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Abstract: Binary correlation indices are crucial for forecasting and modelling tasks in different areas
of scientific research. The setting of sound binary correlations and similarity measures is a long and
mostly empirical interactive process, in which researchers start from experimental correlations in one
domain, which usually prove to be effective in other similar fields, and then progressively evaluate
and modify those correlations to adapt their predictive power to the specific characteristics of the
domain under examination. In the research of prediction of links on complex networks, it has been
found that no single correlation index can always obtain excellent results, even in similar domains.
The research of domain-specific correlation indices or the adaptation of known ones is therefore a
problem of critical concern. This paper presents a solution to the problem of setting new binary
correlation indices that achieve efficient performances on specific network domains. The proposed
solution is based on Differential Evolution, evolving the coefficient vectors of meta-correlations,
structures that describe classes of binary similarity indices and subsume the most known correlation
indices for link prediction. Experiments show that the proposed evolutionary approach always
results in improved performances, and in some cases significantly enhanced, compared to the best
correlation indices available in the link prediction literature, effectively exploring the correlation
space and exploiting its self-adaptability to the given domain to improve over generations.

Keywords: evolutionary algorithms; binary correlation; topological similarity; similarity of structure;
evolutionary optimisation

1. Introduction

Link Prediction (LP) is a branch of Complex Networks science that aims at explaining the
evolutionary dynamics of a network, looking at possible supplementary connections which can
be established between entities (nodes) in the network. A common approach to LP is to introduce
a definition of similarity between entities and to calculate similarity values accordingly, between all
pairs of still non-connected nodes. In the ranking induced by the similarity rates, pairs ranked
prime represent relationships with a higher formation likelihood. The image of a network at time
t used to compute similarities is called training network, the information deriving from the ranking
is tested on the test network, representing the status of the same network at a future time-step t + 1.
The concept of similarity is central to the problem; in literature, various definitions are available,
including semantic [1] and topological [2] similarity. The former evaluates similarity according to
features of the nodes; intuitively, two nodes are as similar as their feature values are. The latter
looks at the position of nodes in the network, either limiting the analysis to a k-depth bounded local
neighborhood [3], or considering the whole network at once; e.g., [4,5] the broadly used Jaccard [6]
and Adamic-Adar [7] indices. Important characteristics to consider for different approaches are the
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requirements, e.g., the number of training items for the learning phase; the possibility of reading
and analyzing the process steps as well as the result, thus the readability of results; the result type,
boolean, rank or absolute value with particular details. The choice of the approach will consider such
requirements and adapt the technique and setting to the goal. In this work, we study the class of
topological similarities, focusing on measures based on the shared local neighborhood (i.e., common
neighbors), given that semantic similarity measures can also be mapped to topological ones [8],
thus can be included in the same point of view. Similarities of depth 2, e.g., Resource Allocation and
Adamic-Adar, have been demonstrated in the literature to be more effective in terms of prediction
ability than other more straightforward measures [8]. However, this does not apply to all domains,
and simple measures, e.g., Common Neighbours or Jaccard, often can outperform more elaborate ones.
It looks like no all-purpose neighborhood-based similarity ratio, able to effectively capture the peculiar
characteristics of each different domain, is available in the literature for a general application on every
domain. Two research questions emerge:

1. How can the contribution of the best-performing indices in the literature on a given domain be
exploited together?

2. Is it possible to modify indices to adapt them to any single domain, to reflect its specific link
formation mechanisms?

