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Abstract: A numerical method based on the Pontryagin maximum principle for solving an optimal control
problem with static and dynamic phase constraints for a group of objects is considered. Dynamic phase
constraints are introduced to avoid collisions between objects. Phase constraints are included in the
functional in the form of smooth penalty functions. Additional parameters for special control modes and
the terminal time of the control process were introduced. The search for additional parameters and the
initial conditions for the conjugate variables was performed by the modified self-organizing migrating
algorithm. An example of using this approach to solve the optimal control problem for the oncoming
movement of two mobile robots is given. Simulation and comparison with direct approach showed that
the problem is multimodal, and it approves application of the evolutionary algorithm for its solution.

Keywords: optimal control problem; evolutionary computation; robotics applications

1. Introduction

The optimal control belongs to complex computational problems for which there are no universal
solution algorithms. The most well-known result in this area [1] transforms the optimization problem
into a boundary-value problem, and the dimension of the problem doubles. The goal of solving the
boundary-value problem is to find the initial conditions for conjugate variables such that the vector of
state variables falls into a given terminal condition. In general, for this problem, there is no guarantee
that the functional for the boundary-value problem is not unimodal and convex on the space of initial
conditions of conjugate variables.

The optimal control problem with phase constraints is considered. Phase constraints are included in
the functional, so they are included in the system of equations for conjugate variables. This greatly
complicates the analysis of the problem on the convexity and unimodality of the target functional.
The accurate solution of optimal control problem has to use additional functions and regularization
of equations at the search of control [2,3]. An additional problem in solving a boundary-value problem is
determination of time for checking the fulfillment of boundary conditions.
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In this paper, for the numerical solution of the problem, it is proposed to use evolutionary algorithms
that have shown efficiency in solving optimal control problems [4]. SOMA is a universal algorithm for
various difficult optimization problems [5,6]. However, our attempt to apply SOMA to the optimal control
problem of four robots with constraints has failed to find a good solution for any values of the algorithm
parameters. We supposed that the modification of each possible solution in population in the process of
evolution using the best current possible solution is not enough [7]. We expanded the modification of
SOMA by introducing the best historical solution among randomly selected ones for each possible solution
in the population.

The article consists of an introduction and eight sections. Statement of the optimal control problem
with phase constraints is presented in Section 2. Section 3 contains Pontryagin maximum principle as one
of main approaches for its numerical solution. Section 4 contains a description of one of the evolutionary
algorithms, modified SOMA. An example is given in Section 5. The computational experiment and
results are presented in Section 6. Section 7 describes the search of optimal control by direct method.
Alternative non-deterministic control methods are observed in Section 8. Results and future research
directions are discussed in Section 9.

2. Optimal Control Problem with Phase Constraints for Group of Robots

Consider the problem of optimal control for a group of robots with phase constraints. Given a
mathematical model of control objects in the form of the system of ordinary differential equations

ẋj = fj(xj, uj), (1)

where xj is a state space vector of control object j, xj ∈ Rnj , uj is a control vector of object j, uj ∈ Uj ⊆ Rmj ,
Uj is a compact limited set, mj 6 nj, j = 1, . . . , M, M is a number of objects. For the system (1) initial
conditions are given

xj(0) = xj,0 ∈ Rnj , j = 1, . . . , M. (2)

Given terminal conditions
xj(t f ,j) = xj, f ∈ Rnj , (3)

where t f ,j is an unknown limited positive value, that corresponds to time when object j achieves its
terminal position

t f ,j 6 t+, (4)

t+ is a given time of achievement of terminal conditions (3),

t f ,j =

{
t, if t < t+ and ‖xj(t)− xj, f ‖ 6 ε1

t+, otherwise
, (5)

ε1 is a small positive value, j = 1, . . . , M. The phase constraints are given

ϕi(xj(t)) 6 0, i = 1, . . . , r, j = 1, . . . , M. (6)

The conditions of collision avoidance are described as

χ(xj(t), xk(t)) 6 0, j = 1, . . . , M− 1, k = j + 1, . . . , M. (7)
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The quality functional is given in general integral form

J0 =

t f∫
0

f0(x1(t), . . . , xM(t), u1(t), . . . , uM(t))dt→ min, (8)

where
t f = max{t f ,1, . . . , t f ,M}. (9)

