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Abstract: In the dual-mode model predictive control (MPC) framework, the size of the stabilizable
set, which is also the region of attraction, depends on the terminal constraint set. This paper aims to
formulate a larger terminal set for enlarging the region of attraction in a nonlinear MPC. Given several
control laws and their corresponding terminal invariant sets, a convex combination of the given sets
is used to construct a time-varying terminal set. The resulting region of attraction is the union of the
regions of attraction from each invariant set. Simulation results show that the proposed MPC has a
larger stabilizable initial set than the one obtained when a fixed terminal set is used.

Keywords: interpolation method; MPC; nonlinear

1. Introduction

Model predictive control (MPC) is an optimal controller that minimizes a cost index over a finite
horizon implemented in the receding horizon framework. The advantage of MPC over conventional
controllers is the ability to handle the state and control constraints. When the state is measured at a
sampling time, an optimization problem is solved. However, only the first element of the optimal
solution is applied to the system. Then, the whole procedure is repeated at the next sampling time [1].

The concept of a dual-mode MPC is widely used to guarantee the stability of MPC for both linear
systems, e.g., [2,3], and nonlinear systems, e.g., [4–6]. The terminal penalty function is used as an
upper bound of the infinite horizon cost needed to drive the state trajectory to the origin when the
initial condition is in the terminal region. Moreover, closed-loop stability is ensured by forcing the
terminal state to belong to a feasible and invariant set. Hence, the region of attraction is the set of
initial conditions that can be steered to the terminal region in N steps or less, where N is the prediction
horizon. In other words, it is a N-steps stabilizable set. Several studies have been devoted to formulate
a terminal set that makes the region of attraction as large as possible. By increasing the prediction
horizon, the domain of attraction can be enlarged at the expense of more computational effort due
to the increasing number of decision variables [7]. Hence, in the literature, various approaches have
been proposed to enlarge the region of attraction through a larger terminal set. In [8], it is shown
that the saturated local control law is used to yield a considerably larger terminal constraint set.
A sequence of sets is used in [9] to replace a single terminal set. The contractive set does not need to be
invariant as long as there is an admissible control that eventually steers the states to an invariant set.
Hence, a larger domain of attraction can be obtained by extending the sequence with a reachable set.
In [10], the terminal constraint is only applied to the unstable states, giving the flexibility to have a
larger set. A linear time-varying MPC is mostly used to extend a linear MPC with an enlarged terminal
set for a nonlinear system, e.g., in [11–14].

Interpolation-based MPC for a linear system is studied by [15,16] to achieve a compromise
between the size of domain attraction and the optimality. The MPC is designed by selecting
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several invariant sets and expressing the terminal state as a convex combination of states belonging
to the invariant sets. By doing that, the resulting terminal set becomes the convex hull of the
predefined-invariant sets. For reducing the number of decision variables, the interpolation method
can be implicitly employed, meaning that the terminal state is not explicitly expressed as the convex
combination of several states but is still the convex hull of several invariant sets, e.g., in [17,18].
The design procedure starts by designing several stabilizing feedback control gains Ki, i = 1, . . . , m, for
a given linear time-invariant system. Then, feasible and invariant ellipsoids Ei = {x|xT R−1

i x ≤ 1},
Ri > 0, are defined such that some necessary linear matrix inequalities (LMIs) are satisfied for each
matrix Ri, i ∈ [1, m]. These LMIs are popularly used to show that Ei can be applied as the terminal
set for a linear MPC [19]. It is then shown that applying a convex combination to the m given LMIs
yields a new LMI. As a result, the set Eλ = {x|xT(∑m

i=1 λiRi)
−1x ≤ 1} is a feasible and invariant set

for any λi ≥ 0 satisfying ∑m
i=1 λi = 1. In view of this, the method used in [17,18] is highly dependant

on the definition of the invariant sets through the use of an LMI form. Although an LMI form has
been widely applied for many applications, e.g., in a consensus problem [20,21], the terminal set for a
nonlinear MPC is not generally defined in an LMI form; thus, the convex hull may not be an invariant
set despite that the ingredient sets Ei are invariant. To deal with this, a linear differential inclusion
(LDI) is used in [12,13] to represent the nonlinear system. Specifically, the nonlinear system ẋ = f (x, u)
can be represented as ẋ = ∑ν

i=1 ζi Aix + ∑ν
i=1 ςiBiu where ∑ν

i=1 ζi = 1 and ∑ν
i=1 ςi = 1 with properly

chosen (Ai, Bi). As a result, after computing all ellipsoids using a common LDI, the convex hull of
the several invariant sets can be used as the terminal set of a nonlinear MPC [12]. However, LDI
representation is generally conservative and is hard to obtain [22]. With this in mind, this paper is
interested in applying a more general convex combination to several terminal sets of a nonlinear MPC.

