( )
,

W K
u x y

( ) ( )= =
≤ + = 

3 3
2 2

2 2

2 22 4

1 2 1 2
1 30,1 0,1

, ,j j
j jW W

C C C C constϕ ϕ  

Definition 1. The function ( )∈ 2
2u W K  is called a solution to problems (7)–(9) if the function u satisfies the 

conditions: ( )1 − =
2

0
L K

u fL , 
( )

− = =3
2

2 0,1
0, 1,2,3,4j j W

l u jϕ . 

At first, we consider the problem (15), (16): 

( ) ( )≡ + = ∈ ∈1 0 1, 2( , ) ( , ) ( , ) , , ,xL u x y L u x y L u x y f x y R f L Kα α  (15)

( ), 0=
Г

u x y   (16)

Let 1L be the task (15), (16) operator, ( ) ( )≡1 1, , ,L u x y L u x y ( ) ( )= ∈ =2
1 2{ , 0}ГD L u W K u , and 

operator ≡1, 1,( , ) ( , )x xL u x y L u x y ,  ( ) ( )=1, 1xD L D L . Operator 1L is the perturbation of operator oL . 

When = 0α , we get =1 oL L  for operators ,1 oL L , ( ) ( )= 1oD L D L . 

Lemma 1. The operator 1,xL  has the following properties: 
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0 , i, j = 0, 1.

Definition 1. The function u ∈ W2
2(K) is called a solution to problems (7)–(9) if the function u satisfies the

conditions:
∥∥∥L1u− f

∥∥∥
L2(K)

= 0,
∥∥∥l ju−ϕ j

∥∥∥
W

3
2
2 (0,1)

= 0, j = 1, 2, 3, 4.

At first, we consider the problem (15), (16):

L1u(x, y) ≡ L0u(x, y) + αL1,xu(x, y) = f (x, y), α ∈ R, f ∈ L2(K) (15)

u(x, y)
∣∣∣
Γ = 0 (16)

Let L1 be the task (15), (16) operator, L1u(x, y) ≡ L1u(x, y), D(L1) =
{
u ∈W2

2(K), u|Γ = 0
}
, and

operator L1,xu(x, y) ≡ L1,xu(x, y), D
(
L1,x

)
= D(L1). Operator L1 is the perturbation of operator Lo.

When α = 0, we get L1 = Lo for operators L1, Lo, D(Lo) = D(L1).

Lemma 1. The operator L1,x has the following properties:

L1,x : H0 j ∩W1
2(K)→ 0, L1,x : H1 j ∩W1

2(K)→ H0 j, j = 0, 1.

Proof of Lemma 1. Since the operator has the form L1,xu(x, y) = Dxu(x, y) −Dxu(1− x, y), and from
the definition of the projector p1x and properties (1) and (2), we obtain

L1,xu(x, y) = Dx(u(x, y) − u(1− x, y)) = 2Dxp1xu(x, y) (17)

Let u = p0xu ∈ H0 j ∩W1
2(K), j = 0, 1, then L1,x : H0 j ∩W1

2(K)→ 0 , j = 0, 1.
Let u = p1xu ∈ H1 j ∩W1

2(K), j = 0, 1, then using Formula (17) and the properties of operators
(3)–(5), we obtain L1,xu = 2Dxp1xp1xu = 2Dxp1xu = 2p0xDxu ∈ H0 j, j = 0, 1.
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Finally, we get L1,x : H1 j ∩W1
2(K)→ H0 j, j = 0, 1 and L1,x : H0 j ∩W1

2(K)→ 0 , j = 0, 1. Lemma is
proved. �

We consider the spectral problem:

Theorem 1.
1. The pointwise spectrum of operator L1 coincides with that of operator L0: σp(L1) = σp(L0) ={

λk,m : λk,m = (πk)2 + (πm)2, k, m ∈ N
}
.

2. System V(L1) of eigenvectors is complete and the minimal spanning system (set) of a space L2(K).

Proof of Theorem 1. Operator L0 has the eigenvalue
{
λk,m : λk,m = (πk)2 + (πm)2, k, m ∈ N

}
and the

system of eigenvectors V(L0) =
{
v0

k,m ∈ L2(K) : v0
k,m(x, y) = 2 sin(πkx) sin(πmy), k, m ∈ N

}
.

