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Abstract: This paper studies an irreversible investment problem under a finite horizon.
The firm expands its production capacity in irreversible investments by purchasing capital to
increase productivity. This problem is a singular stochastic control problem and its associated
Hamilton–Jacobi–Bellman equation is derived. By using a Mellin transform, we obtain the integral
equation satisfied by the free boundary of this investment problem. Furthermore, we solve the
integral equation numerically using the recursive integration method and present the graph for the
free boundary.
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1. Introduction

In economics, optimal investment problems have received much attention over the last few
decades. In particular, optimal investment problems under uncertainty have been widely studied
with the mathematical approaches. Abel and Eberly [1] provided an explicit analytic function
for optimal investment under the uncertainty of a firm with costly reversibility. To formulate the
investment problem, a constant-return-to-scale Cobb–Douglas production function facing an isoelastic
demand curve was considered over infinite time. Eberly and Mieghem [2] showed an optimal
investment strategy in a non-stationary case with uncertainty, a concave profit function and a horizon
of arbitrary length. Bertola [3] studied an irreversible investment problem under uncertainty with
an infinite horizon. In [3], the problem was solved under Cobb–Douglas technology and constant
elasticity demand. Dangl [4] investigated an irreversible investment problem when a firm decides
on optimal investment timing and optimal capacity choice at the same time under the condition of
uncertainty demand. In this paper, we deal with an irreversible investment problem under uncertainty.
More specifically, the main contribution of this paper is an efficient derivation of the integral equation
for an irreversible investment problem using Mellin transforms.

We consider an optimal irreversible investment problem under uncertainty with a finite horizon.
Specifically, we employ the partial differential equation (PDE) approach to solve the problem and
derive the integral equation for the free boundary of the investment problem using Mellin transforms.
The important advantage of Mellin transforms is that they convert the given PDE into the simple
ordinary differential equation (ODE). This leads to closed-form or analytic solutions of the PDEs. Thus,
Mellin transforms have been used widely as a relevant tool to handle the PDE in the financial area.
In recent years, the diverse options have been studied with Mellin transforms by many researchers
(cf. [5–9]). In particular, pricing formulas for vulnerable options under the structural model have been
derived using the double Mellin transforms (cf. [10–15]). We also adopt a Mellin transform approach
to derive the integral equation for irreversible optimal investment with a finite horizon. The properties
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of double Mellin transforms are used appropriately to obtain the integral equation for the optimal
investment with a finite horizon. This approach induces the integral equation more efficiently.

The remainder of this paper is organized as follows. Section 2 presents a brief literature review on
optimal investment problems. In Section 3, we formulate the model for the irreversible investment
problem with the production function. In Section 4, we deal with the free boundary problem for the
irreversible optimal investment. Concretely, the integral equation for the free boundary (the investment
threshold) to maximize firm value is derived by using Mellin transforms. We give the concluding
remarks in Section 5.

2. Literature Review

Optimal investment problems have been developed by many researchers. Chiarolla and
Haussmann [16] studied an irreversible investment problem in a stochastic, continuous time model over
a finite time and obtained the free boundary for optimal stopping problem from a nonlinear integral.
Ewald and Wang [17] dealt with an irreversible investment problem under the Cox–Ingersoll–Ross
(CIR) model. They showed various advantages of the CIR model. Riedel and Su [18] studied a
sequential irreversible investment problem under uncertainty and provided a general approach for
irreversible investment problems. Chiarolla, Ferrari and Riedel [19] dealt with a stochastic irreversible
investment problem in a market with N firms. Chiarolla and Ferrari [20] and Ferrari [21] also
found a new integral equation for the free boundaries of irreversible investment problems on finite
and infinite time horizons, respectively. In addition, Ferrari and Salminen [22] studied a general
irreversible investment problem under Lévy uncertainty as a two-dimensional, degenerate, singular
stochastic control problem. De Angelis, Federico and Ferrari [23] investigated a Markovian model for
optimal irreversible investment when a firm aims at minimizing total expected costs of production.
More recently, Christensen and Salminen [24] proposed the Riesz representation approach for the
efficient study of multidimensional investment problems. Federico, Rosestolato and Tacconi [25]
dealt with a model of irreversible investment choices. They characterized an optimal stochastic
impulse control problem with an infinite time horizon using techniques of viscosity. Jeon and Kim [26]
considered an investment problem with partial reversibility. They derived the coupled integral
equations for the optimal investment and solved the equations numerically.

