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Abstract: In this paper, the valuation of the exchange option with credit risk under a hybrid credit risk
model is investigated. In order to build the hybrid model, we consider both the reduced-form model
and the structural model. We adopt the probabilistic approach to derive the closed-form formula of an
exchange option price with credit risk under the proposed model. Specifically, the change of measure
technique is used repeatedly, and the pricing formula is provided as the standard normal cumulative
distribution functions.
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1. Introduction

Under the Black–Scholes model [1], Margrabe [2] first derived the closed-form pricing formula of
the European exchange option which provides the option holder the right to exchange one risky asset for
another. Since its introduction by Margrabe, the option has become one of the most popular exotic options
in the over-the-counter (OTC) market. Thus, many researchers have studied the valuation of an exchange
option with various extensions of the Black–Scholes model. Geman, Karoui, and Rochet [3] adopted the
change of numeraire approach to derive the pricing formula of an exchange option. Antonelli, Ramponi,
and Scarlatti [4] provided the price of the exchange option under the stochastic volatility model using a
correlation expansion. Kim and Park [5] used a stochastic volatility model with fast mean reversion for a
more precise price of the exchange option. In this paper, the exchange option pricing model is extended
with the credit risk.

Options with credit risk have been called “vulnerable options” in general. For valuing the vulnerable
options, most of the researchers have used one model between the reduced-form model and the structural
model. The default of the firm in the reduced-form model is triggered by the counting process with
some intensity. Recently, there have been various studies for vulnerable options in the reduced-form
model such as the generalized jump model [6], catastrophe put option [7], and Generalized Autoregressive
Conditionally Heteroscedastic (GARCH) model [8]. Because default is determined by the jump of the
counting process, there is no relation between default and the firm value of the option issuer. In contrast to
the reduced-form model, the structural model considers the dependence of them. Under the structural
model, Johnson and Stulz [9] first provided the pricing formula of the vulnerable European option.
Klein [10] extended the result of [9] by considering the correlation between the firm value process of
the option issuer and the underlying asset process of the option. Based on the work of [10], there
have been many extended results on vulnerable options with models such as the stochastic interest rate
model [11], the early counterparty risk model [12,13], the stochastic volatility model [14–17], and the
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jump-diffusion model [18–21]. Furthermore, many researchers have studied vulnerable exotic options
such as the American option [22], the Asian option [23], the exchange option [24], and the path-dependent
option [25] under the structural model. Recently, several researchers proposed the hybrid credit risk
models, incorporating the structural model and reduced-form model and provided the pricing formula of
vulnerable European option [26,27]. In this paper, we deal with the option valuation based on a hybrid
credit risk model. Specifically, we derive the closed-form solution for vulnerable exchange option pricing
under a hybrid credit risk model.

In recent years, there have been studies on the pricing of exchange options with credit risk which is
called the vulnerable exchange option. Kim and Koo [24] provided the pricing formula of an exchange
option with credit risk based on the Mellin transform approach. Kim [28] used a probabilistic approach
to obtain the closed-form solution of the vulnerable exchange option price under the structure model of
Klein [10]. In addition, some researchers considered the generalization of the vulnerable exchange option
as a power exchange option. They have developed the approaches to price the vulnerable power exchange
options under the extensions of the Klein’s credit risk model, such as the jump risk [29,30], the possible
default prior to the maturity [31], jumps under the double risk [32] and the intensity based approach [33].
In this sense, we also develop the pricing of exchange option with credit risk. Our main contribution is to
propose a hybrid credit risk model and to provide the closed-form pricing formula of vulnerable exchange
option under the proposed model based on the probabilistic approach.

The rest of this paper is organized as follows. In Section 2, the hybrid credit model used in this
paper and formulation for the exchange option with credit risk is is presented In Section 3, a closed-form
formula for valuing of an exchange option with credit risk under the hybrid credit risk model is presented.
In Section 4, concluding remarks are presented.