This paper aims to enlarge the domain of attraction of a nonlinear MPC by having a larger
terminal region. Given several feasible and invariant sets Ei = {x|xT Pix} ≤ αi}, i = 1, 2, . . . , m,
this paper proposes a convex combination strategy to define a new set Eλ to define a larger terminal
set. The proposed strategy is different from the one discussed above as it does not require the help
of LDI to make Eλ to be used as a terminal set for a nonlinear MPC. Moreover, it is shown that Eλ

results in the union of E1, . . . , Em. The feasibility and stability of the MPC can be guaranteed with the
enlarged terminal set through the use of a common local Lyapunov function defined in all sets Ei.
Numerical simulations demonstrate that the proposed MPC has a larger region of attraction than the
one obtained by the conventional MPC.

Notation

Given any sets E1 and E2 ⊂ Rn, the union and the convex hull of these sets are denoted by E1 ∪ E2

and co{E1, E2}, respectively. For a square matrix A ∈ Rn×n, A > 0 denotes a positive definite matrix,
and λmin(A) is the eigenvalue of A whose absolute value is smallest and λmax(A) is defined similarly.

2. Preliminary Result: Nonlinear MPC

Consider discrete-time nonlinear systems:

xk+1 = f (xk, uk), (1)

where f : Rn ×Rnu → Rn, xk is the state and uk is the input at time instant k. The system is subject to
the control input and state constraints

uk ∈ U, xk ∈ X, ∀k ≥ 0, (2)

where U ∈ Rnu and X ∈ Rn are convex and compact sets. It is assumed that the state xk is measurable
and there is neither external disturbance nor model uncertainty. The following assumption is required
for system (1).
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Assumption 1. The function f is twice differentiable, and f (0, 0) = 0.

Having this assumption, (0, 0) ∈ Rn×nu is an equilibrium of system (1). The optimization problem
for the finite horizon nonlinear MPC for nonlinear system (1) is formulated as follows:

min
Uk

N−1

∑
i=0

`(xi|k, ui|k)+V(xN|k) (3)

subject to

xi+1|k = f (xi|k, ui|k), i ∈ {0, . . . , N − 1}
ui|k∈U, xi|k ∈ X, i ∈ {0, . . . , N − 1}
x0= xk, xN|k ∈ E

where `(x, u) = xTQx + uT Ru and xk is the current state measurement. Here, ui|k and xi|k denote input
and state predictions at time k + i that are computed at time k. Thus, U = [u0|k, u1|k, . . . , uN−1|k] is the
control prediction over the prediction horizon. The function V : Rn → R is known as the terminal
penalty cost. The matrix Q ≥ 0 and R > 0 are the weighting matrices for the state and input variables.
Set E denotes the terminal penalty set where a popular choice for the terminal set is an ellipsoid set
E := {x ∈ Rn|xT Px ≤ α}, where P > 0 is a symmetric matrix.

The nonlinear MPC design procedure starts by solving the optimization problem when the state
xk is measured at the kth sampling time. As a result, the optimal control sequence Uk is obtained,
and uk = u0|k is applied to the plant. Therefore, the (implicit) model predictive control law is
κMPC(xk) = u0|k. Afterward, the same procedure is repeated at the next sampling time. For details,
see [1,5,23].

Stability of MPC

The terminal region E and terminal penalty function V(xN|k) play a pivotal role in ensuring the
stability of the nonlinear MPC (3). The following lemma describes the required condition for stability.

Lemma 1. [1,3] With Q ≥ 0, R > 0, suppose that the following holds

A.1 ∃κ(x) such that κ(x) ∈ U, ∀x ∈ E (feasibility)
A.2 f (x, κ(x)) ∈ E , ∀x ∈ E (invariance)
A.3 E ∈ X
A.4 V( f (x, κ(x)))−V(x) ≤ −`(x, κ(x)), ∀x ∈ E .

Then, the origin is asymptotically stable for the closed loop system xk+1 = f (xk, κMPC(xk)) with a region of
attraction FN , i.e., FN is the set of states steerable to E by an admissible control in N steps or less.