3. The Model

In this paper, we assume that a firm chooses a dynamic capacity expansion plan over a finite
horizon T > 0. The firm decides on irreversible investments to expand its production capacity to
achieve better productivity and its instantaneous profit is given by a constant elasticity function
Π(X, K) of

Π(Xt, Kt) = XtK
γ
t , 0 < γ < 1, (1)

where (Xs)T
s=t is the per-unit profit margin of the output and (Ks)T

s=t is the firm’s capital stock process.
We model the firm’s output function as Q given by

Qt = Kγ
t L1−γ

t = Kγ
t ,

where we consider the case in which the labor L is constant over time ( L ≡ 1).
The dynamics of the per-unit profit margin (Xs)T

s=t are governed by geometric Brownian motion

dXs = µXsds + σXsdWs, Xs > 0, (2)

where µ and σ are positive constants; (Wt)T
t=0 is some standard Brownian motion on a complete

probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 satisfying the usual conditions.
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Within the present model, the firm’s capital stock process {Ks} evolves according to

dKs = dLs − δKsds, (3)

where δ ≥ 0 is a depreciation rate of the firm’s capital stock and (Ls) represents the cumulative
purchase of capital until time s ∈ [t, T], which is right-continuous with the left limit, nonnegative
and non-decreasing for F -adapted stochastic process with Lt− = 0.

An irreversible investment policy (Ls)T
s=t is called admissible if

E
[∫ T

t
e−β(s−t)(Xsds + dLs)

]
< +∞. (4)

We denote by At(x, k) with Xt = x Kt = k the class of all admissible policies.
The firm’s objective is to maximize the following expected utility by choosing the irreversible

investment plan (Ls)T
s=t:

V(t, x, k) = sup
L∈At

E
[∫ T

t
e−β(s−t) (Π(Xs, Ks)ds− pdLs) | Xt = x, Kt = k

]
, (5)

on regionR = {(t, x, k) | 0 ≤ t ≤ T, 0 < x, k < +∞}, where β > 0 is a discount factor.

4. Free Boundary Problem

Following Fleming and Soner [27], the associated Hamilton–Jacobi–Bellman (HJB) equation of (5)
is given by

min{ −∂tV −LV −Π, p− ∂kV} = 0, V(T, x, k) = 0, (6)

with

L =
σ2

2
x2∂xx + µx∂x − δk∂k − β.

From the HJB Equation (6), we can define the investment region and the no-investment region
as follows.

IR = {(t, x, k) | ∂kV(t, x, k) = p}, (the investment region),

NR = {(t, x, k) | ∂kV(t, x, k) < p}, (the no-investment region).
(7)

Then, the boundary that separates IR from NR is referred to as the free boundary, or optimal
investment threshold, and is given by

B(t, k) = sup{x ∈ R+ | (t, x, k) ∈ NR}. (8)

The investment region and the no-investment region correspond to x ≥ B(t, k) and x < B(t, k),
respectively. In terms of the free boundary B(t, k), the investment region IR can be written as

IR = {(t, x, k) | x ≥ B(t, k)}.

Moreover, at the free boundary x = B(t, k), the following smooth-pasting condition is established:

∂kV(t, B(t, k), k) = p and ∂xkV(t, B(t, k), k) = 0. (9)
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As in [28], we consider the following substitution

z =
xm

k
, u(t, z) = V(t, x, k)/k,

where m = 1/(1− γ).
Under above substitution, the HJB Equation (6) can be reduced to one-dimensional HJB equation

min{ −∂tu−L?u−Π?, p− (u− z∂zu)} = 0, u(T, z) = 0, (10)

where

µ̂ = µm + m(m− 1)σ2/2,

L? = σ2m2

2
z2∂zz + (µ̂ + δ)z∂z − (β + δ) and Π?(z) = z1−γ.

(11)

In terms of the value function u(t, z), the investment region ĨR and the no-investment region ÑR
are defined by

ĨR ={(t, z) | u(t, z)− ∂zu(t, z) = p}
={(t, z) | 0 ≤ t < T, z ≥ B?(t)},

and

ÑR ={(t, z) | u(t, z)− ∂zu(t, z) < p}
={(t, z) | 0 ≤ t < T, z < B?(t)},

respectively.
Here, the free boundary B?(t) is given by

B?(t) =
B(t, k)m

k
.