Define eigenvectors of operator L1:

vk,m(x, y) = v0
k,m(x, y) + v1

k,m(x, y),k, m ∈ N (18)

where v0
k,m(x, y) are eigenvectors of operator L0, k, m ∈ N.

If k = 2s− 1 then v0
2s−1,m ∈ H0 j, j = 0, 1, L1,xv0

2s−1,m(x, y) = 0 follows from Lemma 1, and it also
holds that L1v0

2s−1,m(x, y) = L0v0
2s−1,m(x, y)+αL1,xv0

2s−1,m(x, y) =L0v0
2s−1,m(x, y).

Therefore, eigenvectors v0
2s−1,m(x, y) of operator L0 are also eigenvectors of operator L1:

v2s−1,m(x, y) = v0
2s−1,m(x, y), s, m ∈ N (19)

If k = 2s, eigenvectors of operator L1 are defined as below:

v2s,m(x, y) = v0
2s,m(x, y) + v1

2s,m(x, y), s, m ∈ N (20)

Let v1
2s,m ∈ H0 j, j = 0, 1, s, m ∈ N in the form of a series v1

2s,m =
∞∑

r=1
Ar

s,m sin(2r− 1)πx sin mπy,

where Ar
s,m are unknown coefficients.

To determine the coefficients Ar
k,m, combining expression (20) and expression

L1v2s,m = λ2s,mv2s,m, we obtain

(L0 − λ2s,m)v1
2s,m(x, y) = −αL1,xv0

2s,m(x, y),

∞∑
r=1

Ar
s,mπ

2[−(−(2r− 1)2
−m2) − (2s)2

−m2] sin(2r− 1)πx sin mπy = −8απs cos 2sπx sin mπy.

On the other hand, cos 2sπx =
∞∑

l=1

4(2l−1)
π((2l−1)2

−(2s)2)
sin(2l− 1)πx. From the previous equality and

the fact that the system
{√

2 sinπmy
}
m∈N

is orthonormal of a Hilbert space L2(0, 1), we obtain

Ar
s,m =

−32αs(2r− 1)

π2
(
(2r− 1)2

− (2s)2
)2 .

Finally, we have system V(L1) of eigenvectors:
v2s−1,m(x, y) = 2 sin(2s− 1)πx sin mπy, s, m ∈ N;

v2s,m(x, y) = 2 sin 2sπx sin mπy +
∞∑

r=1

−32αs(2r−1)

π2((2r−1)2
−(2s)2)

2 sin(2r− 1)πx sin mπy.

Now, we want to prove that system V(L1) is complete.
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We will prove it by this contradiction. For every h ∈ L2(K) using the properties of operators (6)
h = h1,1 + h0,0+h0,1 + h1,0, where hi, j ∈ Hi j, i, j = 0, 1. Let

(
h, vk,m

)
L2(K)

= 0, k, m ∈ N, vk,m ∈ V(L1).

Let k = 2s − 1, using Formulas (6) and (19), we obtain:
(
h, v2s−1,m

)
L2(K)

= (h1,1 + h0,0 +

h0,1+h1,0, v0
2s−1,m

)
L2(K)

= (h0,0 + h0,1 , v0
2s−1,m

)
L2(K)

= 0,s, m ∈ N.

If m = 2l then (h0,0 + h0,1 , v0
2s−1,2l

)
L2(K)

=(h0,1 , v0
2s−1,2l

)
L2(K)

= 0, and using the fact that the system{
v0

2s−1,2l

}∞
s,l=1

is orthonormal of a space H01, we obtain h0,1(x, y) = 0.

If m = 2l − 1 then (h0,0 , v0
2s−1,2l−1

)
L2(K)

= 0, s, l ∈ N, and using the fact that the system{
v0

2s−1,2l−1

}∞
s,l=1

is orthonormal of a space H00, we obtain h0,0 = 0.