To the best of our knowledge, the only attempt to answer the first research question is a plain
linear combination of well-known indices [9], where the weights regulating the contribution of each
index are evolved using the covariance matrix adaptation evolution strategy [10] for numerical
optimization. This linear combination can be identified as a preliminary definition of a meta-correlation,
but its adaptability power to different domains is limited. Our approach contributes to finding
original meta-correlations evolving basic ones using Differential Evolution (DE) [11], where an added
value is provided evolving the whole meta-correlation instead of using a plain linear combination of
measures. Among the existing approaches to the problem of link prediction, we have chosen to build a
meta-correlation based on the best indices in the literature and to adapt them to any domain using
the Differential Evolution algorithm. DE is suitable for our goal for its readability and differentiation
since our aim is finding a generalized meta-correlation metric to be applied to any domain without
prerequisites of knowledge, density and connection of the graph. For example, methods based on
full knowledge of the graph are very difficult to apply in large graphs, so the analysis of the nodes
neighborhood is certainly more convenient [3]. Among these link prediction techniques, each of which
can be better than others for different contexts, simple measurements often have decent results, but in
the literature, many techniques are present for enhancing performances, with different variations.
The Quasi-common proximity approach [3,12] varies the basic measurements in the graph to evaluate
them at point 2 of the graph and is applicable to any topological similarity measure. Path-based
heuristic approaches, such as the Heuristic Semantic Walk [13], calculate the similarity of potential
nodes, applicable in link prediction, by choosing on the basis of semantic heuristics the direction for
the graph navigation, adding partial randomization to avoid loops. Recently, some works combine
topological and semantic similarity [1,8,14] to predict links in specific domains, e.g., co-authorship
networks, providing techniques that could be applied also in other domains. Adapting the approach to
many different similarity measures, very satisfying results are obtained, predicting links on the basis of
sub-graphs [12,14] around nodes connected by each potential link, especially when semantic features
are present but also using semantic measures mapped to the graph topology [1]. While topological
and semantic approaches can exploit the characteristics of the network by recommending the network
structure, on the other hand, approaches based on deep learning can be very performing, but require a
very high number of training elements and provide results without any possibility for the researcher to
analyze the process, which can be considered a black box. Some of these approaches, e.g., SEAL [5], use
random sampling on potential links, not providing a complete list of rankings, to ease the computation.
Unfortunately, all these techniques are not directly comparable, not only because of the different goals
and approaches but because each of them uses proper evaluation metrics, which are different for
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each approach and not overlapping. The used similarity metrics vary based on the graph structure or
features, and anyway, domain-specific characteristics do not allow a direct comparison where tests
are made on different data sets. The choice of the right approach will vary in different contexts and
goals, but it will be primarily based on the requirements of each approach. In real-world applications,
e.g., where a company needs a correlation metric to exploit link prediction on any domain without the
need for professional resources to set up different learning algorithms for each possible domain, it is
useful to build meta-correlations with generalization capabilities.

The paper structure is the following: in Section 2 a formal definition of meta-correlation indices is
given, the related state of the art is presented for the basic correlation metrics, and our proposed novel
meta-correlations are presented in detail; Section 3 provides in-depth information for the experiment
reproducibility and setting, including network preprocessing and partition, a description of the
data sets where the experiments are exploited, and the setting of the Differential Evolution pipeline.
Section 4 presents the experimental results and discussion; Section 5 concludes the paper.

2. Meta-Correlation Indices

Correlation indices have been defined by experts with different backgrounds to capture the
peculiar properties of specific domains, and only afterward used in other application domains,
e.g., biology, sociology and psychology. For example, the Dice (or Gleason, or Sørenson) index has
been applied initially to ecological population data, while Simple Matching has been used to measure
the level of agreement between two psychologists and Tanimoto in Chemoinformatics to analyze
interaction fingerprints [15]; a large corpus of indices is available in the literature [16]. Regarding the
domain of Link Prediction, various measures have been proposed and applied in previous works.
Particular measures, e.g., Adamic-Adar [7] index, were purposefully developed for Link Prediction
applications, while other ratios have been adapted to LP, e.g., the Jaccard [6] coefficient, initially used
in biology and then in LP.

Formally, let x1 and x2 be two events or objects and F a set of features; most indices define the
similarity between x1 and x2 as a function of four parameters a, b, c and d, which count the presence or
absence of each f ∈ F. More specifically, a(d) is the number of features available(not available) in both
x1 and x2; b, and c counts the features occurring in, respectively, x1 or x2 only. Several indices can be
seen as variations of a basic syntactic structure, where the input changes in terms of multiplicative
coefficients and applied operators, e.g., summation and subtraction.