Let us define the function H(t, z) as

H(t, z) ≡ u(t, z)− z∂zu(t, z).

In investment region ĨR,
H(t, z) = p.

In no-investment region ÑR, since

∂tu + L?u + z1−γ = 0,

It is easy to check that
∂tH + L?H + γz1−γ = 0.

Thus, H(t, z) satisfies the following non-homogeneous PDE.

∂tH + L?H + γz1−γ1{z<B?(t)} + p(β + δ)1{z≥B?(t)} = 0,

H(T, z) = 0.
(12)

with the smooth-pasting condition H(t, B?(t)) = p.
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Proposition 1. The value function H(t, z) can be expressed by

H(t, z) =p(β + δ)
∫ T

t
e−M1(η−t)N

 log z
B?(η)

+ (µ̂ + δ− 1
2 σ2m2)(η − t)

σm
√

η − t

 dη

+ γz1−γ
∫ T

t
e−M2(η−t)N

− log z
B?(η)

+ (β + δ− γσ2m2 + 1
2 σ2m2)(η − t)

σm
√

η − t

 dη,

(13)

and the free boundary B?(t) satisfies the following integral equation:

p =p(β + δ)
∫ T

t
e−M1(η−t)N

 log B?(t)
B?(η)

+ (µ̂ + δ− 1
2 σ2m2)(η − t)

σm
√

η − t

 dη

+ γ(B?(t))1−γ
∫ T

t
e−M2(η−t)N

− log B?(t)
B?(η)

+ (β + δ− γσ2m2 + 1
2 σ2m2)(η − t)

σm
√

η − t

 dη,

(14)

where N (·) is standard normal cumulative distribution function and the constants M1 and M2 are defined by

M1 = β + δ, M2 = β + δ− (1− γ)(µ̂ + δ− 1
2

σ2m2)− 1
2
(1− γ)2σ2m2.

Proof. Let us define
f (t, z) = γz1−γ1{z<B?(t)} + p(β + δ)1{z≥B?(t)}.

Then, from the PDE (12), we have

∂tH + L?H = − f (t, z),

H(T, z) = 0.
(15)

Let us consider the Mellin transform Ĥ(t, w) of H(t, z); then

Ĥ(t, w) =
∫ ∞

0
H(t, z)zw−1dz.

By the inverse Mellin transform,

H(t, z) =
1

2πi

∫ c+i∞

c−i∞
Ĥ(t, w)z−wdw. (16)

From (16) and (15), the PDE (15) can be represented by

dĤ
dt

+
σ2m2

2
Q(w)Ĥ = f̂ (t, w),

Q(w) = w2 + (1− k2)w− k1, and k1 =
2(β + δ)

σ2m2 , k2 =
2(µ̂ + δ)

σ2m2 ,
(17)

where the terminal condition is Ĥ(T, z) = 0 and f̂ (t, w) is the Mellin transform of f (t, z).
Then, we can obtain the solution for the non-homogeneous ODE (17) as

Ĥ(t, w) =
∫ T

t
e

σ2m2
2 Q(w)(η−t) f̂ (η, w)dη. (18)
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Hence, from (16),

H(t, z) =
1

2πi

∫ c+i∞

c−i∞

∫ T

t
e

σ2m2
2 Q(w)(η−t) f̂ (η, w)z−wdηdw. (19)

Meanwhile, if we define

G(t, z) :=
1

2πi

∫ c+∞

c−i∞
e

σ2m2
2 Q(w)tz−wdw, (20)

then from Lemma 1 in [6], G(t, z) leads to

G(t, z) = e−
σ2m2

2 {
(

1−k2
2

)2
+k1}t z

1−k1
2

σm
√

2πt
e−

1
2 (log z/(σm

√
t))2

. (21)

Since e
σ2m2

2 Q(w)(η−t) and f̂ (η, w) are the Mellin transforms of G(η− t, z) and f (η, z), by the Mellin
convolution property in [6], H(t, z) yields

H(t, z) =
∫ T

t

∫ ∞

0
f (η, u)G(η − t,

z
u
)

du
u

dη

=
∫ T

t

∫ ∞

B?(η)
p(β + δ)G(η − t,

z
u
)

du
u

dη + γ
∫ T

t

∫ B?(η)