It is necessary to find control as a time function

uj = vj(t), j = 1, . . . , M, (10)

in order to provide terminal conditions (3) with optimal value of functional (8) without violation of
constraints (6) and with collision avoidance (7). For a numerical solution of the problem, let us insert phase
constraints and terminal conditions in quality functional (8)

J1 =

t f∫
0

f0(x1(t), . . . , xM(t), u1(t), . . . , uM(t))dt + a

t f∫
0

r

∑
i=1

M

∑
j=1

µ2(ϕi(xj(t)))dt+

b

t f∫
0

M−1

∑
j=1

M

∑
k=j+1

µ2(χ(xj(t), xk(t)))dt + c
M

∑
j=1
||xj(t f )− xj, f || → min, (11)

where a, b, c are given positive weight coefficients, µ(A) = max{0, A}.
To solve the problem stated above, we use the Pontryagin maximum principle.

3. The Pontryagin Maximum Principle

The Pontryagin maximum principle allows one to transform the problem of optimization on infinite
dimensional space to the boundary-value problem for the system of differential Equations (1). Let us
construct Hamilton function for this problem on the base of the system (1) and the quality functional (2)
without terminal conditions

H(x1, . . . , xM, u1, . . . , uM, ψ) = − f0(x1, . . . , xM, u1, . . . , uM)−

a
r

∑
i=1

M

∑
j=1

µ2(ϕi(xj))− b
M−1

∑
j=1

M

∑
k=j+1

µ2(χ(xj, xk)) + ψTfj(xj, uj), (12)

where ψ = [ψ1 . . . ψn]T is a vector of conjugate variables, n = n1 + . . . + nM,

ψ̇ = −∂H(x1, . . . , xMu1, . . . , uM, ψ)

∂x1, . . . , ∂xM . (13)

According to the Pontryagin maximum principle, a necessary condition for optimal control is the maximum
of Hamilton function (12)

max
u1∈U1,...,uM∈UM

H(x1, . . . , xM, u1, . . . , uM, ψ). (14)

Pontryagin maximum principle allows one to transform the optimal control problem to a boundary-value
problem. It is necessary to find the initial values of conjugate variables so that the state vector reaches
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terminal conditions (3). To solve the boundary-value problem, we have to solve a finite dimensional
problem of nonlinear programming with the following functional

F(q) =
M

∑
j=1
‖xj(t f ,j)− xj, f ‖ → min

q∈Q
, (15)

where q = [q1 . . . qn]T , Q is a limited compact set, qi = ψi(0), i = 1, . . . , n,

n

∑
i=1

q2
i = 1. (16)

In a boundary-value problem, it is not known exactly when it is necessary to check the boundary conditions
(15). The maximum principle does not provide equations for definition of terminal time t f ,j of the control
process, while a numerical search of some possible solutions may not reach the terminal condition. To avoid
this problem, let us add parameter qn+1 for the time limit of reaching the terminal state. As a result, the goal
functional for the boundary-value problem is the following

F̃(q) =
M

∑
j=1
‖xj(t+ + qn+1)− x f ,j‖ → min

q̃∈Q̃
, (17)

where q̃ = [q1 . . . qn+1]
T ,Q̃ = Q× [q−n+1; q+n+1], q−n+1, q+n+1 are low and up limitations of the parameter

qn+1. During the search process, we can decrease time t+ according to sign of parameter qn+1. If found
parameter qn+1 is less than zero, then t+ is decreased and the interval for values of parameter [q−n+1; q+n+1]

is also narrowed.

4. Evolutionary Algorithm

The boundary-value problem may have a nonconvex and nonunimodal objective functional (15) on
the parameter space q, therefore, to solve this problem, it is advisable to use an evolutionary algorithm.

Evolutionary algorithms differ in the form of changing possible solutions. The first evolutionary
algorithms appeared at the end of the XX century and continue to appear. Currently, hundreds of
evolutionary algorithms are known. Most of them are named after animals, although the connection
between animal behavior and computational algorithms is not strictly proven anywhere and is determined
only by the statement of the author of the algorithm. Common steps of evolutionary algorithms are:
generation of a set of possible solutions, assessment of solutions by objective function to find one or more
best solutions, modification of solutions in accordance with the value of its objective function and with
information about the values of the objective functions of other solutions by evolutionary operators.