For the purpose of enlarging the domain of attraction FN , this paper is interested in formulating
an MPC in which its terminal set is defined as the convex combination of several invariant sets
E1, E2, . . . , Em and is discussed in the next section.

3. MPC Based on the In-Between Terminal Set

In this paper, several sets are used as the ingredients of the time-varying terminal set for a
nonlinear MPC. Specifically, given m ellipsoids Ei = {x ∈ Rn|xT Pix ≤ αi}, Pi > 0, i = 1, . . . , m, let Eλ

be an ellipsoid given by

Eλ = {x ∈ Rn|xT Pλx ≤ αλ}, (4)
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where

Pλ :=
m

∑
i=1

λiPi, αλ =
m

∑
i=1

λiαi,
m

∑
i=1

λi = 1, (5)

and λi > 0, i = 1, . . . , m. From (5), a convex combination of Pi and αi, i = 1, . . . , m, are used to
define the new ellipsoid Eλ. In [24], Eλ is called as the in-between ellipsoid. Note that Eλ = Ei when
λi = 1, i ∈ {1, . . . , m}. Hence, Ei ⊂

⋃
λ∈Σ Eλ holds true, where Σ := {(λ1, . . . , λm)|∑m

i=1 λi = 1, λi ≥
0, i = 1, . . . , m}. In view of this, Eλ in (4) can be seen as a general way to define all Ei, i = 1, . . . , m.
A question arises on how the set

⋃
λ∈Σ Eλ looks like. Note that

⋃
λ∈Σ Eλ includes all the possible set

Eλ for any λi ∈ [0, 1] such that ∑m
i=1 λi = 1. In the following lemma, it is shown that Eλ is a subset

of the union of Ei.

Lemma 2. Eλ in (4) is an ellipsoid satisfying

Eλ ⊂ E1 ∪ E2 ∪ . . . ∪ Em. (6)

for any λi ≥ 0 satisfying ∑m
i=1 λi = 1.

See Appendix A for the proof.
Since Eλ = Ei when λi = 1, λj = 0, j 6= i, i, j ∈ [1, m], and (6) holds true, it follows that

⋃
λ∈Σ Eλ =

E1 ∪ . . . ∪ Em, meaning that the union of all possible Eλ results in the union of E1, . . . , Em. Figure 1
demonstrates Lemma 2 when only two ellipsoids E1 and E2 are considered. The property of Eλ given
by (6) is depicted in Figure 1b with λ2 = 1− λ1. It is important to note that convex combination (5)
does not result in convex hull of E1, . . . , Em as a convex hull is made by applying a convex combination
of ellipsoids expressed by {x|xT R−1

i x ≤ 1} with Ri > 0 [17,18]. See Table 1. Instead, as can be seen in
Figure 1, the convex combination (5) yields the union of E1, . . . , Em. Since, in general, {E1 ∪ . . .∪ Em} ⊂
co{Ei} holds true, (6) implies that Ei ⊂ Eλ ⊂ co{Ei}. Although this shows that the convex combination
used in this paper results in a smaller set than the one obtained in [17,18], it is shown that under the
following assumption, the in-between ellipsoid Eλ can be used as the terminal set of an MPC and
requires a relatively simple procedure even for nonlinear systems.

Table 1. Convex combinations (5) is different from the one used in [17,18]. Note that Ri = [Pi/α]−1.

Ei Eλ

[17,18] {x|xT R−1
i x ≤ 1} {x|xT(∑m

i=1 λiRi)
−1x ≤ 1} ∈ convex hull

This paper {x|xT Pix ≤ αi} {x|xT(∑m
i=1 λiPi)x ≤ ∑m

i=1 λiαi} ∈ union
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(a)
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0

1

2

3

(b)
Figure 1. (a) For given ellipsoids E1 and E2, (b) Eλ = {x|xT Pλx ≤ αλ, Pλ = ∑2

i=1 λiPi, αλ = ∑2
i=1 λiαi}.
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Assumption 2. For given Q ≥ 0 and R > 0, suppose that there exist m pairs of (Ei, κi(·)), i = 1, . . . , m,
satisfying A.1-A.3 of Lemma 1, and PL ∈ Rn×n such that

f (x, κi(x))T PL f (x, κi(x))− xT PLx ≤ −`(x, κi(x)), ∀x ∈ Ei i = 1, . . . , m, (7)

where PL is a symmetric and positive definite matrix and Ei = {x|xT Pix ≤ αi}.