Let k = 2s, using Formula (20) and inclusion v1
2s,m ∈ H0 j, j = 0, 1, we obtain (h, v2s,m)L2(K) =

(h1,0 + h1,1, v2s,m)L2(K)
=

(
h1,0 + h1,1, v0

2s,m + v1
2s,m

)
L2(K)

=
(
h1,0 + h1,1, v0

2s,m

)
L2(K)

, s, m ∈ N.

If m = 2l − 1 then
(
h1,0 + h1,1, v0

2s,2l−1

)
L2(K)

=
(
h1,0, v0

2s,2l−1

)
L2(K)

= 0, s, l ∈ N, and also using the

fact that the system
{
v0

2s,2l−1

}∞
s,l=1

is orthonormal of a space H01, we obtain h1,0 = 0.

If m = 2l then
(
h1,0 + h1,1, v0

2s,2l

)
L2(K)

=
(
h1,1, v0

2s,2l

)
L2(K)

= 0, s, l ∈ N; similarly, one gets h1,1 = 0.

We conclude that h(x, y) ≡ 0, which is a contradiction. We proved that system V(L1) is complete
in the space of L2(K).

Now, we want to prove that system V(L1) is the minimal spanning system (set) of a space L2(K).
Define operator Q1 as below: Q1v0

2s−1,m(x, y) ≡ v0
2s−1,m(x, y), s, m ∈ N

Q1v0
2s,m(x, y) ≡ v0

2s,m(x, y) + v1
2s,m(x, y).

(21)

Let R1 : L2(K)→ L2(K), R1 ≡ Q1 − E, and E : L2(K)→ L2(K)—identity operator L2(K).
Therefore, using Formula (21), it holds that R1v0

2s−1,m(x, y) ≡ 0, s, m ∈ N
R1v0

2s,m(x, y) ≡ v1
2s,m(x, y).

Then, R1 : H1 j → H0 j, R1 : H0 j → 0, j = 0, 1 . Operator R1 is the transformation operator and it

follows that operators Q−1
1 and

(
Q∗1

)−1
exist:

Q−1
1 = E−R1, (Q∗1)

−1 = (E + R1
∗)−1 = E−R1

∗ (22)

Using Formula (22), define the elements of the system W(L1) biorthogonal to the system V(L1):
w(x, y) =

(
Q−1

1

)∗
v(x, y), where v ∈ V(L1). System V(L1) of eigenvectors is the minimal spanning

system (set) of a space L2(K). Theorem 1 is proved. �

Theorem 2. The system of eigenvectors V(L1) is a Riesz basis of a space L2(K).

Proof of Theorem 2. We will prove that operator R1 is bounded.

For every h ∈ L2(K), we have h =
∞∑

k,m=1
hk,mv0

k,m(x, y).

‖R1h‖2L2(K)
=

∥∥∥∥∥∥R1
∞∑

k,m=1
hk,mv0

k,m

∥∥∥∥∥∥2

L2(K)
=

∥∥∥∥∥∥ ∞∑
s,m=1

h2s,mR1v0
2s,m

∥∥∥∥∥∥2

L2(K)
=

∥∥∥∥∥∥ ∞∑
s,m=1

h2s,mv1
2s,m

∥∥∥∥∥∥2

L2(K)
.
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Using equality: (2x− 1) sin 2kπx =
∞∑

r=1

−32k(2r−1)

π2((2r−1)2
−(2k)2)

2 sin(2r− 1)πx.

We obtain ‖R1h‖2L2(K)
=

∥∥∥∥∥∥− ∞∑
s,m=1

h2s,mα(2x− 1) sin 2sπx sin mπy

∥∥∥∥∥∥2

L2(K)
≤C3

∞∑
s,m=1

∣∣∣h2s,m
∣∣∣2 ≤ C4‖h‖2L2(K)

,

C3, C4 = const, where C4 = α2

12 .
Operators Q−1

1 = E−R1, Q1 = E + R1 are bounded to a space L2(K). Following the theorem [22],
we obtain that the system of eigenvectors V(L1) is a Riesz basis of a space L2(K).