The framework introduced in this paper aims at optimizing the prediction strength of correlation
indices by defining binary correlation meta-indices, which exploit structural similarity to create
populations of correlation indices. The resulting indices are thus evolved using the Differential
Evolution (DE) [17] algorithm. Binary correlation meta-indices are parametric formulas that
subsume sets of correlation indices which include well-known indices for specific parameter values.
Their parameters and structure fully characterize a meta-index; thus, a parameters assignment
effectively defines a specific instance of the selected meta-index. Let for instance

µ =
αa

βa + γb + δc + ε

where the meta-correlation index, µ, can subsume both the Sokal and Sneath-1 index when α = β = 1,
ε = 0, and γ = δ = 2, and the Common neighbors index when α = ε = 1, and β = γ = δ = 0.
Each possible assignment of values for the coefficients tuple of the meta-index represents then a valid
and unique correlation index, while the meta-index itself represents a class of correlation indices
composed of all the possible five-tuple values assignments for α, β, γ, δ, ε. In the proposed framework,
let µ meta-index used for Link Prediction on domain D, with n parameters (c1, . . . , cn):

• the population is composed a set of m vectors v1, . . . , vm of length n, each representing a correlation
instance of the class subsumed by µ;
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• the fitness function is any evaluation metric, e.g., precision, AUC, ROC, determining the
capabilities of an individual for the Link Prediction task in the domain D.

One of the central focal points of our approach is that we designed two meta-correlations to
subsume sets of well-known indices and incorporate them, combining the contribution of first-order
and second-order features. The goal of the design of the experiment will then be to investigate
whether evolving meta-correlation indices can adapt to the peculiar characteristics of a data set where
they evolve.

Let (V, E) a network, where V is a set of nodes and E is the set of edges, E ⊆ V ×V, we define
Γ(u) where u ∈ V as the set of neighbours of node u in the network G. Let u and v nodes of a
network (V, E), the first-order features we considered are a=|Γ(u) ∩ Γ(v)|, the number of Common
Neighbours between u and v, b=|Γ(u)| − |Γ(u) ∩ Γ(v)| (resp. c=|Γ(v)| − |Γ(u) ∩ Γ(v)|), the number
of nodes connected only to u (resp. v) and d = |V| − (a + b + c + 2), the number of the other nodes
in the network, not connected to u nor to v. The second-order features, i.e., features that consider
properties of nodes at distance 2 from u or v, are the well-known in the Link Prediction literature [7]
Adamic-Adar similarity score

a1 = ∑
n∈Γ(u)∩Γ(v)

1
log|Γ(n)| (1)

the Pseudo-Adamic-Adar1 score

b1 = ∑
n∈Γ(u)\(Γ(u)∩Γ(v))

1
log|Γ(n)| , (2)

and the Pseudo-Adamic-Adar2 score

c1 = ∑
n∈Γ(v)\(Γ(u)∩Γ(v))

1
log|Γ(n)| , (3)

for neighbours connected respectively to u or v only.
Equations (4) and (5) show the two meta-indices formulas, while Tables 1 and 2 the subsumed

indices and the corresponding parameter values.

similarity(u, v)µ1 =
αa + βb + βc + γd + δa1 + εb1 + εc1

ζa + ηb + ηc + θd + ιa1 + κb1 + κc1 + λ1
(4)

similarity(u, v)µ2 =
αa + βa2 + γab + γac + δbc + εa1 + ζb1 + ζc1

ηa + θa2 + ιab + ιac + κbc + λa1 + µb1 + µc1 + ν1
. (5)

Table 1. µ1 subsumed indices.

Index Name Index Formulation Coefficients

Jaccard a
a+b+c 1,0,0,0,0,1,1,0,0,0,0

Dice 2a
2a+b+c 2,0,0,0,0,2,1,0,0,0,0

Sokal&Sneath-1 a
a+2b+2c 1,0,0,0,0,1,2,0,0,0,0

Sokal&Sneath-2 2(a+d)
2a+b+c+2d 2,0,2,0,0,2,1,2,0,0,0

Roger&Tanimoto a+d
a+2(b+c)+d 1,0,1,0,0,1,2,1,0,0,0

Faith a+0.5d
a+b+c+d 1,0,0.5,0,0,1,1,1,0,0,0

Sokal&Sneath-3 a+d
b+c 1,0,1,0,0,0,1,0,0,0,0

Kulczynski-1 a
b+c 1,0,0,0,0,0,1,0,0,0,0

Gower&Legendre a+d
a+0.5(b+c)+d 1,0,1,0,0,1,0.5,1,0,0,0

Adamic-Adar see Equation (1) 0,0,0,1,0,0,0,0,0,0,1
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Table 2. µ2 subsumed indices.