0
u1−γG(η − t,

z
u
)

du
u

dη.
(22)

By Appendix A, we can obtain

H(t, z) =p(β + δ)
∫ T

t
e−M1(η−t)N

 log z
B?(η)

+ (µ̂ + δ− 1
2 σ2m2)(η − t)

σm
√

η − t

 dη

+ γz1−γ
∫ T

t
e−M2(η−t)N

− log z
B?(η)

+ (β + δ− γσ2m2 + 1
2 σ2m2)(η − t)

σm
√

η − t

 dη.

(23)

By smooth-pasting condition, we have

p =p(β + δ)
∫ T

t
e−M1(η−t)N

 log B?(t)
B?(η)

+ (µ̂ + δ− 1
2 σ2m2)(η − t)

σm
√

η − t

 dη

+ γ(B?(t))1−γ
∫ T

t
e−M2(η−t)N

− log B?(t)
B?(η)

+ (β + δ− γσ2m2 + 1
2 σ2m2)(η − t)

σm
√

η − t

 dη.

(24)

Proposition 2. When time to maturity T − t goes to zero, the free boundary B?(t) goes to infinity; i.e.,

lim
t→T−

B?(t) = +∞.

Proof. In Proposition 1, B?(t) can be represented by

γ(B?(t))1−γ =

p− p(β + δ)
∫ T

t e−M1(η−t)N

 log B?(t)
B?(η)

+ (µ̂ + δ− 1
2 σ2)(η − t)

σm
√

η − t

 dη

∫ T
t e−M2(η−t)N

− log B?(t)
B?(η)

+ (β + δ− γσ2m2 + 1
2 σ2m2)(η − t)

σm
√

η − t

 dη

. (25)
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Letting t→ T−, we obtain that B?(t)→ +∞.

By using recursive integration method proposed by [29], we solve numerically the integral
Equations (14) for free boundary B?(t) and the value function H(t, z), respectively.

From the substitution
z =

xm

k
, u(t, z) = V(t, x, k)/k,

we can obtain the following theorem.

Theorem 1. The investment that maximizes value of firm is characterized by the investment threshold
B(t, k) satisfying

p =p(β + δ)
∫ T

t
e−M1(η−t)N

 log
(

B(t,k)
B(η,k)

)m
+ (µ̂ + δ− 1

2 σ2m2)(η − t)

σm
√

η − t

 dη

+
B(t, k)

Km

∫ T

t
e−M2(η−t)N

− log
(

B(t,k)
B(η,k)

)m
+ (β + δ− γσ2m2 + 1

2 σ2m2)(η − t)

σm
√

η − t

 dη.

(26)

Moreover, the marginal valuation of capital, ∂kV(t, x, k), is given by

∂kV(t, x, k) =p(β + δ)k
∫ T

t
e−M1(η−t)N

 log
(

x
B(η,k)

)m
+ (µ̂ + δ− 1

2 σ2m2)(η − t)

σm
√

η − t

 dη

+ xkγ
∫ T

t
e−M2(η−t)N

− log
(

x
B(η,k)

)m
+ (β + δ− γσ2m2 + 1

2 σ2m2)(η − t)

σm
√

η − t

 dη,

(27)

The two regions IR and NR are rewritten as

IR = {(t, x, k) | xm/k ≥ B?(t)}, (the investment region),

NR = {(t, x, k) | 0 < xm/k < B?(t)}, (the no-investment region).
(28)

By the Skorohod lemma (For more details, see [30]), the optimal processes K∗ and L∗ can be
characterized as follows:

Corollary 1. Given any initial state variable Xt = x ≥ 0 and free boundary B?, there exists a unique
adapted process K∗, a non-decreasing process L∗, right-continuous, L∗t− = 0, satisfying the Skorohod problem
S(x, k, B?(t)):

dXs = µXsds + σXsdWs, Xt = x > 0, s ∈ (t, T),

dK∗s = dL∗s − δK∗s ds, K∗t = k > 0, s ∈ (t, T),∫ T

t
1{(Xs ,K∗s )∈NR}dL∗s = 0.

(29)

Moreover, if (Xs, K∗s ) ∈ NR, then L∗ is continuous. When (Xs, K∗s ) ∈ IR, L∗0 = xm/B?(t)− k.