Theorem 2 is proved. �

We consider a boundary value problem:

L1w(x, y) = L0w(x, y) + αL1,xw(x, y) = f (x, y), α ∈ R, f ∈ L2(K), (23)

L0w(x, y) = −∆w(x, y) = −
(
D2

xw(x, y) + D2
yw(x, y)

)
,

L1,xw(x, y) = Dxw(x, y) −Dxw(1− x, y).

w(x, y)
∣∣∣
x=0 + w(x, y)

∣∣∣
x=1 = ϕ1(y), w(x, y)

∣∣∣
x=0 − w(x, y)

∣∣∣
x=1 = ϕ2(y),

w(x, y)
∣∣∣
y=0 + w(x, y)

∣∣∣
y=1 = ϕ3(x), w (x, y)

∣∣∣
y=0 − w(x, y)

∣∣∣
y=1 = ϕ4(x),

(24)

where ϕs ∈W
3
2
2 (0, 1), s = 1, 2, 3, 4.

Now, let us proceed to problem (23), (24).
The function w(x, y) can be presented as the sum w(x, y) = u(x, y) + z(x, y). Functions

u(x, y), z(x, y) are solutions to the following problems:

L1u(x, y) = L0u(x, y) + αL1,xu(x, y) = f (x, y), α ∈ R, f ∈ L2(K) u(x, y)
∣∣∣
x=0 + u(x, y)

∣∣∣
x=1 = 0, u(x, y)

∣∣∣
x=0 − u(x, y)

∣∣∣
x=1 = 0,

u(x, y)
∣∣∣
y=0 + u(x, y)

∣∣∣
y=1 = 0, u(x, y)

∣∣∣
y=0 − u(x, y)

∣∣∣
y=1 = 0,

(25)

L1z(x, y) = L0z(x, y) + αL1,xz(x, y) = 0, α ∈ R, z(x, y)
∣∣∣
x=0 + z(x, y)

∣∣∣
x=1 = ϕ1(y), z(x, y)

∣∣∣
x=0 − z(x, y)

∣∣∣
x=1 = ϕ2(y),

z(x, y)
∣∣∣
y=0 + z(x, y)

∣∣∣
y=1 = ϕ3(x), z(x, y)

∣∣∣
y=0 − z(x, y)

∣∣∣
y=1 = ϕ4(x).

(26)

Theorem 3. If f ∈ L2(K) then a unique solution to problem (25) exists and satisfies the following estimate:

‖u‖2L2(K)
≤ C

∥∥∥ f
∥∥∥2

L2(K)
. (27)

Proof of Theorem 3. Now let us proceed to problem (25). The function u(x, y), f (x, y) can be presented
as a sum:

u(x, y) = u 1,0(x, y) + u1,1(x, y) + u0,0(x, y) + u0,1(x, y),
f (x, y) = f1,0(x, y) + f1,1(x, y) + f0,0(x, y) + f0,1(x, y),

(28)

where us, j ∈ Hsj ∩W2
2(K), fs, j ∈ Hsj, s, j = 0, 1.

Combining both expressions (25) and (28), we obtain

(L0 + L1,x)
1∑

s, j=0
us, j =

1∑
s, j=0

fs, j,

1∑
s, j=0

L0us, j +
1∑

s, j=0
L1,xus, j =

1∑
s, j=0

fs, j,



Mathematics 2020, 8, 2108 9 of 13


1∑

s, j=0
us, j(x, y)

∣∣∣∣∣∣
x=0

+
1∑

s, j=0
us, j(x, y)

∣∣∣∣∣∣
x=1

= 0,
1∑

s, j=0
us, j(x, y)

∣∣∣∣∣∣
x=0

−

1∑
s, j=0

us, j(x, y)

∣∣∣∣∣∣
x=1

= 0,

1∑
s, j=0

us, j(x, y)

∣∣∣∣∣∣
y=0

+
1∑

s, j=0
us, j(x, y)

∣∣∣∣∣∣
y=1

= 0,
1∑

s, j=0
us, j(x, y)

∣∣∣∣∣∣
y=0

−

1∑
s, j=0

us, j(x, y)

∣∣∣∣∣∣
y=1

= 0.