2. The Model

We assume that there is a filtered complete probability space (Ω,F , {Ft}, P) with a filtration {Ft}
satisfying the usual conditions, where P is a risk-neutral probability measure. Then, under the measure P,
the dynamics of two risky underlying assets S1(t) and S2(t) are given by

dS1(t) = rS1(t)dt + σ1S1(t)dW1(t), (1)

dS2(t) = rS2(t)dt + σ2S2(t)dW2(t), (2)

where σi, i = 1, 2 are the volatilities of asset i, r is a constant interest rate, W1(t) and W2(t) are the
standard Brownian motions under the measure P and ρ12 is a correlation between asset S1(t) and asset
S2(t) satisfying dW1(t)dW2(t) = ρ12dt. We adopt the model of Klein to describe the credit risk under
the structure model. Then, the asset value process V(t) of option issuer is governed by the geometric
Brownian motions (GBM) as

dV(t) = rV(t)dt + σ3V(t)dW3(t), (3)

where σ3 is the volatility of asset V(t), W3(t) is a standard Brownian motion satisfying dW1(t)dW3(t) =
ρ13dt and dW2(t)dW3(t) = ρ23dt. As mentioned in [10], we assume that if a default of the option issuer
happens, the option issuer’s asset is liquidated and provides only the scrap value at the maturity T.
The scrap value is defined by

(1− α)
V(T)

D
(S1(T)− S2(T))+,
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where α is a deadweight cost related with the default, T is a time to maturity and D is a critical value (or a
value of the option issuer’s liability) that a default occurs if the value of the option issuer asset is lower
than D.

We now define the default intensity process for the reduced-form model. As in Fard [6], under the
risk-neutral measure P, we assume that the default intensity process is given by

dλ(t) = a(b− λ(t))dt + σ4dW4(t),

where σ4 is a positive constant and W4(t) is a standard Brownian motion satisfying dW1(t)dW4(t) =

ρ14dt, dW2(t)dW4(t) = ρ24dt and dW3(t)dW4(t) = ρ34dt. We also define the filtration Ft generated by
Ft = FS1

t ∨ F
S2
t ∨ Fλ

t ∨Ht, where FS1
t = σ(S1(t), s ≤ t),FS2

t = σ(S2(t), s ≤ t), Fλ
t = σ(λ(t), s ≤ t) and

Ht = σ(1{τ≤t}, s ≤ t), where τ is the default time defined by P(τ > t) = E
[
e−
∫ t

0 λ(s)ds
]
. Then, with the

underlying assets S1(t), S2(t) and V(t), the price of the exchange option C with credit risk at time 0 under
the measure P is given by

C = e−rTEP
[
(S1(T)− S2(T))+

(
1{τ>T,V(T)>D} +

(1− α)V(T)
D

(1− 1{τ>T,V(T)>D})

)
|F0

]
= e−rTEP

[
(S1(T)− S2(T))+1{τ>T,V(T)>D}|F0

]
+
(1− α)

D
e−rTEP [V(T)(S1(T)− S2(T))+|F0

]
− (1− α)

D
e−rTEP

[
V(T)(S1(T)− S2(T))+1{τ>T,V(T)>D}|F0

]
. (4)

3. Valuation of the Exchange Option with Credit Risk under the Hybrid Model

We propose a valuation of exchange option with credit risk exchange option with credit risk under the
hybrid model in this section. By the law of iterated conditional expectations, the price C in the Equation (4)
is given by

C =
(1− α)

D
e−rTEP [V(T)(S1(T)− S2(T))+|F0

]
+e−rTEP

[
e−
∫ T

0 λ(s)ds(S1(T)− S2(T))+1{V(T)>D}|F0

]
− (1− α)

D
e−rTEP

[
e−
∫ T

0 λ(s)dsV(T)(S1(T)− S2(T))+1{V(T)>D}|F0

]
. (5)

In order to simplify the notations, we denote that

J1 =
(1− α)

D
e−rTEP [V(T)(S1(T)− S2(T))+|F0

]
,

J2 = e−rTEP
[
e−
∫ T

0 λ(s)ds(S1(T)− S2(T))+1{V(T)>D}|F0

]
,

J3 =
(1− α)

D
e−rTEP

[
e−
∫ T

0 λ(s)dsV(T)(S1(T)− S2(T))+1{V(T)>D}|F0

]
.