In this work, we investigate the application of the Pontryagin maximum principle to solve the optimal
control problem for a group of robots with phase constraints, and do not compare evolutionary algorithms.
We applied one of the effective evolutionary algorithms, self-organizing migrating algorithm (SOMA) [5,6],
with modification [7] to find the parameters, i.e., initial conditions of conjugate variables and additional
parameter qn+1 for terminal time. The modified SOMA includes the following steps.

Generate a population of H possible solutions, taking into account

q̄j
i = ξ(q+i − q−i ) + q−i , i = 1, . . . , n + 1, j = 1, . . . , H, (18)
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where q+i = 1, q−i = −1, i = 1, . . . , n, q+n+1 = 0.2, q−n+1 = −2.5, H is a cardinal number of the population
set, ξ is a random number from 0 to 1. Normalize the first n possible solutions according to (16)

qj
i =

q̄j
i√

∑n
k=1(q̄

j
k)

2
, i = 1, . . . , n, j = 1, . . . , H. (19)

In the optimization problem, we have to find a vector of optimal parameters q = [q1 . . . qn+1]
T in order to

receive the minimal value of functional

J1(q) =
M

∑
j=1
||x(t+ + qn+1)− x f ,j|| → min. (20)

For each vector of parameters, we set a historical vector. Initially, historical vectors contain zero elements

q̃j
i = 0, i = 1, . . . , n + 1, j = 1, . . . , H. (21)

Calculate the values of functional for each possible solution

f j = J1(qj), j = 1, . . . , H. (22)

Find the best possible solution qj0 on a stage of evolution

J1(qj0) = min{ f1, . . . , fH}. (23)

For each historical vector, find the best vector among the randomly selected ones q̄j in
current population

J1(qj∗) = min{ f j1 , . . . , f jK}, (24)

where ji ∈ {1, . . . , H}, i = 1, . . . , K. Transform each historical vector

q̃j
i ← αq̃j

i + β(qj∗

i − qj
i), (25)

where i = 1, . . . , n + 1, j = 1, . . . , H, α and β are parameters of the algorithm, positive numbers less than
one. Let us set a step t = δ. Calculate some new values for each possible solution

q̂j
i(t) =

{
qj

i + q̃i
j + t(qj0

i − qj
i), if ξ < Prt

qj
i + q̃i

j, otherwise
, (26)

where i = 1, . . . , n + 1, Prt is a parameter of the algorithm. Check each component of a new vector
for restrictions

qj
i(t) =

q̂j
i(t)√

∑n
k=1(q̂

j
k(t))

2
, i = 1, . . . , n, (27)

qj
n+1 =


q+n+1, if q̂j

n+1(t) > q+n+1
q−n+1, if q̂j

n+1(t) < q−n+1
q̂j

n+1(t), otherwise

. (28)
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Calculate the functional for a new vector

f j(t) = J1(qj(t)). (29)

If f j(t) 6 f j, then we change possible solution qj by a new vector

qj ← qj(t), (30)

f j ← f j(t). (31)

Increase t
t = t + δ. (32)

If t < Plength then repeat calculations (25)–(32), Plength is a parameter of the algorithm.
Repeat calculations (22)–(32) for all possible solutions in the population. Then again, find the best solution
(23) and change historical vector (25). Repeat all stages R times. The last best vector is a solution of the
optimization problem.

An applied algorithm with historical vector is called a modified SOMA. The value of parameter β = 0
transforms the algorithm from modified SOMA to classical SOMA. Pseudo code of the modified SOMA
has the following form, see Algorithm 1.

Algorithm 1: Modified SOMA for Optimal Control Problem.

Procedure ModSOMA (H, R, Plength, Prt, δ ; var qj0 )
for (j = 1, . . . , H) //generation of initial population

s = 0
for (i = 1, . . . , n) //normalization of first n elements of each qj

qj
i = 2 · Random− 1

s = s + (qj
i)

2

end for
for (i = 1, . . . , n)

qj
i = qj

i/
√

s
q̃j

i = 0 //* setting of initial values of historical vector
end for
qj

n+1 = q−n+1 + Random · (q+n+1 − q−n+1)

q̃j
n+1 = 0 //*

f j = J1(qj) //estimation of each possible solution
end for
for (r = 1, . . . , R) ; //generations

j0 = 1
for j = 2, . . . , H //search for the best current solution

if f j < f j0 then
j0 = j

end for
for (j = 1, . . . , H) //evolution of all solutions

j∗ = Random(H) //*
for (l = 1, . . . , K) //* search for the best solutions among randomly selected ones

jl = Random(H) //*
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Algorithm 1: Cont.