Using Lemma 1 (Figure 2), it also holds that L1,xu0, j(x, y) = 0, j = 0, 1 and

1∑
s, j=0

L0us, j + L1,xu1,0 + L1,xu1,1 =
1∑

s, j=0
fs, j
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Figure 2. Division of a boundary value problem for a perturbed operator L1 into parts according to
subspaces Hi j, i, j = 0, 1.

We solve each of these problems similarly to problems (11) and (12).
Using the properties of operator (4) and inclusion L1,xu1,0 ∈ H00, L1,xu1,1 ∈ H01 (following Lemma

1), problem (25) is divided into parts:

L0u1,0(x, y) = f1,0(x, y), u1,0(x, y)
∣∣∣
x=0 + u1,0(x, y)

∣∣∣
x=1 = 0, u1,0(x, y)

∣∣∣
x=0 − u1,0(x, y)

∣∣∣
x=1 = 0,

u1,0(x, y)
∣∣∣
y=0 + u1,0(x, y)

∣∣∣
y=1 = 0, u1,0(x, y)

∣∣∣
y=0 − u1,0(x, y)

∣∣∣
y=1 = 0,

(29)

L0u1,1(x, y) = f1,1(x, y), u1,1(x, y)
∣∣∣
x=0 + u1,1(x, y)

∣∣∣
x=1 = 0, u1,1(x, y)

∣∣∣
x=0 − u1,1(x, y)

∣∣∣
x=1 = 0,

u1,1(x, y)
∣∣∣
y=0 + u1,1(x, y)

∣∣∣
y=1 = 0, u1,1(x, y)

∣∣∣
y=0 − u1,1(x, y)

∣∣∣
y=1 = 0,

(30)

L0u00(x, y) = f00(x, y) − L1,xu10(x, y), u0,0(x, y)
∣∣∣
x=0 + u0,0(x, y)

∣∣∣
x=1 = 0, u0,0(x, y)

∣∣∣
x=0 − u0,0(x, y)

∣∣∣
x=1 = 0,

u0,0(x, y)
∣∣∣
y=0 + u0,0(x, y)

∣∣∣
y=1 = 0, u0,0(x, y)

∣∣∣
y=0 − u0,0(x, y)

∣∣∣
y=1 = 0,

(31)

L0u0,1(x, y) = f0,1(x, y) − L1,xu1,1(x, y), u0,1(x, y)
∣∣∣
x=0 + u0,1(x, y)

∣∣∣
x=1 = 0, u0,1(x, y)

∣∣∣
x=0 − u0,1(x, y)

∣∣∣
x=1 = 0,

u0,1(x, y)
∣∣∣
y=0 + u0,1(x, y)

∣∣∣
y=1 = 0, u0,1(x, y)

∣∣∣
y=0 − u0,1(x, y)

∣∣∣
y=1 = 0.

(32)

Problems (29) and (30) are similar to problems (11) and (12). There are unique solutions to each of
the problems (29) and (30) and they hold inequality

Mi
∥∥∥ f1,i

∥∥∥2
L2(K)

≤

∥∥∥u1,i
∥∥∥2

W2
2(K)
≤ Li

∥∥∥ f1,i
∥∥∥2

L2(K)
, Mi, Li > 0, i = 0, 1.

For problems (31) and (32), we prove that f0,0 − L1,xu1,0 ∈ L2(K) and f0,1 − L1,xu1,1 ∈ L2(K):∥∥∥ f0,0 − L1,xu1,0
∥∥∥2

L2(K)
≤ 2

(∥∥∥ f0,0
∥∥∥2

L2(K)
+

∥∥∥L1,xu1,0
∥∥∥2

L2(K)

)
≤
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≤ 2
(∥∥∥ f0,0

∥∥∥2
L2(K)

+ 4
∥∥∥Dxu1,0

∥∥∥2
L2(K)

)
≤ 2

∥∥∥ f0,0
∥∥∥2

L2(K)
+ 4

∑
|α|≤2

∥∥∥Dαu1,0
∥∥∥2

L2(K)

 ≤
≤ 2

(∥∥∥ f0,0
∥∥∥2

L2(K)
+ 4C5

∥∥∥u1,0
∥∥∥2

W2
2(K)

)
< ∞,∥∥∥ f0,1 − L1,xu1,1

∥∥∥2
L2(K)

≤ 2
(∥∥∥ f0,1

∥∥∥2
L2(K)

+
∥∥∥L1,xu1,1

∥∥∥2
L2(K)

)
≤2

(∥∥∥ f0,1
∥∥∥2

L2(K)
+ 4C6

∥∥∥u1,1
∥∥∥2

W2
2(K)

)
< ∞.