Corollary 1 means that if the initial (x, k) lies in IR, it jumps immediately to the non-investment
region NI by increasing the process L∗. Moreover, the optimal firm’s capital stock K∗ is a regulator
such that (X∗s , K∗s ) ∈ NR for any s ∈ (t, T) by adjusting the cumulative purchase process L∗. As shown
in Figure 1, the level of firm’s capital stock process K∗ stays constant (δ = 0) while the process Xm/K∗
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lies inside NR. On the other hand, the cumulative purchase L∗ jump up if and only if the process
Xm/K∗ hits the free boundary B?.

0 5 10 15 20 25 30

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) The process Xm/K∗ and free boundary B?.

0 5 10 15 20 25 30

200

250

300

350

400

450

(b) The process L∗.

Figure 1. Simulation of the processes Xm/K∗ and L∗. The base parameters are as follows: x = 40,
k = 200, T = 30, µ = 0.1, β = 0.08, δ = 0, σ = 0.2, γ = 0.5 and p = 1.

5. Concluding Remarks

In this paper, we studied an irreversible optimal investment problem with the finite horizon.
To model the optimal invest problem, there have been many approaches—a stochastic control problem,
dynamic programming techniques, the Bank–El Karoui representation theorem, etc. Among them,
we consider the HJB equation as a singular stochastic control problem. In fact, in the mathematical
economic literature, the singular stochastic control problems have been often used the irreversible
optimal investment problem under an uncertain environment (See [16,18,21,23]). We dealt with a free
boundary problem arising from the irreversible investment problem using the HJB equation.

We derived the integral equation for optimal irreversible investment with a finite horizon by
the PDE approach. The dynamic capacity production of the firm was assumed to follow a geometric
Brownian motion (GBM) process, and the Cobb–Douglas production function was used for the
operating profit of the firm. To obtain the integral equation from the PDE for optimal investment,
we used the Mellin transforms. The integral equation derived from the PDE was solved by using the
recursive integration method. In other words, we solved numerically the integral equation for optimal
irreversible investment. We also provided the graph to illustrate the movements of free boundaries for
optimal investment with respect to time to maturity.
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Appendix A. Supplement of Proposition 1

From (21), we have

∫ b

0
u−αG(t, z

u
)

1
u

du = z−αe−
1
2 {k1−(1−k2)α−α2}σ2m2tN

− log
z
b
+
(

1−k2
2 + α

)
σ2m2t

σm
√

t

 ,

∫ ∞

b
u−αG(t, z

u
)

1
u

du = z−αe−
1
2 {k1−(1−k2)α−α2}σ2m2tN

 log
z
b
−
(

1−k2
2 + α

)
σ2m2t

σm
√

t

 ,
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where α is any real number, G(t, y) is the kernel function andN (·) is a cumulative distribution function
of standard normal distribution.

Proof. If we use the transformation w = log(z/u), we have

∫ b

0
u−αG(t, z

u
)

1
u

du

=
∫ b

0
u−αe

− 1
2

{(
1−k2

2

)2
+k1

}
σ2m2t

·
( z

u
) 1−k2

2

σm
√

2πt
e−

1
2

(
log (z/u)

σ
√

t

)2 1
u

du

= −z−αe
− 1

2

{(
1−k2

2

)2
+k1

}
σ2m2t ∫ log z

b

∞
eαw e

(
1−k2

2

)
w

σm
√

2πt
e−

1
2

w2

σ2m2t dw

= −z−αe
− 1

2

{(
1−k2

2

)2
+k1−

(
1−k2

2 +α
)2
}

σ2m2t ∫ log z
b

∞

1
σm
√

2πt
exp

−1
2

w− σ2m2t
(

1−k2
2 + α

)
σm
√

t

2 dw

= z−αe−
1
2{k1−(1−k2)α−α2}σ2m2tN

− log z
b + σ2m2t

(
1−k2

2 + α
)

σ
√

t

 ,

In a similar way, we obtain

∫ ∞

b
u−αG(t, z

u
)

1
u

du = z−αe−
1
2 {k1−(1−k2)α−α2}σ2m2tN

 log
z
b
−
(

1−k2
2 + α

)
σ2m2t

σm
√

t

 .
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