In the literature, there are several methods to find an invariant set and a terminal penalty cost such
that the stability of the quasi-infinite horizon-based MPC (3) can be guaranteed, e.g., [5,25,26]. In these
studies, V(x) = xT Px is shown as a local Lyapunov function in the set E = {x|xT Px ≤ α} under a
stabilizing control law κ(x) = Kx, meaning that A1-A4 in Lemma 1 are satisfied. Thus, V(x) and
E can be used as the terminal penalty and the terminal region of a nonlinear MPC, respectively.
However, Assumption 2 requires the existence of a common local Lyapunov function V = xT PLx
defined in all the sets E1, . . . , Em [27]. Suppose that κi(x),Pi, αi satisfying Lemma 1 are given in the first
place, the common Lyapunov function can be found by choosing a positive definite matrix PL > Pi
such that the following holds true

min
x∈Ei

[
xT PLx− f (x, κi(x))T PL f (x, κi(x))− `(x, κi(x))

]
≥ 0, ∀i ∈ [1, m]. (8)

Note that (8) is equivalent with (7). A method based on the existing method [5,25,26] can also be
employed to make Assumption 2 holds true. In fact, the following lemma can be obtained by extending
the result in [26].

Lemma 3. Suppose that Assumption 1 holds true, and that the following linearized system of (1) in the
neighborhood of the origin is controllable

xk+1 = Axk + Buk. (9)

Let uk = Kxk be a stabilizing feedback control law with feedback gain K and P be a positive definite
matrix satisfying

τ2 AT
KPAT

K − P = −(Q + KT RK), (10)

where AK := A + BK, τ ∈
(

1, 1
|λmax(AK)|

)
. Moreover, suppose that PL ∈ Rn×n is a positive definite matrix

such that

τ2 AT
KPL AK − PL ≤ τ2 AT

KPAK − P. (11)

Then, there exists a constant α specifying an ellipsoid in the form of E = {x|xT Px ≤ α} such that Kxk ∈
U, ∀x ∈ E , E ∈ X, E is an invariant set for nonlinear system (1), and that the following holds true

f (x, Kx)T PL f (x, Kx)− xT PLx ≤ −`(x, Kx), ∀x ∈ E . (12)

Having this lemma, the sets E1, . . . , Em satisfying Assumption 2 can be obtained through the use
of the linearized system and state feedback control laws. Specifically, PL is chosen such that (11) holds
true for the given (Pi, Ki), and αi is chosen such that (12) holds true. The details of the method and the
proof of the lemma are given in Appendix B.
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Given E1, . . . , Em, the proposed MPC with enlarged terminal region is computed by solving the
following optimization problem

min
Uk ,λ1,k ,...,λm,k

JN(Uk, xk) (13)

subject to

xi+1|k = f (xi|k, ui|k), i ∈ {0, . . . , N − 1}
ui|k ∈ U, xi|k ∈ X, i ∈ {0, . . . , N − 1}
x0|k = xk, xN|k ∈ Eλ,k
m

∑
i=1

λi,k = 1, λi,k ≥ 0, i ∈ {1, . . . , m}

where Eλ,k =
{

x ∈ Rn|xT [∑m
i=1 λi,kPi] x ≤ ∑m

i=1 λi,kαi
}

,

JN(Uk, xk) =
N−1

∑
i=0

`(xi|k, ui|k)+xT
N|kPLxN|k,

and Uk = {u0|k, u1|k, · · · , uN−1|k}. In the following, it is shown that the stability of the proposed MPC
computed by (13) can be guaranteed.

Theorem 4. For the nonlinear system (1), suppose that Assumptions 1 and 2 hold true, and that the optimization
problem (13) with Q ≥ 0 and R > 0 is initially feasible. Then, the closed-loop system consisting of the system
(1) and the nonlinear MPC obtained from (13) is asymptotically stable.

Proof. Let λ∗1,k, . . . , λ∗m,k, and u∗i|k, i = 0, . . . N − 1, be the optimal solution of problem (13) at time k.
Then, the optimal vector U ∗k and X ∗k are given by

U ∗k = {u∗0|k, u∗1|k, · · · , u∗N−1|k},

X ∗k = {x∗0|k, x∗1|k, · · · , x∗N−1|k, x∗N|k}.