Index Name Index Formulation Coefficients Notes

Cosine a√
(a+b)(a+c)

1,0,0,0,0,0,0,1,1,1,0,0,0 without square root

Sorgenfrei a2

(a+b)(a+c) 0,1,0,0,0,0,0,1,1,1,0,0,0

Mountford a
0.5(ab+ac)+bc 1,0,0,0,0,0,0,0,0.5,1,0,0,0

McConnaughey a2−bc
(a+b)(a+c) 0,1,0,-1,0,0,0,1,1,1,0,0,0

Johnson a
a+b + a

a+c 0,2,1,0,0,0,0,1,1,1,0,0,0

KulczynskiII a2+0.5ab+0.5ac
a2+ab+ac+bc 0,1,0.5,0,0,0,0,1,1,1,0,0,0

Adamic-Adar see Equation (1) 0,0,0,1,0,0,0,0,0,0,0,0,1

3. Experiments

The goal of the experiment is to investigate whether evolving meta-correlations can adapt them
to the peculiar characteristics of the particular domain where they evolve.

3.1. Network Preprocessing

The usual approach for Link Prediction experiments is to divide a data set into two parts, which
are conventionally defined training set and test set; the test set, usually amounting to 10–20% of
the data set, is used to evaluate the performance of models built using the knowledge provided
in the training set. For this work, the followed approach is instead to split the data set into three
parts. First, the data set is split in training and validation set ETR+V and test set ETE, following a
90:10 ratio; then, k folds are generated from ETR+V , building k (ETR, EV) pairs, which will be used
to evolve different correlations each. Before this phase, the networks are pre-processed to remove
elements such as self-loops and isolated nodes, since both do not add any contribution to similarity
scores calculated using local neighborhood-based measures. Directed networks are transformed into
undirected networks: when there is a connection in at least one way between two nodes, they are
connected in the pre-processed network.

3.2. Data Sets

The framework has been tested on four data sets, widely used in link prediction literature.
The data sets represent two main domains with some diversity in each data set. The first domain
comprises CA-GrQC [18] and Netscience [19], representing the co-authorship domain with two diverse
networks, respectively including papers published in the General Relativity and Quantum Cosmology
categories between 1993 and 2004, and in the area of Network Science. The other two data sets,
ia-radoslaw-email [20] and email-eu-core [18,21] are two e-mail exchange networks, thus representing
a digital communication domain, the first between employees of a European institution, and the other
of a medium-sized company. Such domains have been considered representative of authors’ social
networks (i.e., co-authorship) and communication networks, to test the proposed approach on real
similar domains. For each domain, two instances have been chosen for sharing some similarities,
to show how the metrics used to create the meta-correlation do not have themselves similar results
even in similar networks, and to test if our evolved meta-correlation indices can better forecast
the link creation both in similar (i.e., about the same domain), and in diverse networks (i.e., about
different domains).

3.3. Settings for Differential Evolution

The population members for Differential Evolution (DE) are evolved using the information
available in the training set, and their fitness is calculated on the validation set. Precision,
i.e., the proportion of properly ranked edges among the top-k edges, is used as a fitness metric,
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while k is set to |EV |; a perfect predictor would rank all the positive edges as first. Edges in the test
set are not available during the evolution process, effectively appearing as non-existent. The number
of generations G was experimentally set to 300, as it was observed that further iterations did not
provide any improvement. The mutant weighting factor F and the Crossover constant CR have been
set, respectively, to 0.9 and 0.5, according to literature [11]. The core part of the population P is
composed of instances of correlation indices pi which subsume known indices; additional individuals
are obtained by applying random noise n,−0.25 < n < +0.25 to the coefficients of such correlations to
explore more extensively the correlations space.