We proved that problems (29) and (30) are similar to problems (11) and (12). So, there is a unique
solution to these problems and it holds inequality

Ci
∥∥∥ f0,i

∥∥∥2
L2(K)

≤

∥∥∥u0,i
∥∥∥2

W2
2(K)
≤ C′i

∥∥∥ f0,i
∥∥∥2

L2(K)
, i = 0, 1, Ci, C′i > 0

Following the previous results and equality: ‖u‖2L2(K)
=

∥∥∥u0,1
∥∥∥2

L2(K)
+

∥∥∥u1,0
∥∥∥2

L2(K)
+

∥∥∥u1,1
∥∥∥2

L2(K)
+∥∥∥u0,0

∥∥∥2
L2(K)

, we obtain the existence of a unique solution to problem (25) that satisfies inequality (27).
Theorem 3 is proved. �

Solution z(x, y) of problem (25) can be presented as a sum:
z(x, y) = v1(x, y) + v2(x, y), where v1(x, y), v2(x, y) are the solutions to problems (33) and (34):

L1v1(x, y) = L0v1(x, y) + αL1,xv1(x, y) = 0, v1(x, y)
∣∣∣
x=0 + v1(x, y)

∣∣∣
x=1 = ϕ1(y), v1(x, y)

∣∣∣
x=0 − v1(x, y)

∣∣∣
x=1 = ϕ2(y),

v1(x, y)
∣∣∣
y=0 + v1(x, y)

∣∣∣
y=1 = 0, v1(x, y)

∣∣∣
y=0 − v1(x, y)

∣∣∣
y=1 = 0.

(33)

L1v2(x, y) = L0v2(x, y) + αL1,xv2(x, y) = 0, v2(x, y)
∣∣∣
x=0 + v2(x, y)

∣∣∣
x=1 = 0, v2(x, y)

∣∣∣
x=0 − v2(x, y)

∣∣∣
x=1 = 0,

v2(x, y)
∣∣∣
y=0 + v2(x, y)

∣∣∣
y=1 = ϕ3(x), v2(x, y)

∣∣∣
y=0 − v2(x, y)

∣∣∣
y=1 = ϕ4(x).

(34)

We rewrite problem (33) in differential-operator form, and it is defined as operator

B2 : L2(0, 1)→ L2(0, 1), B2h(y) ≡ − d2h(y)
dy2 , D(B2) =

{
h ∈W2

2(0, 1) : h(0) = h(1) = 0
}
.

Since operator B2 is positively defined, then operator A2 exists:

A2 ≡
√

B2, D(A2) =

{
h =

∑
k

hk
√

2 sin kπy ∈ L2(0, 1) :
∑
k

k2
|hk|

2 < ∞

}
Let H = L2(0, 1), v1(x, y) = v1(x),ϕ1 = ϕ1(y) ∈ H,ϕ2 = ϕ2(y) ∈ H,
αL1,xv1(x, y) ≡ αL1,xv1(x) = αDx(v1(x) − v1(1− x)).
Problem (33) has a differential-operator formulation: −D2

xv1(x) + A2
2v1(x) + αL1

1,xv1(x) = 0,
v1(x)

∣∣∣
x=0 + v1(x)

∣∣∣
x=1 = ϕ1, v1(x)

∣∣∣
x=0 − v1(x)

∣∣∣
x=1 = ϕ2.

(35)

Further, we rewrite problem (34) in differential-operator form.

Define operator: B1 : L2(0, 1)→ L2(0, 1), B1g(x) ≡ − d2 g(x)
dx2 + αL1

xg(x),α ∈ R ,

D(B1) =
{
g ∈W2

2(0, 1) : g(0) = g(1) = 0
}
.