if f jl < f j∗ then
j∗ = jl //*

end if ; //*
end for //*
for (i = 1, . . . , n + 1) //* transformation of historical vectors

q̃j
i = αq̃j

i + Random · β(qj∗
i − qj

i) //*
end for //*
t = δ

while t < Plength do //termination condition
s = 0
for (i = 1, . . . , n) //calculation of new values of parameters

if Random < Prt then
q̂j

i(t) = qj
i + q̃j

i + t(qj0
i − qj

i)

else
q̂j

i = qj
i + q̃j

i
end if
s = s + (q̃j

i)
2

end for
for (i = 1, . . . , n) //normalization

qj
i(t) = q̂j

i(t)/
√

s
end for
if Random < Prt then

q̂j
n+1(t) = qj

n+1 + q̃j
n+1 + t(qj0

n+1 − qj
n+1)

else
q̂j

n+1(t) = q̂j
n+1(t)

end if
if q̂j

n+1 > q+n+1 then
qj

n+1 = q+n+1
end if
if q̂j

n+1 < q−n+1 then
qj

n+1 = q−n+1
end if
f j(t) = J1(qj(t)) //estimation of new vector of parameters
if f j(t) < f j then

f j = f j(t)
for (i = 1, . . . , n + 1)

qj
i = qj

i(t) //transformation of vector of parameters
end for

end if
t = t + δ

end while do
end for (j = H)

end for (r = R)

In pseudo code, subroutine Random generates a random real number from 0 to 1, and subroutine
Random(A) generates random integer number from 0 to A− 1. We used * in comments to highlight the
modification of modified SOMA in comparison to original SOMA.
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The effectiveness of modified SOMA, as with all evolutionary algorithms, depends on the parameters
that influence the number of computational operations, i.e., number of elements in initial population (H),
number of generations (R), number of evolutions (P). To evaluate one single solution, we need to simulate
the whole system, thus, for the problem, we have to calculate the functional minimum H + nRP times,
where n depends on parameter of algorithm Plength.

As for all evolutionary algorithms, the convergence of modified SOMA is determined by probability.
The more solutions are looked through, the more is the probability to find the optimal one. In evolutionary
algorithms, the value of goal function depends on the number of generations as descending exponent. If the
solution is not improved for some generations, then the search is stopped, and the best current solution
is considered to be the solution to the problem. The optimal control problem with phase constraints is
not unimodal, and the search algorithm is not deterministic, thus, to find the solution, the algorithm ran
multiple times.

5. An Example

Consider a control problem for two similar mobile robots. Mathematical model of control objects has
the following form

ẋj = 0.5(uj
1 + uj

2) cos θ j,
ẏj = 0.5(uj

1 + uj
2) sin θ j,

θ̇ j = 0.5(uj
1 − uj

2),

(33)

where j = 1, 2.
The control is limited

u−i 6 uj
i 6 u+

i , (34)

where j = 1, 2, u−i , u+
i are the given constraints, i = 1, 2. For the system (33) , the initial conditions are

xj(0) = xj
0, yj(0) = yj

0, θ j(0) = θ
j
0. (35)

The terminal conditions are
xj(t) = xj

f , yj(t) = yj
f , θ j(t) = θ

j
f . (36)

The static phase constraints are

ϕi(xj, yj) = r2
i − (x∗i − xj)2 − (y∗i − yj) 6 0, (37)

where j = 1, 2, ri, x∗i , y∗i are the given parameters of constraints, i = 1, . . . , r, r is a number of static phase
constraints. For two robots, we have only one dynamic phase constraint

χ(x1, x2) = d2 − (x1 − x2)2 − (y1 − y2)2 6 0, (38)

where d is a given minimal distance between robots.
A quality functional is

J = t f +
2

∑
j=1

δj(t f ), (39)

where

t f =

{
t, if t < t+and ∑2

j=1 δj(t) < ε

t+ otherwise
, (40)
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δj(t) =
√
(∆j

x)2(t) + (∆j
y)2(t) + (∆j

θ)
2(t), (41)