An observed problem that could arise using Differential Evolution is the loss of diversity
when there is a total or too high consensus on one parameter value; this could happen for the
proposed meta-correlation instances because the parameters frequently present the same values for
subsumed indices. Introducing noise-altered population members allows overcoming this problem.
The population for µ1 amounts to 27 individuals, of which nine represent known indices and the rest
two variations each; for µ2, six known correlations are considered, along with three variations each.
Two DE variants have been tested in this work, namely RAND/1/EXP and RAND/1/BIN according
to the conventional DE naming scheme. Both employ a random selection for the individuals used
in the mutation phase, and use one pair of individuals (hence RAND/1); EXP and BIN refer to the
adopted crossover schemes, meaning respectively, exponential and binary [22].

3.4. Algorithm

After pre-processing the network, the evolutionary phase to derive new correlation indices begins.
For each fold f , the best individual of the population springing at the end of the DE execution is
compared versus known correlation indices. The combined knowledge available in ETR and +EV
is used as ground truth to rank probable edges. Since ETE was excluded from the training process,
we can test the performance on ETE, to assess the potential of the correlation in predicting future edges.
The framework structure pipeline for Differential Evolution is shown in Algorithm 1.

Algorithm 1: Framework structure for Differential Evolution (DE).

Pre-process the network;
Initialize the population of meta-correlation instances;
for f ← 1 to K do

for g← 1 to G do
for p ∈ P do

yi ← generate_offspring(pi);
Rank potential edges according to yi using information in ETR;
Evaluate the fitness f (yi) on EV ;
if f (yi) > f (pi) then

Replace pi with yi;

Save the best individual pb;

Test pb on ETE using combined information from ETR and EV ;

4. Experiments Results

In this section, we present the results of the experiments in terms of Precision (see Section 3.3).
Other suitable metrics include AUC [23], and SRD [24,25]. In Tables 3 and 4, the precision
values of the best individuals across all the folds, evolved following strategies RAND/1/EXP and
RAND/1/BIN respectively, are compared to known correlation indices, namely Common Neighbours
(CN), Jaccard and Adamic-Adar (AA), for each data set.
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Table 3. Precision of best individual, RAND/1/EXP strategy. Best performance in bold.

Data Set CN Jaccard Adamic-Adar µ1 µ2

Netscience 0.425455 0.501818 0.654545 0.661818 0.654545

CA-GrQc 0.369220 0.366460 0.489303 0.554865 0.492754

ia-radoslaw-email 0.412308 0.273846 0.418462 0.436923 0.470769

email-eu-core 0.195395 0.191039 0.221531 0.276914 0.27318

Table 4. Precision of best individual, RAND/1/BIN strategy. Best performance in bold.

Data Set CN Jaccard Adamic-Adar µ1 µ2

Netscience 0.425455 0.501818 0.654545 0.676364 0.647273

CA-GrQc 0.369220 0.366460 0.489303 0.554865 0.491373

ia-radoslaw-email 0.412308 0.273846 0.418462 0.427692 0.480000

email-eu-core 0.195395 0.191039 0.221531 0.276291 0.274424

The best improvements in performance are obtained on the CA-GrQc dataset, on which the
best individual for µ1 performs noticeably better than the reference measures. Similar behaviour
can be observed on the email-eu-core data set, where both µ1 and µ2 achieve higher scores than
the best performing index, AA. Slight improvements are also noticeable on the netscience data set,
where µ1 ranks first. Differently from the other data sets, on ia-radoslaw-email the best performing
meta-correlation is µ2, demonstrating sensible improvements, while µ1 yields performance comparable
to other measures. For all the data sets, the precision values are higher than the reference measures,
for µ1, µ2, or both.

In Tables 5 and 6, the average precision and variance of the best individuals for each fold on
ETR + EV for all the data sets are reported. Although the discovered correlations in some cases greatly
differ in terms of their coefficients values, all of them achieve better performances, both for µ1 and µ2.
This probably hints at a correlation space with many separated local maxima with similar values.

Table 5. Average precision and Variance, RAND/1/EXP strategy. Best performance in bold.

Data Set Average Precision µ1 Variance Precision µ1 Average Precision µ2 Variance Precision µ2

Netscience 0.618182 0.001404 0.596000 0.001207

CA-GrQc 0.531401 0.000217 0.470393 0.000163

ia-radoslaw-email 0.404923 0.000436 0.432308 0.002176

email-eu-core 0.263535 0.000111 0.263908 0.00005

Table 6. Average precision and Variance, RAND/1/BIN strategy. Best performance in bold.