Then, the price C can be written as

C = J1 + J2 − J3. (6)

We calculate J1, J2 and J3 in the following Lemmas, respectively.
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Lemma 1. Let us consider J1 in the Equation (6), then J1 is given by

J1 =
(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13TN(a1)−

(1− α)

D
S2(0)V(0)erT+σ1σ3ρ13TN(a2), (7)

where

a1 =
1

σ
√

T
ln

S1(0)
S2(0)

+

(
ρ13σ1σ3 − ρ23σ2σ3

σ
+

σ

2

)√
T,

a2 =
1

σ
√

T
ln

S1(0)
S2(0)

+

(
ρ13σ1σ3 − ρ23σ2σ3

σ
− σ

2

)√
T,

with σ2 = σ2
1 + σ2

2 − 2σ1σ2ρ12 and N(a) = 1√
2π

∫ a
−∞ e−

1
2 x2

dx.

Proof. We can write J1 as

J1 =
(1− α)

D
e−rTEP

[
V(T)S1(T)1{S1(T)>S2(T)}|F0

]
− (1− α)

D
e−rTEP

[
V(T)S2(T)1{S1(T)>S2(T)}|F0

]
:= I1 − I2. (8)

To calculate I1, we define a new measure Q1 as

dQ1

dP
= exp

[
σ1W1(T) + σ3W3(T)−

1
2
(σ2

1 + σ2
3 + 2ρ13σ1σ3)T

]
.

By Girsanov’s thoerem,

WQ1
1 = W1(T)− σ1T − σ3ρ13T,

WQ1
2 = W2(T)− σ1ρ12T − σ3ρ23T,

WQ1
3 = W3(T)− σ3T − σ1ρ13T

are the standard Brownian motions under the measure Q1. Then we have

I1 =
(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13TEQ1

[
dP

dQ1
1{S1(T)>S2(T)}|F0

]
=

(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13TPQ1 (S1(T) > S2(T))

=
(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13T

×PQ1

(
σ2WQ1

2 (T)− σ1WQ1
1 (T) < ln

(
S1(0)
S2(0)

)
+

1
2

σ2T + σ2
1 T + σ1σ3ρ13T − σ2σ3ρ23T

)
=

(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13TN(a1). (9)

To calculate I2, we define a new measure Q2 as

dQ2

dP
= exp

[
σ2W1(T) + σ3W3(T)−

1
2
(σ2

2 + σ2
3 + 2ρ23σ2σ3)T

]
.
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Since

WQ2
1 = W1(T)− σ2ρ12T − σ3ρ13T,

WQ2
2 = W2(T)− σ2T − σ3ρ23T,

WQ2
3 = W3(T)− σ3T − σ2ρ23T

are the standard Brownian motions under the measure Q2, I2 can be calculated as

I2 =
(1− α)

D
S2(0)V(0)erT+σ2σ3ρ23TEQ2

[
dP

dQ2
1{S1(T)>S2(T)}|F0

]
=

(1− α)

D
S2(0)V(0)erT+σ2σ3ρ23TPQ2 (S1(T) > S2(T))

=
(1− α)

D
S2(0)V(0)erT+σ2σ3ρ23T

×PQ2

(
σ2WQ2

2 (T)− σ1WQ2
1 (T) < ln

(
S1(0)
S2(0)

)
− 1

2
σ2T + σ2

1 T + σ1σ3ρ13T − σ2σ3ρ23T
)

=
(1− α)

D
S2(0)V(0)erT+σ1σ3ρ13TN(a2). (10)

By the Equations (9) and (10), the proof of Lemma is completed.