∆j
x(t) = xj(t)− xj

f ,

∆j
y(t) = yj(t)− yj

f ,

∆j
θ(t) = θ j(t)− θ

j
f ,

j = 1, 2, ε is a small positive value.
To obtain equations for conjugate variables, all constraints are included in the quality criterion,

and terminal conditions are excluded as follows

J = t f + a
∫ t f

0

2

∑
j=1

µ2(ϕi(xj, yj))dt + b
∫ t f

0
µ2(χ(x1, x2))dt. (42)

Suggesting that the problem is not abnormal, let us write down the Hamilton function in the following form

H(x, u,ψ) = −1−
2

∑
j=1

µ2(ϕi(xj, yj))− aµ2(χ(x1, x2)) + 0.5
2

∑
j=1

ψ1+3(j−1)(u
j
1 + uj

2)cosθ j+

0.5
2

∑
j=1

ψ2+3(j−1)(u
j
1 + uj

2)sinθ j + 0.5
2

∑
j=1

ψ3j(u
j
1 − uj

2). (43)

As a result, the differential equations for conjugate variables are

ψ̇1+3(j−1) = −
∂H(x, u,ψ)

∂xj = 4µ(r2
1 − (x∗1 − xj)2 − (y∗1 − yj))(x∗1 − xj)+

4µ(r2
1 − (x∗2 − xj)2 − (y∗2 − yj))(x∗2 − xj)− 4µ(d2 − (x1 − x2)2 − (y1 − y2))(x1 − x2),

ψ̇2+3(j−1) = −
∂H(x, u,ψ)

∂yj = 4µ(r2
1 − (x∗1 − xj)2 − (y∗1 − yj))(y∗1 − yj)+ (44)

4µ(r2
1 − (x∗2 − xj)2 − (y∗2 − yj))(y∗2 − yj) + 4µ(d2 − (x1 − x2)2 − (y1 − y2))(y1 − y2),

ψ̇3j = −
∂H(x, u,ψ)

∂θ j = 0.5ψ1+3(j−1)(u
j
1 + uj

2) sin θ j − 0.5ψ2+3(j−1)(u
j
1 + uj

2) cos θ j,

where j = 1, 2. Optimal control is calculated from equations

ũj
1 =


uj+

1 , if Wj + ψ3j > 0
uj−

1 , if Wj + ψ3j < 0
special control mode, if Wj + ψ3j = 0

, (45)

ũj
2 =


uj+

2 , if Wj − ψ3j > 0
uj−

2 , if Wj − ψ3j < 0
special control mode, if Wj − ψ3j = 0

, (46)

where
Wj = ψ1+3(j−1) sin θ j + ψ2+3(j−1) cos θ j, (47)

uj+
1 , uj+

2 , uj−
1 , uj−

2 are upper and lower values of control for robot j, j = 1, 2.
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The nonlinear programming problem consists of finding initial conditions for conjugate variables

qi = ψi(0), i = 1, . . . , 6, (48)

so that initial conditions have to allocate on a sphere with a unit radius√√√√ 6

∑
i=1

q2
i = 1, (49)

as well as terminal time
t f = t+ + q7, (50)

and special control modes
u1

1 = q8, if |W1 + ψ3| < ε0, (51)

u1
2 = q9, if |W1 − ψ3| < ε0, (52)

u2
1 = q10, if |W2 + ψ6| < ε0, (53)

u2
2 = q11, if |W1 − ψ6| < ε0, (54)

where ε0 is a small positive value.
A goal function for the nonlinear programming has the following form

F =
2

∑
j=1

δj(t f ) + a
∫ t f

0

2

∑
j=1

µ2(ϕi(xj, yj))dt + b
∫ t f

0
µ2(χ(x1, x2))dt. (55)

6. Computational Experiment

The problem had the following parameters: a number of objects M = 2, dimensions of objects n1 = 3,
n2 = 3, dimension of state space vector n = 3 + 3 = 6, dimensions of control m1 = 2, m2 = 2, dimension
of control space m = 2 + 2 = 4 dimension of parameter vector n + 1 + m = 11.