Having this, the optimal cost function at time k is given by

J∗N(U ∗k, xk) =
N−1

∑
i=0

`(x∗i|k, u∗i|k) + x∗N|k
T PLx∗N|k. (14)

By Lemma 2, there is at least one j, j ∈ {1, . . . , m}, such that x∗N|k ∈ Ej. Note that λj,k+1 = 1, λi,k+1 =

0, i ∈ {1, . . . , m}, i 6= j, are feasible at k + 1 since Ej is an invariant set with κj(x). Thus, the following is
a feasible control sequence at k + 1

Ũk+1 = {u∗1|k, u∗2|k, · · · , u∗N−1|k, κj(x∗N|k)}. (15)

The resulting state prediction is given by

X̃k+1 := {x∗1|k, x∗2|k, · · · , x∗N−1|k, x∗N|k, f (x∗N , κj(x∗N|k))}. (16)

where f (x∗N , κj(x∗N|k)) ∈ Ej due to the invariant set Ej. Using (15) and (16), the cost function at k + 1 is

JN(Ũk+1, xk+1) =
N−1

∑
i=1

`(x∗i|k, u∗i|k) + `(x∗N|k, κj(x∗N|k)) + f (x∗N , κj(x∗N|k))
T PL f (x∗N , κj(x∗N|k)). (17)
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Note that JN(Ũk+1, xk+1) is not the optimal cost function at k + 1. Moreover, (17) can be rewritten
as follows

JN(Ũk+1, xk+1) = J∗N(U ∗k, xk)− `(x∗0|k, u∗0|k) + `(x∗N|k, κj(x∗N|k))

+ f (x∗N , κj(x∗N|k))
T PL f (x∗N , κj(x∗N|k))− x∗N|k

T PLx∗N|k,

where J∗N(U ∗k, xk) is defined in (14). Applying (7) to this inequality yields

JN(Ũk+1, xk+1) ≤ J∗N(U ∗k, xk)− `(x∗0|k, u∗0|k).

As a result, the optimal cost function at time k + 1, denoted by J∗N(U ∗k+1, xk+1), satisfies

J∗N(U ∗k+1, xk+1) ≤ JN(Ũk+1, xk+1) ≤ J∗N(U ∗k , xk).

In other words, the optimal cost function is a Lyapunov function for system (1). Having this and
the terminal state constraint, nonlinear system (1) under the solution of (13) is asymptotically stable at
the origin.

Note that optimization problem (13) uses xT PLx as the fixed penalty cost function but employs
a time-varying terminal set Eλ,k =

{
x ∈ Rn|xT [∑m

i=1 λi,kPi] x ≤ ∑m
i=1 λiαi

}
. Since λi,k, i = 1, . . . , m,

can be any non-negative constants such that their sum is one, the union of E1, . . . , Em can be seen as the
terminal set of (13), meaning that the proposed method potentially yields larger region of attraction
when the region of attraction of each invariant set Ei is not the subset of the others, i.e., FN

i 6⊂ FN
j , i, j ∈

{1, . . . , m}, i 6= j.
Although the resulting terminal set is not the convex hull of the predefined sets, the proposed

method can be easily employed for a nonlinear system without the need for an LDI argument.
Moreover, the ingredient sets Ei can be obtained using a similar procedure as in [5,25], or [26]. In the
next section, numerical simulations are used to investigate the performance of the proposed MPC for a
nonlinear system.

4. Example

In this section, the optimization problem (13) is employed for two nonlinear systems. At first,
numerical simulation on a control-affine system with x ∈ R2 is presented. Then, a three-dimensional
system is used to investigate the proposed method for a general nonlinear system.

4.1. A Two-Dimensional Nonlinear System

Consider the following nonlinear system

ẋ1 = −20x1 + 10x2 + 6u + 10x2
1u,

ẋ2 = 20x1 − 20x2 + 6u− 40x2
2u,

where x1, x2 ∈ R. The system is subjected to constraints −0.1 ≤ u ≤ 0.1, −2 ≤ x1 ≤ 2, and −2 ≤ x2 ≤
2. The system is discretized and linearized with sampling time T = 0.05. For given Q = diag([0.5 0.5])
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and R = 0.5, suppose that a state feedback controller is used as a stabilizing control law, i.e., κi(x) = Kix.
Moreover, consider two pairs of (Ei, κi(x)), i = 1, 2, and PL satisfying Assumption 2 given by