Lemma 2. Let us consider J2 in the Equation (6), then J2 is given by

J2 = S1(0)M1(T)e−
σ1σ4ρ14

a
∫ T

0 f (s,T,a)dsN2(b1, b2, θ1)− S2(0)M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsN2(b3, b4, θ1), (11)

where

θ1 = (σ1ρ13 − σ2ρ23)/σ, σ2 = σ2
1 + σ2

2 − 2σ1σ2ρ12, f (s, t, u) = 1− e−u(t−s),

M1(T) = exp

[
−bT − λ(0)− b

a
f (0, T, a) +

σ2
4

a2

∫ T

0
f 2(s, T, a)ds

]
,

b1 =
ln(V(0)/D)− σ3σ4ρ34

a
∫ T

0 f (s, T, a)ds +
(

r− 1
2 σ2

3 + σ1σ3ρ13

)
T

σ3
√

T
,

b2 =
ln(S1(0)/S2(0))− σ1σ4ρ14

a
∫ T

0 f (s, T, a)ds + σ2σ4ρ24
a

∫ T
0 f (s, T, a)ds +

(
1
2 (σ

2
1 + σ2

2 )− σ1σ2ρ12

)
T

σ
√

T
,

b3 =
ln(V(0)/D)− σ3σ4ρ34

a
∫ T

0 f (s, T, a)ds +
(

r− 1
2 σ2

3 + σ2σ3ρ23

)
T

σ3
√

T
,

b4 =
ln(S1(0)/S2(0))− σ1σ4ρ14

a
∫ T

0 f (s, T, a)ds + σ2σ4ρ24
a

∫ T
0 f (s, T, a)ds +

(
1
2 (σ

2
1 + σ2

2 ) + σ1σ2ρ12

)
T

σ
√

T
,

and
N2(n1, n2, ρ) =

1
2π
√

1− ρ2

∫ n1

−∞

∫ n2

−∞
e
− 1

2(1−ρ2)
(x2−2xyρ+y2)

dydx.
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Proof. We can write J2 as

J2 = e−rTEP
[
e−
∫ T

0 λ(s)dsS1(T)1{S1(T)>S2(T),V(T)>D}|F0

]
−e−rTEP

[
e−
∫ T

0 λ(s)dsS2(T)1{S1(T)>S2(T),V(T)>D}|F0

]
:= I3 − I4. (12)

To calculate I4, we define a new measure Q3 such that

dQ3

dP
=

e−
∫ T

0 λ(s)ds

E[e−
∫ T

0 λ(s)ds|F0]
.

Then,

I3 = e−rT M1(T)EQ3
[
S1(t)1{S1(T)>S2(T),V(T)>D}|F0

]
. (13)

Under the measure Q3,

WQ3
1 (T) = W1(T) +

σ4ρ14

a

∫ T

0
f (s, T, a)ds,

WQ3
2 (T) = W2(T) +

σ4ρ24

a

∫ T

0
f (s, T, a)ds,

WQ3
3 (T) = W3(T) +

σ4ρ34

a

∫ T

0
f (s, T, a)ds,

WQ3
4 (T) = W4(T) +

σ4

a

∫ T

0
f (s, T, a)ds (14)

are the standard Brownian motions.
To calculate the Equation (13), we define a new measure Q̃3 such that

dQ̃3

dP
= exp

[
σ1WQ3

1 −
1
2

σ2
1

]
.

Then,

I3 = S1(0)M1(T)e−
σ1σ4ρ14

a
∫ T

0 f (s,T,a)dsEQ̃3
[
1{S1(T)>S2(T),V(T)>D}|F0

]
, (15)

where M1(T) = E[e−
∫ T

0 λ(s)ds|F0].
Since

EQ̃3
[
1{V(T)>D,S1(T)>S2(T)}

]
= PQ̃3 (S1(T) > S2(T), V(T) > D)

= PQ̃3 (z1 < b1, z2 < b2)

and z1 and z2 are the standard normal variables, we have

I3 = S1(0)M1(T)e−
σ1σ4ρ14

a
∫ T

0 f (s,T,a)dsN2(b1, b2, θ1), (16)

where θ1 is the correlation between z1 and z2.
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Under the measure Q3, I4 is represented by

I4 = e−rT M1(T)EQ3
[
S2(t)1{S1(T)>S2(T),V(T)>D}|F0

]
. (17)

We define a new measure Q̂3 such that

dQ̂3

dP
= exp

[
σ2WQ3

2 −
1
2

σ2
2

]
.