The following values of parameters of the algorithm were used: x1
0 = 0, y1

0 = 0, θ1
0 = 0, x2

0 = 10,
y2

0 = 10, θ2
0 = 0, x1

f = 10, y1
f = 10, θ1

f = 0, x2
f = 0, y2

f = 0, θ2
f = 0, u+

i = 10, u−i = −10, i = 1, 2, t+ = 3.5 s,
x∗1 = 5, y∗1 = 8, r1 = 2, x∗2 = 5, y∗2 = 2, r2 = 2, d = 2, ε0 = 0.1, a = 2, b = 2, ε = 0.01, H = 32, P = 256,
Plength = 8, Prt = 0.33, ∆ = 0.22, β = 0.2, α = 0.3, K = 7, constraints on parameter values are q−i = −1,
q+i = 1, i = 1, . . . , 6, q−7 = −2, q+7 = 1, q−i = −10, q+i = 10, i = 8, . . . , 11.

An obtained optimal vector of parameters was

q = [0.7722 0.2142 − 0.2825 − 0.2968 − 0.23 0.3702 − 1.5112 0.0179 3.3965 − 2.96 − 0.5945]T .

This solution provided the value of the goal function (55) F = 0.1238.
To obtain the solution of optimal control problem for (33) and (44) by using the Pontryagin maximum

principle, the complexity of search was the following: H = 32, P = 256, R = H, Plength = 8, step = 0.22,
n = 8/0.22 = 36, H +nRP = 32+ 36× 32× 256 = 294, 944, i.e., the functional was calculated 294,944 times.
Simulation was performed in Lazarus, an open-source Free Pascal-based software, on PC with Intel Core i7,
2.8 GHz, OS Win 7. Series of 10 runs was implemented. The CPU time for 10 runs was approx. 20 min, i.e.,
1 run was approx. 2 min.
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The trajectories of the robots are shown in Figure 1. On Figure 1, red circles present the static
constraints. Plots of obtained control are presented on Figures 2–5. Figures 2–5 show that optimal control
includes sectors of special control modes [8]. The controls u1

2 and u2
1 have sliding modes.

Figure 1. Trajectories of movement of robots.

Figure 2. Control u1
1.

Figure 3. Control u1
2.
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Figure 4. Control u2
1.

Figure 5. Control u2
2.

7. Search of Optimal Control by Direct Method

The same problem was solved by direct numerical method. Control for each robot was searched as a
piece-wise liner function on interval as follows

uj
i =


u+

i , if u+
i ≤ ũj

i
u−i , if ũj

i ≤ u−i ,
ũj

i , otherwise

(56)

where

ũ1
1 = qi + (qi+1 − qi)

(t− i∆t)
∆t

, (57)

ũ1
2 = qi+K + (qi+K+1 − qi+K)

(t− i∆t)
∆t

, (58)

ũ2
1 = qi+2K + (qi+2K+1 − qi+2K)

(t− i∆t)
∆t

, (59)

ũ2
2 = qi+3K + (qi+3K+1 − qi+3K)

(t− i∆t)
∆t

, (60)
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i = 1, . . . , K, t ∈ [i∆t; (i + 1)∆t), ∆t = 0.25,

K =

⌊
t+

∆t

⌋
+ 1 =

⌊
2.5

0.25

⌋
+ 1 = 11, (61)

Eleven time intervals were used. For each control, it was necessary to find 11 parameters of
piece-wise linear function at the boundaries of intervals. Totally, we searched for forty-five parameters
q = [q1 . . . q45]

T , forty-four parameters were for control of two robots, and q45 was for terminal time
t+ + q45. Values of parameters were constrained

q−i 6 qi 6 q+i , i = 1, . . . , 45, (62)

where q−i = −20, q+i = 20, i = 1, . . . , 44, q−45 = −0.8, q+45 = 0.8.
The parameter search was also performed by modified SOMA. Vector of obtained parameters was

as follows

q = [15.0129 17.4687 17.6772 2.2532 12.5488 9.0041 0.3886 19.9999 19.3899 19.01849
−8.8472 − 15.2669 10.5164 19.9044 16.5724 18.0328 17.5597 18.3563 16.8607 8, 2100
−18.7127 4.3724 − 8.9377 − 0.7936 10.6309 18.9660 18.4597 18.9742 17.2781 14.6362
18.4152 − 13.7367 − 2.8521 17.0837 18.1753 17.5278 9.4618 19.5178 17.6007 11.3479
−0.6898 − 5.4015 19.9215 9.6850 0.6628]T .