Since operator B1 is positively defined, there is the operator

A1 ≡
√

B1, D(A1) =

{
g(x) =

∑
k

gk
√

2 sin kπx ∈ L2(0, 1) :
∑
k

k2
∣∣∣gk

∣∣∣2 < ∞}
.

Let H = L2(0, 1), v2(y) = v2(x, y),ϕ3 = ϕ3(x) ∈ H,ϕ4 = ϕ4(x) ∈ H.
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Problem (34) has a differential-operator formulation: −D2
yv2(y) + A2

1v2(y) = 0,
v2(y)

∣∣∣
y=0 + v2(y)

∣∣∣
y=1 = ϕ3, v2(y)

∣∣∣
y=0 − v2(y)

∣∣∣
y=1 = ϕ4. (36)

Problems (35) and (36) were researched [25], each of which has a single solution and
holds inequalities

‖v1‖
2
W2

2(K)
≤ C6

(∥∥∥ϕ2
∥∥∥2

W
3
2
2 (0,1)

+
∥∥∥ϕ1

∥∥∥2

W
3
2
2 (0,1)

)
and ‖v2‖

2
W2

2((0,1);H)
≤C7

(∥∥∥ϕ0
∥∥∥2

H(A
3
2 )

+
∥∥∥ϕ1

∥∥∥2

H(A
3
2 )

)
. (37)

Additionally, they hold

‖z‖2
W2

2(K)
≤ C8

(
‖v1‖

2
W2

2(K)
+ ‖v2‖

2
W2

2(K)

)
, (38)

where C8 = max{2C6, 2C7}.

Theorem 4. For every f ∈ L2(K) and ϕ1,ϕ2, ϕ3,ϕ4 ∈W
3
2
2 (0, 1) exists a unique solution, w(x, y) ∈W2

2(K),
to problems (25) and (26) which satisfies the following inequality:

‖w‖2
W2

2(K)
≤ C9

∥∥∥ f
∥∥∥2

L2(K)
+

2∑
j=1

∥∥∥ϕ j
∥∥∥2

W
3
2
2 (0,1)

+
4∑

j=3

∥∥∥ϕ j
∥∥∥2

W
3
2
2 (0,1)

. (39)

Proof of Theorem 4. The existence of a single solution, w = u+ z, to problems (22) and (24) follows from
the existence of solutions to problems (25) and (26), respectively, of Theorem 3, and for Formula (38),

a unique solution, w, exists and holds inequality ‖w‖2L2(K)
≤ 2

(
‖u‖2L2(K)

+ ‖z‖2L2(K)

)
, therefore, by adding

inequalities (27) and (38), we obtain inequality (39), where C9 = max{2C, 2C8}.
Theorem 4 is proved. �

4. Conclusions

We investigated the Dirichlet problem for the elliptic equation perturbed by the selected variable
and established the spectral properties of the perturbed operator. Further, we explicitly found the
eigenvalues and eigenfunctions of the perturbed task operator. We proved the isospectrality of the
perturbed operator to the operator of the Dirichlet problem for an elliptic equation and proved the
completeness, minimality, and basicity of the system of eigenfunctions of this operator. We proved
the theorem on the existence and uniqueness of the solution to the boundary value problem for a
perturbed elliptic equation. We obtained an upper bound solution to the researched problem.

Similar results we can obtain if we consider the perturbations are of the following forms:

L2,xu(x, y) = Dxu(x, y) + Dxu(1− x, y)

L1,yu(x, y) = Dyu(x, y) −Dyu(x, 1− y),

L2,yu(x, y) = Dyu(x, y) + Dyu(x, 1− y),

L2,xu(x, y) = Dxu(x, y) + Dxu(1− x, y),

L1,yu(x, y) = Dyu(x, y) −Dyu(x, 1− y),

L2,yu(x, y) = Dyu(x, y) + Dyu(x, 1− y),

L1,xyu(x, y) = Dx(u(x, y) − u(1− x, 1− y))
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In further research, we plan to show the general class of perturbations for elliptic equations of the
Dirichlet problem and the study of the Dirichlet problem for differential equations in partial derivatives
of higher orders. We will also show the selection of isospectrality classes for such a problem and proof
of the theorems of existence and uniqueness of the solution to such problems.
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