K1 =
[
−0.0865 0.1364

]
, K2 =

[
−0.1246 0.1520

]
,

P1 =

[
9.2062 −5.7551
−5.7551 5.4322

]
, P2 =

[
3.8403 1.2193
1.2193 1.6077

]
,

PL =

[
11.7274 −3.9370
−3.9370 7.9271

]
,

where α1 = 0.95, α2 = 0.67, and PL is computed using the procedure described in Appendix B. Figure 2
shows the sets Ei, i = 1, 2, and the estimate of region of attraction FN

1 and FN
2 for N = 2. In this

example, the resulting region of attraction from Ei is estimated by applying Ei as a fixed terminal set for
different initial conditions. The proposed MPC results in a time-varying terminal set at each sampling
time Eλ = λkE1 + (1− λk)E2 where λk ∈ R is depicted in Figure 3. Figure 4 demonstrates that, for any
x0 ∈ FN

1 ∪FN
2 , the states are steered to the origin. Moreover, the input constraint is satisfied as shown

in Figure 5.
As shown in Figure 2 and Table 2, some initial conditions lead to infeasibility when only one

set (i.e., either E1 or E2) is considered for the terminal region. Meanwhile, thanks to the time-varying
terminal set Eλ, FN

1 ∪ FN
2 is the resulting region of attraction. As a result, the proposed MPC is

feasible for all six different initial states in Table 2, meaning that a larger region of attraction is obtained.
Let ∑∞

t=0 xT
t Qxt + uT

t Rut be the simulation cost. It is shown in Table 2 and Figure 6 that, compared to
the cost obtained by the MPC with Ei, i ∈ 1, 2 as the terminal region, the proposed MPC yields a
comparable cost with a larger domain of attraction. In summary, the proposed nonlinear MPC with
enlarged terminal set results in not only a larger region of attraction but also acceptable performance.

Table 2. Cost comparison between various terminal sets for given six different initial states.

x0 [−1;−1] [−0.1;−1.2] [1.5;−1.9] [1; 1.5] [0.1; 1.2] [−1.3; 1.8]

E1 85.84 40.72 Infeasible 126.38 40.72 Infeasible
E2 Infeasible 32.70 49.43 Infeasible 32.70 42.29
Eλ 85.88 40.75 49.53 127.74 40.75 42.42

Figure 2. The invariant set Ei and an estimate of the corresponding region of attraction FN
i with N = 2.

Since Eλ ∈ E1 ∪ E2, a larger region of attraction can be obtained, i.e., FN
λ = FN

1 ∪ FN
2 .
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Figure 3. Variable λ ∈ [0, 1] defining the time-varying terminal set Eλ.
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Figure 5. Control input u satisfies input constraint.
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Figure 6. (a) Simulation cost ∑∞

t=0 xT
t Qxt + uT

t Rut is computed using 22 initial states which are feasible
for Ei, i = 1, 2. (b) The proposed MPC yields a similar cost with the one obtained using Ei, i ∈ {1, 2}.

4.2. A Three-Dimensional Nonlinear System

Consider the following nonlinear system [28,29]

ẋ1 =−0.877x1+x3−0.088x1x3+0.47x2
1−0.019x2

2−x2
1x3+3.846x3

1−0.215uk+0.28x2
1u+0.47x1u2+0.63u3

ẋ2 = x3 (18)

ẋ3 =−4.208x1 − 0.396x3 − 0.47x2
1 − 3.564x3

1 − 20.967u + 6.265x2
1uk + 46x1u2 + 61.1u3.

Note that the considered system is not linear in the input variable u. It is assumed that
U = {u| − 3 ≤ u ≤ 3}. Similar to the previous example, the weighting matrices Q and R are
set to Q = diag([0.5 0.5 0.5]) and R = 0.5. The following are two pairs of (Ei, κi(x)), i = 1, 2, and PL
satisfying Assumption 2