Data Set Average Precision µ1 Variance Precision µ1 Average Precision µ2 Variance Precision µ2

Netscience 0.628727 0.001313 0.591273 0.000503

CA-GrQc 0.532850 0.000125 0.475362 0.000240

ia-radoslaw-email 0.405538 0.000344 0.398154 0.008970

email-eu-core 0.271624 0.000014 0.260547 0.000047

The intuition about local maxima is reinforced by looking at graphs in Figures 1 and 2 where the
dynamics of the evolutionary process are illustrated for the Netscience and ia-radoslaw-email data sets,
for both meta-correlations. Charts on the left show the performance improvement from generation 1 to
300 for meta-correlation µ1, on the right for µ2. Each line represents the evolution on a fold, following
the DE RAND/1/EXP strategy; for readability, only the behavior on a subset of folds is shown.
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Figure 1. Precision of best individual over generations on Netscience data set. On the X axis the
generation g, and on the Y axis the precision value of the best individual in the population at generation
g. Each line shows the evolution dynamics on a specific fold.

Figure 2. Precision of best individual over generations on ia-radoslaw-email data set.

It can be noticed that the correlations space presents plateaus on which the fitness function
returns the same score: this behaviour slows down the evolution process. Other combinations of data
sets, correlations and strategies report in the literature similar behaviour [11]. In the vast majority
of cases, the performance improvements from the first to last generation noticeable, ranging from
3% to more than 10%. In few cases the system shows a less substantial increment in precision,
e.g., in fold 5 for the ia-radoslaw-email data set, where the improvement is visible but unimportant;
this can be due to the k-fold validation split.The evolution of meta-correlation is always enhanced
with respect to the single measures on every data set. Our approach is not directly comparable with
other techniques of Link Prediction, which are experimented in the literature on other data sets,
using different similarity measures and other evaluation metrics, e.g., the Quasi-common neighbors [3]
or the SEAL heuristic-learning technique [5], to cite other techniques possibly capable to be adapted to
include both topological and semantic similarity, because the main focus of our work is not to obtain
a better link prediction on a single domain, as happens with the cited approaches, but to discover
a meta-correlation (which can be also used in other techniques like Quasi-common neighborhood)
with the ability to adapt evolving, to every domain. Even if the comparison of a particular measure
may eventually perform better on a particular domain, that measure does not have the power to
adapt its performance to other domains, even similar ones. Our meta-correlation, based on the link
prediction power of any desired measure, can evolve it to its best performance on general domains,
which is our main goal. A general comparison can be done on the knowledge requirements: the more
graph knowledge is required (i.e., the broader the analyzed common-neighborhood), the stronger
computational capabilities are required for the prediction. Adaptability to the contexts of all domains
is the main enhancement of our proposal.

5. Conclusions

In this work, we presented a framework based on evolutionary algorithms for Link Prediction.
Differential Evolution (DE) is used to evolve the coefficients of parametric meta-correlations
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formulas to design domain-centered indices. Meta-correlations identify new classes of correlations;
each component is identified by a different meta-correlation parameter vector, also subsuming
well-known indices for specific parameters assignment. During the DE evolution process of
the population of meta-correlation parameter vectors, new correlation indices are discovered,
with prediction capabilities tailored to a specific data set, i.e., environment. Experiments show that
the system can integrate the contribution of different features to discover new correlation indices
that improve the precision value when compared to link prediction indices existing in the literature.
The initial research questions now have answers: with our method, it is possible to have a general
meta-correlation striking a good balance between being adaptive (more than standard indices),
and less computationally intensive (e.g., than other learning-based methods achieving similar or
better performance with particular metrics on particular domains), exploiting the contribution of the
best-performing indices adapted to the specific link formation mechanism of each possible domain.

Future works aim at extending the experiment domain to assess the extra capabilities of the system
in various research domains where discovery and optimization of correlation indices are an explicitly
crucial point. To obtain the best results, it would be needed to re-implement all the approaches in
the literature for link prediction or at least those we mentioned in the introduction, using the same
similarity measures, the same evaluation metrics and the same data sets, to have a complete and
realistic direct survey comparison among them, independently of the objective and the application
context of the developer and the user.
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