Then, by using the standard Brownian motions under the measure Q̂3, we have

I4 = S2(0)M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsEQ̂3
[
1{S1(T)>S2(T),V(T)>D}|F0

]
= S2(0)M1(T)e−

σ2σ4ρ24
a

∫ T
0 f (s,T,a)dsPQ̂3 (S1(T) > S2(T), V(T) > D)

= S2(0)M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsN2(b3, b4, θ1). (18)

Lemma 3. Let us consider J3 in the Equation (6), then J3 is given by

J3 =
(1− α)

D
S1(0)V(0)e(r+σ1σ3ρ13)T−

σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds M1(T)N2(c1, c2, θ1)

− (1− α)

D
S2(0)V(0)e(r+σ2σ3ρ23)T−

σ2σ4ρ24
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds

×M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsN2(c3, c4, θ1), (19)

where
θ1 = (σ1ρ13 − σ2ρ23)/σ, σ2 = σ2

1 + σ2
2 − 2σ1σ2ρ12, f (s, t, u) = 1− e−u(t−s),

M1(T) = exp
[
−bT − λ(0)−b

a f (0, T, a) + σ2
4

a2

∫ T
0 f 2(s, T, a)ds

]
,

c1 =
ln(V(0)/D)− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds+(r+ 1
2 σ2

3+σ1σ3ρ13)T
σ3
√

T
,

c2 =
ln(S1(0)/S2(0))−(

σ1σ4ρ14
a − σ2σ4ρ24

a )
∫ T

0 f (s,T,a)ds+(σ1σ3ρ13−σ1σ2ρ12−σ2σ3ρ23+
1
2 (σ

2
1+σ2

2 ))T
σ
√

T
,

c3 =
ln(V(0)/D)− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds+(r+ 1
2 σ2

3+σ2σ3ρ23)T
σ3
√

T
,

c4 =
ln(S1(0)/S2(0))−(

σ1σ4ρ14
a − σ2σ4ρ24

a )
∫ T

0 f (s,T,a)ds+(σ1σ3ρ13+σ1σ2ρ12−σ2σ3ρ23− 1
2 (σ

2
1+σ2

2 ))T
σ
√

T
,

and θ1, σ, f , M1(T) and N2 are defined in Lemma 2.

Proof. We rewrite J3 as

J3 =
(1− α)

D
e−rTEP

[
e−
∫ T

0 λ(s)dsV(T)S1(T)1{V(T)>D,S1(T)>S2(T)}|F0

]
− (1− α)

D
e−rTEP

[
e−
∫ T

0 λ(s)dsV(T)S2(T)1{V(T)>D,S1(T)>S2(T)}|F0

]
:=

(1− α)

D
I5 −

(1− α)

D
I6. (20)
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To calculate I5, we use the measure Q3 defined in Lemma 2. Under the measure Q3, we have

I5 = e−rT M1(T)EQ3
[
V(T)S1(T)1{V(T)>D,S1(T)>S2(T)}|F0

]
, (21)

where M1(T) is defined in Lemma 2. With the standard Brownian motions under the measure Q3 in (14),
we define a new measure Q4 such that

dQ4

dQ3
= exp

[
σ1WQ3

1 (T) + σ3WQ3
3 (T)− 1

2
(σ2

1 + σ2
3 + 2ρ13σ1σ3)T

]
.