K1 =
[
−0.40 1.57 0.28

]
, K2 =

[
−1.24 1.95 0.26

]
,

P1 =

 19.3 −70.5 −4.6
−70.5 426.9 29.9
−4.6 29.9 6.1

 , P2 =

 136.1 −205.4 −11.1
−205.4 341.4 20.7
−11.1 20.7 3.7

 ,

PL =

 832.3 −1221.2 −68.7
−1221.2 2056.1 122.8
−68.7 122.8 22.8

 ,

and αi = 1, i = 1, 2. The resulting feasible and invariant sets Ei, i = 1, 2, are shown in Figure 7.
The set E1 is not a subset of E2, and vice versa. Figure 8 depicts several initial states when Ei, i ∈ 1, 2 is
considered as the terminal set of a nonlinear MPC with N = 2. Note that there are several initial states
which are only feasible when E1 is employed as the terminal set of a nonlinear MPC. Likewise, there are
several initial states which are only feasible when E2 is considered. In view of this, similar as in the
previous example, using both E1 and E2 as the ingredient to define the time-varying terminal set Eλ

yields a larger region of attraction, i.e., Eλ = λkE1 +(1−λk)E2. Applying the optimization problem (13)
with N = 2 to few different initial conditions of (18) results in λk and the state trajectories x(t) depicted
in Figure 9a,b, respectively. Note that the resulting terminal set can be larger than the one obtained
here if we consider more ingredient sets Ei, i.e., m > 2.
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(a) (b)
Figure 7. The invariant set E1 and E2, E1, E2 ∈ R3, i = 1, 2, for system (18) where they are is plotted
(a) in a three-dimensional space and (b) in view of x1 and x2 axes. Note that E1 6⊂ E2 and E2 6⊂ E1.

(a) (b)
Figure 8. Few feasible initial states obtained using Ei, i = 1, 2 as the terminal set of a nonlinear MPC
with N = 2, where they are is plotted (a) in a three-dimensional space and (b) in view of x1 and x2 axes.
Note that some states are feasible only for the MPC with Ei, i ∈ {1, 2}.
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(a) (b)
Figure 9. (a) Resulting λ ∈ [0, 1] defining the time-varying terminal set Eλ ∈ R3. (b) Trajectories from
different initial states x(0) which are feasible to either E1 or E2.

5. Conclusions

This paper proposes a new time-varying terminal set for the nonlinear MPC via a convex
combination of given invariant and feasible sets. The resulting terminal set is the union of the
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predefined sets. Compared to the existing results on enlarging the terminal set through a convex
combination strategy, the proposed approach appears to be more general since it does not require
linear differential inclusion (LDI) representation of the nonlinear system in order to implement the
proposed nonlinear MPC scheme. The existence of a common local Lyapunov function in all the
ingredient invariant sets plays a key role in guaranteeing the stability of the proposed MPC. The paper
gives a general way to use several sets obtained from different state-feedback gains. Possible future
research includes the extension of this work to a tracking MPC problem.
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Appendix A. Proof of Lemma 2

By definition, since Pλ is a symmetric and positive definite matrix, Eλ is an ellipsoid. Next, for the
purpose of proving (6), let us consider its contradiction, meaning that there exists (λ1, . . . , λm) such
that Eλ is not in the union of E1, . . . , Em. For such (λ1, . . . , λm), there exists x̃ ∈ Rn satisfying the
following conditions at the same time

C.1 x̃T Pi x̃ > αi, ∀i = 1, . . . , m,
C.2 x̃T Pλ x̃ ≤ αλ.

From C.1, x̃T Pλ x̃ > ∑m
i=1 λiαi = αλ is obtained, which contradicts C.2. Thus, the claim is proven.

Appendix B. Common Lyapunov Function via Linearized System

Appendix B.1. Proof of Lemma 3

For all τ ∈
(

1, 1
|λmax(AK)|

)
, all the eigenvalues of τAK lie in the unit circle since AK is Hurwitz.

Thus, (10) admits a unique positive definite solution P. Since (0, 0) ∈ U×X, there exist γ > 0 such
that E0 = {x|xT Px ≤ γ} where Kx ∈ U, ∀x ∈ E0, and E0 ⊂ X. In light of this, the dynamics (1) in E
can be seen as an unconstrained nonlinear system, thereby, (1) with uk = Kxk can be written as

xk+1 = AKxk + Φxk, (A1)

where Φ(xk) := f (xk, Kxk)− AKxk. Then, it remains to show that there exists α ∈ [0, γ) such that (12),
i.e., invariance holds true. Consider a candidate Lyapunov function V(x) = xT PLx for PL satisfying (11).
It follows that

V(xk+1)−V(xk) = (AKxk+Φ(xk))
T PL(AKxk+Φ(xk))−xT

k PLxk

= τ2xT
k AT

KPL AKxk−xT
k PLxk+(1−τ2)xT

k AT
KPL AKxk (A2)

+2xT
k AT

KPLΦ(xk) + ΦT(xk)PLΦ(xk).