For direct approach, when we searched for 45 parameters by modified SOMA, the complexity of
the algorithm was the following: H = 32, P = 1024, R = H, Plength = 8, step = 0.22, n = 8/0.22 = 36,
H + nRP = 32 + 36× 32× 1024 =1,179,680. Simulation was performed on PC with Intel Core i7, 2.8 GHz.
A series of 10 runs was implemented. The CPU time for 10 runs was approx. 3 hours and 10 min, i.e., 1 run
was approx. 19 min. We used P = 1024 for direct approach, because the number of searched parameters
was 45, and it was several times bigger than 11 parameters in the first experiment.

The obtained solution is presented on Figure 6. On Figures 7–10, the plots of direct controls
are presented.

Figure 6. Trajectories of robots obtained by direct method.
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Figure 7. Direct control u1
1.

Figure 8. Direct control u1
2.
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Figure 9. Direct control u2
1.

Figure 10. Direct control u2
2.

8. An Alternative Non-Deterministic Control

One of the most important issues for swarm robotics applications is catching up with moving targets
and avoiding multiple dynamic obstacles. It is complicated in that it requires an algorithm to work in real
time to avoid obstacles that are standing or moving in an unknown environment, where the robot does
not know their position until detecting them by sensors arranged on the robot. As an alternative to the
method presented above, the use of swarm intelligence algorithms as reported in [9] can be discussed.
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The paper [9] presents a method for swarm robot to catch the moving target and to avoid multiple dynamic
obstacles in the unknown environment. An imaginary map is built, representing N targets, M obstacles
and N robots and a swarm intelligence algorithm is used to control them so that targets are captured
correctly and in the shortest time. The robot dynamics can be viewed as a flow of water moving from high
to low. The flow of water is the robot trajectory that is divided into a set of points created by an algorithm
called SOMA [5,6]. Simulation results are also presented to show that the obstacle avoidance and catching
target task can be reached using this method. All details about those experiments are discussed in [9].
Results are also visualized in selected videos (https://zelinkaivan65.wixsite.com/ivanzelinka/videa).
The typical example is in Figure 11.

Figure 11. Swarm robot control by SOMA.

Besides the long-standing methods such as potential field method [10,11], and the vector field
histogram [12], several new methods such as “follow the gap method” [13], and barrier function [14],
or artificial intelligence methods such as genetic algorithm [15], neural network [16], and fuzzy logic [17,18]
also demonstrate their effectiveness. Among the methods of artificial intelligence used to solve the problem
as a function optimization problem, the self-organizing migrating algorithm (SOMA) emerges as a fast,
powerful and efficient algorithm [5,6].

9. Discussion

The optimal control problem for two mobile robots with phase constraints was considered. To solve
the problem, an approach based on the Pontryagin maximum principle was used. The mathematical model
of robots include linear control in the right parts of differential equations; that is why the optimal control
has sectors of special control modes. It should be noted that we used two robots to test the proposed

https://zelinkaivan65.wixsite.com/ivanzelinka/videa
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technology and partially to test methodology. A larger group is required to fully test the proposed
methodology and it will be our future research, but in the case of many robots, the optimization problem
will go on backstage and the collision avoidance will become the real problem.

To solve a boundary-value problem and search of initial conditions of conjugate variables,
the modified SOMA was used. Additional parameters for terminal conditions check and control in
special modes were introduced.

The optimal control problem was also solved by direct approach. Control time was divided into
intervals, and control at each interval was a piece-wise linear function. Additional parameter was also a
time of terminal conditions check. The direct approach showed another character of objects movement.

The aim of this paper was to show for the first time how modern evolutionary algorithms can be
applied to solution of boundary-value problems that occur when we solve the optimal control problem by
an indirect method based on the Pontryagin maximum principle. Other known applications of evolutionary
algorithms were mainly with direct approach [4].

Thus, one can conclude that the considered problem is multimodal and application of evolutionary
algorithms to both direct and indirect approaches is expedient and prospective. The next research will be
focused on an extensive comparative study of classical and swarm control based methods.

10. Patents

Certificate of software registration No.2020619668 Diveev A.I., Sofronova E.A. “Optimal control of
group of robots based on Pontryagin maximum principle” 21 August 2020.
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group of robots by direct approach based on piece-wise linear approximation”, 26 August 2020.
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