By Girsanov’s thoerem,

WQ4
1 = WQ3

1 (T)− σ1T − σ3ρ13T,

WQ4
2 = WQ3

2 (T)− σ1ρ12T − σ3ρ23T,

WQ4
3 = WQ3

3 (T)− σ3T − σ1ρ13T

are the standard Brownian motions under the measure Q4. Then, we obtain

I5 = S1(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)EQ4

[
1{V(T)>D,S1(T)>S2(T)}|F0

]
= S1(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14

a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)PQ4 (V(T) > D, S1(T) > S2(T))

= S1(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)N2(c1, c2, θ1). (22)

In a similar way, we can write I6 under the measure Q3 as

I6 = e−rT M1(T)EQ3
[
V(T)S2(T)1{V(T)>D,S1(T)>S2(T)}|F0

]
. (23)

To calculate I6, we define a new measure Q5 equivalent to Q3 by

dQ5

dQ3
= exp

[
σ2WQ3

2 (T) + σ3WQ3
3 (T)− 1

2
(σ2

2 + σ2
3 + 2ρ23σ2σ3)T

]
.

By Girsanov’s thoerem,

WQ5
1 = WQ3

1 (T)− σ1ρ12T − σ3ρ13T,

WQ5
2 = WQ3

2 (T)− σ2T − σ3ρ23T,

WQ5
3 = WQ3

3 (T)− σ3T − σ2ρ23T

are the standard Brownian motions under the measure Q5. Then, we obtain

I6 = S2(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)EQ4

[
1{V(T)>D,S1(T)>S2(T)}|F0

]
= S1(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14

a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)PQ4 (V(T) > D, S1(T) > S2(T))

= S1(0)V(0)erT+σ1σ3ρ13T− σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a

∫ T
0 f (s,T,a)ds M1(T)N2(c1, c2, θ1). (24)

This completes the proof.

From above Lemmas, we can obtain the following theorem.
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Theorem 1. The value of exchange option with credit risk at time 0 under the hybrid credit risk model is given by

C =
(1− α)

D
S1(0)V(0)erT+σ1σ3ρ13TN(a1)−

(1− α)

D
S2(0)V(0)erT+σ1σ3ρ13TN(a2)

+S1(0)M1(T)e−
σ1σ4ρ14

a
∫ T

0 f (s,T,a)dsN2(b1, b2, θ1)− S2(0)M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsN2(b3, b4, θ1)

− (1− α)

D
S1(0)V(0)e(r+σ1σ3ρ13)T−

σ1σ4ρ14
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds M1(T)N2(c1, c2, θ1)

+
(1− α)

D
S2(0)V(0)e(r+σ2σ3ρ23)T−

σ2σ4ρ24
a

∫ T
0 f (s,T,a)ds− σ3σ4ρ34

a
∫ T

0 f (s,T,a)ds

×M1(T)e−
σ2σ4ρ24

a
∫ T

0 f (s,T,a)dsN2(c3, c4, θ1),

where all parameters and notations are defined in Lemmas 1–3.

4. Concluding Remarks

Exchange option is one of the popular exotic options with two underlying assets in the OTC markets,
and credit risk is undoubtedly very important issue in the OTC market. In fact, there have been numerous
studies on the valuation of exchange option with credit risk. However, to the best of my knowledge,
all results adopted only one of the two models (the reduced-form model and the structural model) for
modeling credit risk. In this paper, we first deal with the valuation of exchange option under the hybrid
credit risk model combining the reduced-form model and the structural model. Specifically, we use
the reduced-form model of Fard [6] and the structural model of Klein [10] to build the hybrid credit
risk model. To derive the pricing formula, we adopt the probabilistic approach and use the change of
measure technique as the important tool. Finally, we provide the closed-form pricing formula of vulnerable
exchange option with the standard normal cumulative distribution functions. Even though our approach
has the limitation that the underlying assets for exchange option follow Geometric Brownian Motion
(GBM) process, our approach will enable the valuation of other type of multi-asset options under the
hybrid credit risk model.

Funding: The author was supported by a National Research Foundation of Korea grant funded by the South Korean
government (Grant No. NRF-2017R1E1A1A03070886).
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