In view of (11), there exists a positive semidefinite matrix Γ ∈ Rn×n such that

τ2 AT
KPL AK − PL = τ2 AT

KPAK − P− Γ (A3)

holds true, i.e., Γ = PL − P − τ2 AT
K(PL − P)AK. Using (A3) and the definition of Γ, (A2) can be

written as

V(xk+1)−V(xk)=τ2xT
k AT

KPAKxk−xT
k Pxk− ψ(xk), (A4)
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where

ψ(xk) = xT
k Γxk + (τ2 − 1)xT

k AT
KPL AKxk−2xT

k AT
KPLΦ(xk)−ΦT(xk)PLΦ(xk). (A5)

Note that V(xk+1)− V(xk) ≤ τ2xT
k AT

KPAKxk − xT
k Pxk when ψ(xk) ≥ 0. Recall that, according to the

Taylor’s Theorem, for a continuous and twice differentiable function g on an open interval I around a,
there is a value η between a and b so that

g(b) = g(a) + g′(a)(b− a) +
1
2

g′′(η)(b− a)2. (A6)

In order to apply this to function Φ, let ηk be some value between a = 0 and b =

xk. Then, function Φ yields

Φ(xk)=
1
2

xT
k

∂2 f (ηk, Kηk)

∂2xk
xk+

1
2

xT
k

∂2 f (ηk, Kηk)

∂xk∂uk
Kxk+

1
2

xT
k KT ∂2 f (ηk, Kηk)

∂uk∂xk
xk+

1
2

xT
k KT ∂2 f (ηk, Kηk)

∂2uk
Kxk,

owing to Φ(a) = Φ(0) = 0 and Φ′(a) = Φ′(0) = 0. Denote

C(Φ(xk))=
∂2 f (ηk, Kηk)

∂2xk
+

∂2 f (ηk, Kηk)

∂xk∂uk
K + KT ∂2 f (ηk, Kηk)

∂uk∂xk
+KT ∂2 f (ηk, Kηk)

∂2uk
K.

Let CM be defined as follows

CM := sup
ηk∈E0

‖C(ηk)‖.

Thus, ‖Φ(xk)‖ ≤ 1
2 CM‖xk‖2 for all xk ∈ E0. Furthermore,

2xT
k AT

KPLΦ(xk)+ΦT(xk)PLΦ(xk) ≤ CM‖AK‖‖PL‖‖xk‖3+
C2

M
4
‖PL‖‖xk‖4. (A7)

Let α ∈ [0, γ) such that

CM‖AK‖‖PL‖‖xk‖+
C2

M
4
‖PL‖‖xk‖2 ≤ (τ2−1)λmin(AT

KPL AK)+λmin(Γ),

for all xk ∈ E . Then, CM‖AK‖‖PL‖‖xk‖3 +
C2

M
4 ‖PL‖‖xk‖4 ≤ (τ2 − 1)λmin(AT

KPL AK)‖xk‖2 +

λmin(Γ)‖xk‖2. Note that λmin(AT
KPL AK)‖xk‖2 ≤ xT

k AT
KPL AKxk and λmin(Γ)‖xk‖2 ≤ xT

k Γxk. With this
and (A7) in mind,

2xT
k AT

KPLΦ(xk)+ΦT(xk)PLΦ(xk) ≤ (τ2−1)xT
k AT

KPL AKxk + xT
k Γxk, ∀xk ∈ E .

It follows that ψ(xk) ≥ 0 for all xk ∈ E . Substituting this to (A4) and using (10) yield V(xk+1)−V(xk) ≤
−xT

k Qxk − xT
k KT RKxk.

Appendix B.2. A Common Lyapunov Function

In view of the proof above, for given (Ki, Pi) satisfying (10), the sets E1, . . . , Em described in
Assumption 2 can be found by reducing αi ∈ [0, γi) such that the following holds true

min
x∈Ei

ψi(x) ≥ 0, ∀i ∈ [1, m], (A8)

where, according to (A5),

ψi(x) = xTΓix + (τ2
i − 1)xT AT

K,iPL AK,ix−2xT AT
K,iPLΦi(x)−ΦT

i (x)PLΦi(x),



Mathematics 2020, 8, 2087 14 of 15

and PL satisfying τ2
i AT

K,iPL AK,i − PL ≤ τ2
i AT

K,iPi AK,i − Pi for all i ∈ [1, m]. Note that nonlinear
optimization (A8) is similar to the optimization used in [5,25,26].
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